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1 Introduction

Skill-biased technical change (SBTC) has long been analyzed through the lens of conven-

tional production theory, which views the production process as a “black box”, largely

unspecified beyond basic assumptions regarding the marginal products of production fac-

tors, returns to scale, and elasticity of substitution. For many economic applications,

such coarse modeling of production has proven to be sufficient. However, in the context

of SBTC, this risks overlooking possible adverse effects of technological progress on labor

market outcomes. To shed light on the broader implications of SBTC, recent literature

advocates conceptualizing the production process as a composition of various tasks. These

tasks are allocated to production factors based on the principles of comparative advantage

and optimal assignment theory. The distinction between skills and tasks becomes partic-

ularly important when, as in our paper, workers with a given skill level can potentially

perform multiple tasks, and technological progress influences the equilibrium mapping

between production tasks and workers of different skill groups, see Autor (2013) for an

overview.

So far, the literature analyzing the impact of SBTC on the task allocation between

low- and high-skilled workers, and its subsequent effects on the wage levels of both skill

groups in general equilibrium, predominantly relies on perfect competition models. For

the seminal work in this area, refer to Acemoglu and Autor (2011). These models often

abstract from the frictions and imperfections inherent in real-world labor markets, such as

search and matching frictions and the important role of collective bargaining in wage de-

termination, which is particularly relevant within European contexts. In their concluding

remarks, Acemoglu and Autor (2011, p. 1160) state that “Certain work practices, such as

collective bargaining and unionized workplace arrangements, might have greater impact

on the earnings distribution because of the way they impact the assignment of tasks to

labor or capital.” They conclude [p.1160]: “Further work tractably integrating various

forms of labor market imperfections within a framework that incorporates the endogenous

allocation of skills to tasks appears to be another fruitful area for research.”

This paper seeks to bridge this gap in the literature and provides novel theoretical in-

sights by adopting realistic modeling assumptions. Specifically, we assume that imperfect

competition prevails in the labor market and that firms optimally adjust task assignments

in response to changes in both the productivity and wages of high- and low-skilled work-
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ers. The proposed framework combines the task-based approach, union-influenced wage

setting, and search and matching frictions. It distinguishes between two worker cate-

gories: low-skilled and high-skilled. The low-skilled category is meant to represent low-

and medium-skilled workers in the real world, whereas the high-skilled category comprises

highly educated individuals with advanced degrees. In the model, matching frictions only

exist for low-skilled workers, who are also the sole group represented by labor unions.

These assumptions are based on the observation that low- (and medium-) skilled workers

often face greater challenges in finding suitable jobs due to a mismatch between their

skills and job requirements, and labor unions often strive to reduce skill premia by act-

ing more on behalf of low- and medium-skilled workers. Conversely, high-skilled workers

are assumed to operate under perfect competition because they are usually well-informed

about job opportunities and benefit from competitive wage determination. In the produc-

tion process, both low- and high-skilled workers are, in principle, capable of performing

all tasks, but high-skilled workers have a comparative advantage in more complex tasks.

Each firm uses both skill groups in production and must decide how to allocate low-

and high-skilled workers to tasks based on relative wages and relative productivity in

the respective tasks. In the profit maximum, the representative firm determines a task

threshold below which all tasks are performed by low-skilled workers, while tasks above

the threshold are assigned to high-skilled workers.

The central focus of our paper is to investigate how labor unions respond to firms’

incentives to modify the task allocation between low- and high-skilled workers due to

SBTC. We model SBTC as an increase in the productivity of high-skilled workers across

all tasks. Our analysis reveals two important channels through which SBTC-induced task

reallocation impacts labor unions’ behavior and consequently wage determination. These

channels are absent in task-based perfect competition models. First, in a labor market

with matching frictions, firms intending to change their task composition will likely adjust

their posted vacancies, thereby affecting overall labor market tightness. This, in turn,

influences the outside option of labor unions, the level of wage pressure in the economy,

and labor market flows. Second, changes in task assignments trigger changes in the

wage-setting behavior of labor unions by affecting the wage elasticity of labor demand,

thereby impacting unions’ wage markups. This channel has not yet been explored in

the literature and deserves more attention, as it largely determines whether low-skilled

workers are ultimately harmed by SBTC.
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While it is well known that labor unions’ wage markups inversely correlate with the

labor demand elasticity, we offer a novel contribution by investigating the interplay be-

tween labor demand elasticity and task allocation. We demonstrate that even with a

simple Cobb-Douglas structure at the task level, the labor demand elasticity is generally

not constant but depends on the task threshold that divides the range of tasks assigned

to low-skilled and high-skilled workers. How changes in the task threshold affect the wage

elasticity of labor demand is determined by the shape of the relative task productivity

schedule. This schedule describes the comparative advantage of the two skill groups in

performing the various tasks. Since we allow for both concave and convex shapes of the

relative task productivity schedule, the impact of changes in the task threshold on the

labor demand elasticity is generally ambiguous. It can be explained by different degrees of

substitutability between high- and low-skilled workers because, in general, the elasticity

of substitution between low- and high-skilled workers depends on the task assignment,

which may change due to SBTC. To provide some intuition, consider, for example, the

case of a concave task productivity schedule. Such a shape implies that the increase in the

comparative advantage of high-skilled workers decreases with increasing task complexity,

or, in other words, both skill groups become more similar. Therefore, the substitutability

of skills increases with increasing task complexity, and it declines with decreasing task

complexity. The latter becomes relevant in the SBTC context—when SBTC increases the

productivity of high-skilled workers across all tasks, firms cet. par. want to expand the

range of tasks performed by high-skilled workers and lower the task threshold. With the

declining threshold task complexity, low-skilled workers become less substitutable, which

lowers the labor demand elasticity and increases the wage markup.

