
Sample Linear Program 

 

Problem Statement: Consider the following situation. A manufacturing company makes two 

products P1 and P2 using machines M1 and M2. One unit of P1 needs 4 hours on M1 and 2 hours 

on M2 whereas one unit of P2 needs 3 hours on M1 and 1 hour on M2. Further, a unit of P1 yields a 

revenue of $7 and a unit of P2 yields a revenue of $5. Given that the total available time on 

machines M1 and M2 is 240 hours and 100 hours, how many products of each type should the 

company make so as to maximize its total revenue. 

Solution: We can model this problem as a linear program as follows. We first define the decision 

variables. Let x1 be the no. of manufactured units of product P1 and x2 be the no. of manufactured 

units of product P2.  

Since each unit of P1 yields a revenue of $7, x1 units of P1 will yield a revenue of 7*x1. Similarly, 

x2 units of P2 will yield a revenue of 5*x2. The total revenue is therefore given by “7*x1 + 5*x2”, 

which becomes our objective function. 

Since we are making x1 units of P1, we will need 4*x1 hours on M1 and 2*x1 hours on M2. 

Similarly, x2 units of P2 will need 3*x2 hours on M1 and 1*x2 hours on M2. Therefore, the total 

number of hours required for M1 will be 4*x1 + 3*x2, and the total number of hours required for 

M2 will be 2*x1 + 1*x2.  

Since the total available time for M1 and M2 is 240 hours and 100 hours, we need to ensure that 

“4*x1 + 3*x2 ≤ 240” and “2*x1 + 1*x2 ≤ 100”, which become our resource constraints. Also, the 

number of products manufactured cannot be negative. So, we need to ensure that “x1, x2 ≥ 0”, 

which become our non-negativity constraints. 

Here is the linear programming model for this problem. 

Maximize 7*x1 + 5*x2         (1) 

Subject to  

4*x1 + 3*x2 ≤ 240         (2) 

2*x1 + 1*x2 ≤ 100         (3) 

x1, x2 ≥ 0          (4) 

The origins of linear programming go back to the period after World War II, when the US Air 

Force was optimizing its logistical operations. The word programming here refers to a “plan” 

that could be followed by the military. 

Since this is a two-dimensional problem, we can solve it graphically. As shown in Figure 1, 

every point in the shaded area satisfies all the constraints and corresponds to a feasible solution. 



We want to find the point or points for which the value of the objective function is the greatest, 

which we will call the optimal solution. 

 

 

Figure 1: Feasible region for the linear program 

 

To get an intuition, we can start with an initial estimate of the objective function and then modify 

it based on where it appears in the graph. Let us start by considering an objective value of 140 

and plot the line 7*x1 + 5*x2 = 140.  

As shown in Figure 2, this line lies entirely within the feasible region and so we can infer that an 

objective value of 140 is feasible. 

Let us now increase the objective value to 350. As shown in Figure 3, the line 7*x1 + 5*x2 = 350 

also lies within the feasible region. We also observe that the line with a constant objective 

function value is moving to the north-east side of the feasible region. 



 

Figure 2: Checking for an objective function value of 140 

 

 

Figure 3: Checking for an objective function value of 350 



Since we have some room for further increasing the objective value, we change it to 420 and 

observe the effect. As shown in Figure 4, the line 7*x1 + 5*x2 = 420 touches a corner point at the 

boundary of the feasible region. If we were to increase the objective value any further, then the 

line will go outside the feasible region and therefore will not correspond to a feasible solution. 

Thus, we can be sure that we have the optimal solution to the linear program. 

 

Figure 4: Checking for an objective function value of 420 

 

The Fundamental Theorem of Linear Programming states that the optimal solution to a linear 

program always occurs at a corner point. Thus, instead of checking the objective value at every 

point in the feasible region (which contains an infinite number of points), we can simply check 

the value at the corner points and pick the best. For problems with hundreds of thousands of 

constraints, the number of corner points can be very large and so it is computationally prohibitive 

to check the objective value at each corner point. An algorithm called the Simplex Method is 

used, which typically checks the objective value at only a subset of points before arriving at the 

optimal solution. 


