Sample Integer Program

Problem Statement: A media company has five spots (S_1 , S_2 , S_3 , S_4 and S_5) that it wants to assign to three breaks (B_1 , B_2 and B_3). The company knows the estimated impressions for each spot and break combination. How can the company find and assign a subset of spots to breaks so as to maximize the total no. of impressions while ensuring the following constraints?

- 1. A break can have no more than one spot.
- 2. Spots S_1 and S_2 belong to a prominent advertiser and so at least one of them must be picked.

Spot/Break	B ₁	B ₂	B ₃
\mathbf{S}_1	7	8	1
S 2	3	1	5
S 3	2	9	3
S 4	1	7	2
S 5	6	2	7

Table 1: Estimated Impressions

Let us define decision variables y_{ij} where $1 \le i \le 5$ and $1 \le j \le 3$ such that y_{ij} is one if spot *i* is assigned to break *j*, and is zero otherwise.

1. The objective function z is given by Equation 1.

Max.
$$z = 7y_{11} + 8y_{12} + y_{13}$$
 (1)
+ $3y_{21} + y_{22} + 5y_{23}$
+ $2y_{31} + 9y_{32} + 3y_{33}$
+ $y_{41} + 7y_{42} + 2y_{43}$
+ $6y_{51} + 2y_{52} + 7y_{53}$

2. The following constraints ensure that a spot can be assigned to no more than one break.

 $y_{11} + y_{12} + y_{13} \le 1 \tag{2}$

- $y_{21} + y_{22} + y_{23} \le 1 \tag{3}$
- $y_{31} + y_{32} + y_{33} \le 1 \tag{4}$
- $y_{41} + y_{42} + y_{43} \le 1 \tag{5}$
- $y_{51} + y_{52} + y_{53} \le 1 \tag{6}$

3. The following constraints ensure that a break can have no more than one spot.

$$y_{11} + y_{21} + y_{31} + y_{41} + y_{51} \le 1 \tag{7}$$

$$y_{12} + y_{22} + y_{32} + y_{42} + y_{52} \le 1 \tag{8}$$

$$y_{13} + y_{23} + y_{33} + y_{43} + y_{53} \le 1 \tag{9}$$

4. The following constraints ensures that either S_1 or S_2 must be selected.

$$y_{11} + y_{12} + y_{13} + y_{21} + y_{22} + y_{23} \ge 1$$
(10)

5. Binary variable constraints

$$y_{ij} \in \{0, 1\}$$
 for $1 \le i \le 5$ and $1 \le j \le 3$ (11)