To establish the general equilibrium effects of SBTC, we derive a two-equation system

from the model, analogous to standard search-and-matching models. This system de-

scribes the job creation activities of firms and the wage-setting behavior of labor unions

for low-skilled workers. While the job creation curve, plotted with labor market tight-

ness on the horizontal axis and the real wage on the vertical axis, has the usual negative

slope, the wage curve can slope either upwards or downwards. With an upward-sloping

wage curve, low-skilled workers benefit from an increase in the productivity of high-skilled

workers, evidenced by both higher employment and higher real wages. Conversely, with a

downward-sloping wage curve, low-skilled workers may be adversely affected by either an

increase in unemployment or a reduction in real wages. The key factor determining the
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slope of the wage curve is the response of the labor demand elasticity to changes in the task

threshold. The slope becomes negative if the labor demand elasticity increases with the

task threshold, and if this reaction is strong, thus implying strong upward wage pressure

when the task threshold decreases. Our results highlight that the task-allocation channel

of SBTC, influencing the wage-setting behavior of labor unions through task allocation, is

relevant for two reasons: (i) it can provide a technological explanation for varying degrees

of wage rigidity across sectors and countries, as reflected in different slopes of the wage

curve; and (ii) it may imply adverse labor-market effects of SBTC for low-skilled workers.

The latter stands in contrast to the predictions of “canonical models”, i.e., models using

the conventional production function approach.1

To complement the theoretical analysis, we calibrate our model using data from Ger-

many and France for the periods 1995–2005 and 2010–2017. We select these countries

because both are comparably large economies with still high union coverage rates. The

first objective of the quantitative analysis is to calibrate the model to align with real-

world data, thereby identifying the unobserved parameters of the relative task productiv-

ity schedule. The second objective is to demonstrate that the effects of SBTC can vary

across countries and periods, even when these countries have similar economic conditions.

We interpret the mean values of selected labor market variables for each period and coun-

try as steady-state values. We then examine the consequences of a ten percent increase in

the skill bias of production technologies on the respective steady states. We consider two

different periods to illustrate that SBTC may have opposing impacts on variables such as

labor market tightness within the same country, depending on the steady state.

According to the results, for the first period, SBTC leads to a significant decline in

the labor demand elasticity, which substantially increases labor unions’ wage markups.

This contributes to decreased labor market tightness and increased unemployment among

low-skilled workers in both countries. In Germany, a similar result is obtained for the

second period, whereas in France, the impact of SBTC on the labor demand elasticity

weakens, implying only a moderate increase in wage pressure. Consequently, low-skilled

labor market tightness increases, and the unemployment rate declines. In both countries

and periods, both low- and high-skilled workers experience real wage increases, but the

1In the canonical model, low-skilled workers usually benefit from SBTC in terms of higher real wages
and higher labor demand. However, high-skilled workers benefit more from SBTC, as relative labor
demand for high-skilled workers and the skill premium rise. For a full description of the implications of
the canonical model, see Acemoglu and Autor (2011).
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increase is significantly more pronounced for high-skilled workers, leading to a marked rise

in the skill premium. We infer that the extent of the decline in the labor demand elasticity

is essential in determining the labor market outcomes of SBTC in our simulation exercise.

This decline depends on the characteristics of the initial steady state, specifically the task

productivity schedule and the task allocation in this steady state.

Since the calibrated task productivity schedule plays a crucial role in driving the results

regarding the SBTC effects, we aim to evaluate the plausibility of the calibration exercise

by estimating a task productivity schedule. To achieve this, we derive a model-based

estimation equation that allows us to obtain an (approximated) task productivity schedule

compatible with real-world data. For the estimation, we utilize German microdata from

the SOEP and approximate tasks using occupational data, resulting in task productivity

schedules for Germany over two periods. The shapes of these estimated schedules align

with those of the corresponding calibrated counterparts, which reinforces our confidence

in the reliability of the SBTC effects derived from the calibration exercise.

The remainder of the paper is structured as follows: Section 2 reviews the literature

related to our study. Section 3 introduces the model and discusses the implications of

changes in the task threshold on the wage elasticity of labor demand for low-skilled workers

and on labor unions’ wage-setting behavior. Section 4 conducts a comparative-static

analysis of the labor market consequences of SBTC. Section 5 calibrates the model using

data from Germany and France. Section 6 provides empirical evidence on the shape of the

relative task productivity schedule using German microdata from the SOEP. Section 7

summarizes the results and provides concluding remarks.

2 Related Literature

Our paper sheds new light on the labor market consequences of SBTC by incorporating

the task approach into a model with labor union wage setting and matching frictions.

It is shown that SBTC can adversely affect low-skilled workers through lower wages or

higher unemployment, contrary to conventional models. The focus is on two transmission

channels of SBTC that are not considered in models with fixed task allocation and perfect

competition in labor markets. One channel examines the effects of SBTC on labor market

tightness and labor unions’ outside options, driven by the extensive margin reallocation

of tasks to different worker categories (in addition to the intensive margin adjustment of
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labor inputs within tasks). The other channel investigates the effects of task reallocations

on labor unions’ wage markups, brought about by changes in the wage elasticity of labor

demand, which, due to the task-based approach, can no longer be considered isoelastic.

Our analysis complements the extensive literature on the effects of SBTC by revealing the

important role of the curvature of the relative task productivity schedule in influencing

unions’ wage markups, the slope of the aggregate wage curve, and the comparative static

results in general equilibrium.

Our paper is related to the literature modeling the production process with the task

approach. In an early contribution, Rosen (1978) explains the structure of work activities

within firms by developing a theory of optimum assignment of workers to tasks based on

the principle of comparative advantage. Our paper is influenced by the seminal contribu-

tion of Acemoglu and Autor (2011) who demonstrate how the firms’ optimum assignment

decisions can be integrated into a general equilibrium model of SBTC and compare the

consequences of SBTC in the canonical and task-based model. Follow-up papers, such

as Acemoglu and Restrepo (2018a, 2018b, 2022), and Hémous and Olsen (2022), develop

task-based approaches for the analysis of the labor-market consequences of automation.

Assuming perfect competition in the labor market, these papers focus on the impact of

SBTC or automation on wages and the labor share but do not consider the effects on

collective bargaining, unemployment, or labor market tightness.2

Our paper focuses on the impact of SBTC on labor unions’ wage setting brought

about by changes in the firms’ task allocation. A few papers also look at the impact of

SBTC on labor unions but focus on the question of whether SBTC may be responsible for

the deunionization observed in the US and other countries. In their theoretical analysis,

Acemoglu et al. (2001) start with the well-known fact that unions compress the wage

structure. If SBTC is limited, skilled workers accept to work at unionized firms because

of the benefits provided by unions. However, with strong SBTC, the outside option, i.e.

the competitive market return, for skilled workers increases. This weakens their incentive

to join the unionized sector. In that sense, SBTC leads to deunionization which amplifies

the original effect of SBTC on inequality. The hypothesis of Acemoglu et al. (2001) is

supported by the model and calibration of Açıkgöz and Kaymak (2014) who use similar

arguments to explain the deunionization in the US. Dinlersoz and Greenwood (2016) go

2The task-based approach has also been used in the literature on the labor-market effects of offshoring,
see, e.g., Grossman and Rossi-Hansberg (2008) and Costinot and Vogel (2010) .
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one step further and argue that SBTC is not only responsible for the deunionization

observed in more recent decades but also for the increase in union density in the first half

of the 20th century. Neto et al. (2019) consider the “reverse” question of whether labor

unions influence the direction of technical change. They build an endogenous growth

model of directed technical change in which only low-skilled workers are organized in

labor unions. The unions’ impact on SBTC depends on whether the unions are more

wage-oriented or more employment-oriented. It turns out that in the first case firms have

a higher incentive to invest in high-skilled technologies than in the second one.

Another related strand of literature integrates, similarly to our paper, union wage

determination in the Mortensen-Pissarides matching model. In a matching model with

monopoly unions, Pissarides (1986) shows that an efficient level of unemployment is ob-

tained if unions only care about unemployed workers. The efficiency effects of firm-level

collective bargaining in a search economy with concave production are analyzed in Bauer

and Lingens (2014). Boeri and Burda (2009) show that preferences for rigid wages and

collective bargaining may endogenously emerge if there are distortions of the separation

decision in the form of a firing tax. Ebell and Haefke (2006) analyze how the bargaining

regime affects the impact of product market competition on unemployment. Delacroix

(2006) considers a segmented labor market with union and non-union sectors and analyses

the interaction of unemployment benefits and union wage setting. Krusell and Rudanko

(2016) discuss the holdup problem and show that without unions’ credible commitment

to future wages the firms’ hiring is too low. Morin (2017) analyzes how unions affect the

volatility of wages over the business cycle. As is evident from this overview, these papers

are interested in research questions unrelated to SBTC and, in contrast to our paper, do

not consider the impact of changes in the firms’ task assignment on labor unions’ wage

claims.

Finally, some papers include automation in the Mortensen-Pissarides matching model.

Similar to our model framework, Jaimovich et al. (2021) consider a model with a frictional

labor market for low-skilled workers and perfect competition for high-skilled workers. In

contrast to our paper, they assume that low-skilled workers are heterogeneous and that

labor markets are fully segmented by ability and by type of produced goods. Segmented la-

bor markets are also assumed in Cords and Prettner (2022), who show that robot adoption

leads to falling wages and rising unemployment among low-skilled workers. Guimarães

and Gil (2022) modify a standard matching model with endogenous job destruction and
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distinguish between firms using only workers and those using only machines. In Leduc and

Liu (2024), firms draw an i.i.d. cost of automation and then decide whether to automate

vacancies or not. The probability of automation, interpreted as automation threat, de-

pends on the business cycle. During a business cycle expansion, the increased automation

threat weakens workers’ bargaining power and dampens wage increases. This automa-

tion channel therefore creates real wage rigidities that amplify labor market fluctuations.

None of these papers, however, addresses the problem of assigning tasks to workers or the

impact of task assignment on labor union wage setting and the aggregate wage curve.

3 The Model

3.1 Firms

There is a mass one of identical firms in the economy. Timing is discrete and will be

explained in more detail below. At the end of period t the representative firm produces

the final good Yt by using the services of a continuum of tasks yt(i), measured on the unit

interval, according to the Cobb-Douglas-function

Yt = exp

[∫ 1

0

ln yt(i)di

]
. (1)

Index 0 < i < 1 refers to the complexity of a particular task. The firm assigns Lt

low-skilled workers and Ht high-skilled workers to the different tasks according to the

task-specific production function

yt(i) = ALt αL(i) lt(i) + AHt αH(i)ht(i), (2)

where lt(i) and ht(i) denote the low-skilled and high-skilled labor input assigned to the

task with index i in period t, respectively, and

Lt =

∫ 1

0

lt(i)di and Ht =

∫ 1

0

ht(i)di. (3)

ALt and AHt denote factor-augmenting technology, whereas the functions αH(i) and αL(i)

describe the productivity of high- and low-skilled workers in the task with index i, re-

spectively. We make an important assumption regarding the task-related productivities.

8



We define ᾱ(i) ≡ αH(i)/αL(i), hereafter also referred to as the relative task productivity

schedule, and assume that ᾱ′(i) > 0. This implies that the comparative advantage of high-

skilled (low-skilled) workers in performing the different tasks is increasing (decreasing) in

the task index i.

The goods market and the labor market for high-skilled workers are competitive; con-

sequently, high-skilled workers are always fully employed. This is because the labor market

for high-skilled workers is typically a seller’s market, where intense competition among

companies to attract the best minds leads to competitive wages that reflect the productiv-

ity (and scarcity) of high-skilled workers. Firms are willing to pay market rates to attract

the talent necessary for complex tasks. In contrast, the low-skilled labor market is charac-

terized by matching frictions because low-skilled workers often face greater difficulties in

finding jobs that match their skills due to lower mobility, fewer networking opportunities,

and less access to information about job openings, making search and matching frictions

a significant feature of their labor market.3 The matching frictions are described by the

linear homogeneous matching function MLt = M(VLt, ULt), where VLt denotes vacant jobs

for low-skilled workers and ULt denotes low-skilled unemployed persons. Moreover, as

will be explained in more detail in Section 3.2, all low-skilled workers are organized in

firm-level labor unions that set the wage for their members in a monopolistic fashion.

The timing is as follows. At the beginning of period t there are Lt−1 employed low-

skilled workers and ULt unemployed workers. The total labor force is normalized to one,

hence ULt = 1 − Lt−1 −Ht−1. The representative labor union chooses a wage wLt antic-

ipating that the respective firm may adjust the employment level by posting vacancies

accordingly. This timing contrasts with that used in standard search and matching mod-

els but is in line with studies incorporating labor unions into the search and matching

framework, such as Delacroix (2006) and Morin (2017). For simplicity, the inflow of un-

employed workers into jobs and exogenous job separations happen simultaneously in such

a way that a further change of a worker’s employment/unemployment status within the

same period is not possible. At the end of the period, production takes place as outlined

above.

If the representative firm wants to increase the number of low-skilled workers it has

to post vacant jobs first and bear the (constant) costs sL for each vacant job. With rate

3A similar modeling assumption (perfect competition for high-skilled workers; frictional labor market
for low-skilled workers) is made in Jaimovich et al. (2021).
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MLt/VLt ≡ m(θLt) job vacancies are filled, where θLt ≡ VLt/ULt describes labor market

tightness in the low-skilled labor market in period t. The single firm considers labor

market tightness and thus the job-filling rate as given. With the exogenous rate qL low-

skilled jobs are destroyed. The dynamics for low-skilled employment is therefore described

by

Lt = (1− qL)Lt−1 +m(θLt)VLt. (4)

Figure 1 illustrates the timing of the events during period t.

Given:
Lt−1

Ht−1

ULt = 1 − Lt−1 −Ht−1

Wage setting:

wLt

Vacancy posting:

VLt

• Matching between VLt and ULt

• Exogenous job separations

• Both take place simultaneously

Production

Figure 1: Timeline with events during period t

To simplify the analysis we follow Pissarides (2000, p. 68) in assuming that each firm

is large enough to eliminate all uncertainty about the flow of labor. Moreover, the final

good is chosen as the numeraire. The representative firm maximizes profits

∞∑
t=1

(
1

1 + r

)t−1

[Yt − wLtLt − wHtHt − sLVLt] (5)

s.t. eqs. (1) – (4) and the conditions

lt(i) ≥ 0 and ht(i) ≥ 0, (6)

where r is the constant real interest rate, and l0(i) and h0(i) are given. There are no

productivity differences within the group of high- or low-skilled workers. Due to perfect

competition in the high-skilled labor market and the fact that no high-skilled worker

would supply labor to tasks paying lower wages, all high-skilled workers obtain the same

real wage wHt. Similarly, the representative labor union sets a uniform real wage wLt for

low-skilled workers.

The first-order conditions of this optimization problem are derived in Appendix A.1.

The analysis focuses on the steady state in which ALt = AL, AHt = AH , Lt−1 = Lt = L
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and the time index on all variables can be omitted. Similar to the perfect competition

model of Acemoglu and Autor (2011), there exists a task threshold 0 < I < 1 such that

unit labor costs of low-skilled workers are equal to those of high-skilled workers at I:

w̃L

ALαL(I)
=

wH

AHαH(I)
, with w̃L ≡ wL +

(qL + r)

(1 + r)

sL
m(θL)

. (7)

The modified wage w̃L represents the low-skilled labor costs relevant to the representative

firm, i.e. the low-skilled real wage wL plus the labor adjustment costs. In tasks i < I only

low-skilled workers are employed, i.e. h(i) = 0, whereas in tasks i > I only high-skilled

workers are employed, i.e. l(i) = 0. Eq. (7) can be written as:

ᾱ(I) =
ω̃

Ā
, with ᾱ(I) =

αH(I)

αL(I)
, ω̃ ≡ wH

w̃L

, and Ā ≡ AH

AL

. (8)

This leads to:

I = I
(
ω̃, Ā

)
, with

∂I

∂ω̃
> 0 and

∂I

∂Ā
< 0. (9)

As shown in Appendix A.1, from the first-order conditions it follows that w̃Ll(i) = Y =

wHh(i). This has two important implications. First, the same labor input is used in

all low-skilled and high-skilled tasks, respectively, i.e. l(i) = l = L/I for i < I and

h(i) = h = H/(1− I) for i > I. Second, it holds that I = w̃LL/Y and 1− I = wHH/Y so

that I represents the modified labor share of the low-skilled workers (as it refers to labor

costs w̃L and not wL), and 1 − I corresponds to the high-skilled labor share. It follows

that:

L =
I

1− I
ω̃ H. (10)

Wage changes have two effects on L: a direct effect at a given threshold I and an indirect

effect due to a change of this threshold. Eq. (10) in combination with eq. (9) can be

interpreted as the labor demand function for low-skilled workers for given H:

L = L
(
ω̃, I

(
ω̃, Ā

)
, H
)
≡ Ld

(
ω̃, Ā, H

)
. (11)

Moreover, taking into account the optimality conditions, the production function for the
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final good takes the following Cobb-Douglas form:

Y = B

(
AL

L

I

)I (
AH

H

1− I

)1−I

,

B ≡ eξ(I), ξ(I) ≡
∫ I

0

lnαL(i)di+

∫ 1

I

lnαH(i)di.

(12)

3.2 Labor Unions for Low-Skilled Workers

We consider firm-level labor unions and assume that all low-skilled workers within a

firm are members of the respective labor union. Upon becoming unemployed, a worker

exits the labor union. As explained in the introduction, “low-skilled workers” in the

model are intended to encompass low- and medium-skilled workers in the real world.

Following Lingens (2003, 2007) and Neto et al. (2019), the labor union only acts in the

interest of low-skilled workers and does not bargain over high-skilled wages. The following

arguments support this assumption: First, our model should be interpreted as describing

firm and union behavior in the private sector. In a cross-country comparison, Blanchflower

(2007) observes that the skill level is positively related to union membership in the public

sector, but negatively in the private sector, and notices that the sectoral differences are

large. According to Schnabel (2020), most empirical studies on union density across skill

groups seem to have overlooked the crucial distinction between the private and public

sectors. Ebbinghaus et al. (2011, p. 111) point out that “With the exception of the

public sector and some well organized professions (particularly in Nordic countries), better

educated employees, particularly those with tertiary (university) education tend to be less

likely to join trade unions”. Second, possible reasons why education is negatively related

to unionism in the private sector are that “educated employees have greater individual

bargaining power (and thus a lesser need for collective voice) and because sometimes

they identify more with management than with the labour movement” (Schnabel, 2003,

p. 30). According to Acemoglu et al. (2001) and Açıkgöz and Kaymak (2014), high-

skilled workers have an incentive to leave the union because SBTC increases their outside

option while labor unions compress wages in the interest of low- and medium-skilled

workers. Checchi et al. (2007, p. 3) argue that “higher-earning people are more tolerant of

inequality than those earning less and they are more likely to defend inequality as reward

for effort or talent. Part of the explanation for a differential effect of relative earnings

on the likelihood to join a trade union may therefore be found in different attitudes
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towards inequality”. Third, studies focusing on specific countries find patterns that are

in line with our assumption. For Germany, which is considered in the calibration below,

Bonaccolto-Töpfer and Schnabel (2023) find that union members are more often educated

to a lower level (having just basic secondary education). They are also more often plant

and machine operators and assemblers and less often service and sales workers than non-

union employees. Moreover, the union wage premium is only positive for workers with

relatively little education, not for high-skilled workers. According to Bonaccolto-Töpfer

and Schnabel (2023, p. 9), “This suggests that union membership may be particularly

beneficial for disadvantaged workers”.

Based on these findings and arguments, the firm-level union only acts on behalf of low-

(and medium-) skilled workers but does not take the interests of high-skilled workers into

account. With the timing assumption outlined in the last section, the present discounted

utility of a low-skilled worker being employed at the end of period t is

ΨEL,t = wLt +
1

1 + r
[qLΨUL,t+1 + (1− qL)ΨEL,t+1] , (13)

where ΨUL,t+1 denotes the present discounted utility of a low-skilled worker being unem-

ployed at the end of period t + 1. The job separation rate qL refers to period t + 1 but

since it is assumed to be constant the time index is omitted. A low-skilled worker being

unemployed at the end of period t has the present discounted utility

ΨUL,t = zLt +
1

1 + r
[pL,t+1 ΨEL,t+1 + (1− pL,t+1)ΨUL,t+1] , (14)

where zL denotes net unemployment benefits and pL is the exit rate from unemployment

which positively depends on labor market tightness, i.e. pL ≡ ML/UL = θLm(θL). As we

are not interested in the implications of different tax systems on the wage-setting process,

it is assumed that unemployment benefits are financed by lump-sum taxes.

The union members, and hence the union itself, care about the excess of the value

of a job in the firm, ΨEL,t, over the utility of an unemployed person, ΨUL,t. Thus, the

utility function VLt of the labor union corresponds to the intertemporal analog of the rent

maximizing union:

VLt = LtRLt, where RLt ≡ (ΨEL,t −ΨUL,t). (15)
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To simplify the explanation of the model’s mechanisms, it is assumed that the low-skilled

wage is determined by the labor union in a monopolistic fashion.4

The dynamic analysis of labor union wage setting adheres closely to the assumptions

and arguments made in Manning (1991). We focus on the determinants of steady state

wage pressure and therefore assume that the determinants of labor market flows, qL and

pL, as well as unemployment benefits zL are constant over time. The probability of

becoming unemployed, qL, is assumed to be independent of the wage set in the respective

period due to the observation that “except in exceptionally severe recessions, employment

reduction seems to be through natural wastage rather than lay-offs, and the probability of

moving from employment into unemployment seems remarkably constant (...). So, close

to a steady state, current wages are unlikely to affect the probability of a worker being

unemployed next period” (Manning, 1991, p. 329). With these assumptions and eqs. (13)

and (14), the labor union utility function can be written

VLt = Lt (wLt − zL + δRL,t+1) with δ ≡ 1− qL − pL
1 + r

< 1. (16)

If wages were only set for one period, the effect of the current wage on VLt would manifest

through the term wLt and the wage impact on Lt. However, RL,t+1 would remain unaf-

fected since the wage is not a state variable in this model. In other words, future wages

are not influenced by past wages. Of course, in a steady state future wages should be the

same as the wage set in the current period even though the wage is only set for one period

and future values are considered to be given and not influenced by today’s wage setting.

As in Manning (1991), we consider the more general case where the wage is set for n

periods. This implies that the wage wLt will affect the utility difference RL from period t

until period t + n − 1, but not from period t + n onwards. Running forward RLt for n

periods leads to

RLt =
1− δn

1− δ
(wLt − zLt) + δnRL,t+n. (17)

The representative labor union at the firm level maximizes VLt = LtRLt subject to the

labor demand equation. As demonstrated in Appendix A.2, the rent-maximizing wage wLt

4This simplifying assumption of monopoly unions is also made in other studies, such as Pissarides
(1986), Delacroix (2006), or Dinlersoz and Greenwood (2016).
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leads to the following wage costs w̃Lt relevant to the firm:

w̃Lt =
εLw̃L,t

εLw̃L,t + δn − 1
z̃Lt, with z̃L ≡ zL +

(qL + r)

(1 + r)

sL
m(θL)

, (18)

where εL,w̃L
denotes the wage elasticity of the demand for low-skilled labor (in absolute

values) and z̃L consists of unemployment benefits and labor adjustment costs. Eq. (18)

aligns with Manning’s result that wage pressure increases with the duration of the wage

contract. Since the focus of our paper is on the effect of changes in the task allocation

on the labor demand elasticity, the expression in eq. (18) is simplified by restricting the

analysis to the case n → ∞ and therefore δn → 0.5 Omitting time indices for steady-state

values leads to

w̃L = κL z̃L, with κL ≡ εL,w̃L

εL,w̃L
− 1

, (19)

where κL denotes the wage markup that is negatively related to the labor demand elas-

ticity. As shown below, εL,w̃L
> 1, implying κL > 1. The next subsection scrutinizes how

changes in the task allocation influence the labor demand elasticity and hence union wage

markups.

3.3 Task Reallocation and the Elasticity of Labor Demand

The wage elasticity of the demand for low-skilled labor (in absolute values) can be written

as

εL,w̃L
≡
∣∣∣∣∂ lnLd(·)
∂ ln w̃L

∣∣∣∣ = 1 +
1

1− I

∂ ln I

∂ ln ω̃
= 1 +

1

(1− I) · εᾱ,i(I)
> 1, (20)

where

εᾱ,i(I) ≡
dln ᾱ(i)

d ln i

∣∣∣∣
i=I

> 0

denotes the elasticity of the relative task productivity schedule ᾱ(i) ≡ αH(i)/αL(i) to

a one-percent change in the task index i, where this elasticity is evaluated at the task

threshold I. To simplify the notation, εᾱ,i(I) is denoted εᾱ,I in the following. We will look

at this elasticity for different threshold values I, i.e. εᾱ,I is considered to be a function of

5Other papers, such as Pissarides (1985), Layard and Nickell (1990), and Beissinger and Egger (2004),
also simplify the analysis by considering wage contracts of infinite length.
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I, where I is the profit maximizing task threshold obtained in general equilibrium.

The wage elasticity of the demand for low-skilled labor is the sum of a direct wage

effect (equal to one) for a given task allocation, and a task reallocation effect caused by

the change in the task threshold I due to a change in relative labor costs ω̃. The task

reallocation effect implies that with an increase in w̃L fewer tasks are allocated to low-

skilled labor. The strength of this effect depends on the task threshold I in two ways.

The more tasks are allocated to low-skilled labor the larger is 1/(1 − I) which cet. par.

increases the task reallocation effect and thereby εL,w̃L
. However, the size of the task

reallocation effect also negatively depends on εᾱ,I . In general, εᾱ,I is a function of I with

the sign of d ln εᾱ,I/dln I depending on the functional form of ᾱ, i.e. d ln εᾱ,I/dln I ⪋ 0 is

possible.6 This leads to

Proposition 1. An increase in the task threshold I leads to the following change in the

wage elasticity of the demand for low-skilled labor:

dln εL,w̃L

dln I


> 0, if dln εᾱ,I/dln I < I/(1− I)

= 0, if dln εᾱ,I/dln I = I/(1− I)

< 0, if dln εᾱ,I/dln I > I/(1− I).

Proof. Taking into account eq. (20) and the definition of κL in eq. (19), d ln εL,w̃L
/dln I

can be written as:
d ln εL,w̃L

dln I
=

1

κL

(
I

1− I
− dln εᾱ,I

dln I

)
. (21)

Since κL > 0, Proposition 1 immediately follows from eq. (21).

Since the labor union’s wage markup κL is negatively related to εL,w̃L
, Proposition 1 can

be directly applied to establish the effect of the threshold I on κL:

εκL,I ≡
dlnκL

dln I
= −(κL − 1)

d ln εL,w̃L

dln I
, with sgn(εκL,I) = −sgn

(
dln εL,w̃L

dln I

)
. (22)

The important insight from this analysis is that changes in the task allocation have an

impact on the effective wage-setting power of labor unions. The way in which a change

6As shown in Online Appendix B.1, the second-order condition for the optimization problem of the
representative labor union puts a restriction on dln ᾱ/dln I equivalent to ᾱ′′(I) I/ᾱ′(I) > −2 so that the
ᾱ function must not be “too concave”.
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in the task allocation affects the labor demand elasticity and thus the labor union’s wage

markup crucially depends on the shape of the relative task productivity schedule.

To provide some intuition, consider, for example, a concave relative task productivity

schedule which implies d ln εᾱ,I/dln I < 0. With the ᾱ function being concave, at lower

thresholds I the low- and high-skilled workers are more apart in terms of their productiv-

ities than at higher I. At a low I, a reduction of the task threshold leads to a pronounced

drop in the relative high-skilled productivity ᾱ, thereby making the substitution of low-

skilled by those with higher skills harder. Therefore, an increase in w̃L requires only a

small decline in I to induce such an increase in the relative productivity of low-skilled

workers 1/ᾱ that the unit labor costs of both skill groups are equal again in optimum.

As a result, labor demand decreases only slightly with increasing w̃L at a low I. In con-

trast, with low-skilled workers being more substitutable at a high I, the response of labor

demand to increasing w̃L is more pronounced. This explains why a concave ᾱ function

leads to a rise in the labor demand elasticity with an increase in the task threshold I.

The opposite applies if the ᾱ function is convex and dln εᾱ,I/dln I is sufficiently large.

These results can be relevant when comparing the outcomes of the wage-setting process

in different sectors of the economy. Some sectors may encompass a range of tasks which

rapidly increase in their complexity so that the relative productivity of high-skilled work-

ers increases in a more exponential manner. Other sectors may display a task complexity

profile that is prone to stronger substitution of different skills.

3.4 Solution of the Model in the Steady State

In the steady state the inflows into low-skilled employment are equal to the outflows from

low-skilled employment. From eq. (4) follows m(θL)VL = qLL. Equivalently, the inflows

into low-skilled jobs are equal to the flows out of unemployment, i.e.m(θL)VL = pL(θL)UL,

where again pL(θL) ≡ m(θL)θL. With a mass one of individuals, L+UL +H = 1. Hence,

qLL = pL(θL) (1−H − L). (23)

Since the final good is chosen as numeraire, its price equals one. This implies

∫ I

0

ln

(
w̃L

ALαL(i)

)
di+

∫ 1

I

ln

(
wH

AHαH(i)

)
di = 0, (24)
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which closes the model. The solution of the model is described in

Definition (General Equilibrium). The general equilibrium values of the task threshold I,

low-skilled employment L, labor market tightness θL, and the firm’s wage costs w̃L and

wH are determined by eqs. (7), (10), (19), (23) and (24). From the definition of w̃L in

eq. (7) the low-skilled wage wL is obtained. The solution for output follows from eq. (12).

4 Comparative Statics: Skill-biased Technical Change

In the following, we will analyze the implications of skill-biased technical change (SBTC)

in the task-based matching model. To keep things as simple as possible, we consider a

one-time increase in AH while AL remains constant (d ln Ā = dlnAH). The high-skilled

and low-skilled labor force is assumed to be given. With perfect competition in the

high-skilled labor market this assumption implies that high-skilled employment remains

constant, i.e. d lnH = 0.

To ease the exposition, the matching function is assumed to be of the Cobb-Douglas

type:

ML = M(VL, UL) = V 1−βL

L UβL

L , with 0 < βL < 1, (25)

which implies m(θL) = θ−βL

L . Therefore, βL is the (constant) elasticity of the job filling

rate m(θL) with respect to labor market tightness θL (in absolute values). The elasticity

of the job finding rate pL with respect to θL is (1− βL).

It is useful to write the model equations in log differences. They can be condensed

into a three-equations system for θL, w̃L and I summarized in

Proposition 2 (Comparative Statics). Let uL denote the low-skilled unemployment rate,

and let εz̃L,θL be the elasticity of z̃L with respect to θL, where z̃L is defined in eq. (19) and

0 < εz̃L,θL < βL. Moreover, εκL,I denotes the elasticity of the wage markup κL with respect

to the task threshold I, as defined in eq. (22). Then

dln θL =
1

(1− βL)uL

[
dlnAH − 1

1− I
dln w̃L +

1

1− I
dln I

]
, (26)

d ln w̃L = εz̃L,θLdln θL + εκL,I dln I, (27)

d ln I = −(εL,w̃L
− 1) d ln w̃L. (28)

Proof. See Appendix A.3.

18



Eq. (26) represents the job creation condition, eq. (27) is the wage equation for low-skilled

workers, and eq. (28) can be interpreted as the “task allocation” equation (respectively

in log differences). It is evident that both, job creation and wage setting, are influenced

by changes in the task threshold I. The equations in Proposition 2 represent general

equilibrium relationships in which the adjustment of the high-skilled wage necessary for

full employment of high-skilled workers has already been taken into account. In eq. (28),

changes in the task threshold depend solely on changes in low-skilled labor costs. This is

because, in general equilibrium, the high-skilled wage increases in proportion to increases

in high-skilled productivity. For the detailed formal analysis see Appendix A.3.

According to the job creation equation, an increase in AH cet. par. leads to higher labor

market tightness. The reason is that an increase in AH increases the marginal product of

low-skilled workers in final goods production, hence each firm has the incentive to increase

the labor input l in each low–skilled task i < I at given wages w̃L.
7 In general equilibrium,

the increase in AH also increases the high-skilled wage, thereby increasing the relative cost

of high-skilled workers. This, in turn, leads to a higher demand for low-skilled workers

in each task and, hence, to a higher labor market tightness. As can be seen from the

wage equation, an increase in labor market tightness leads to higher wage pressure and

cet. par. increases w̃L. However, this increase in labor costs induces firms to reduce the

range of tasks allocated to low-skilled labor, which reduces labor market tightness and

has ambiguous effects on wage setting as explained above. Inserting the task allocation

equation in the other two equations leads to

d ln θL =
1

(1− βL)uL

[
dlnAH − εL,w̃L

1− I
dln w̃L

]
, (29)

d ln w̃L =
εz̃L,θL

1− dln εL,w̃L

dln I

dln θL, (30)

where for the latter expression eq. (22) and the definition of κL in eq. (19) have been used,

and dln εL,w̃L
/dln I ̸= 1 must hold. In this version of the job creation and wage-setting

equation, the adjustment of the task threshold I due to a change in the firm’s low-skilled

labor costs is already taken into account. This two-equations system can be graphically

represented by a job creation curve (JC) and wage curve (WC) in θL − w̃L space. As can

be seen from eq. (29), increases in AH lead to a rightward shift of the JC. Moreover, the

7The marginal product of low-skilled workers in the production of final goods is Y/l.
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JC is downward sloping, i.e.

Φ ≡ dln w̃L

dln θL

∣∣∣∣
JC

= −(1− I)(1− βL)uL

εL,w̃L

< 0. (31)

As regards the WC described by eq. (30), the relationship between θL and w̃L is not

unambiguous. The slope of the WC is

Γ ≡ dln w̃L

dln θL

∣∣∣∣
WC

=
εz̃L,θL

1− dln εL,w̃L

dln I

≷ 0. (32)

Quite similar to standard matching models, the slope of the WC positively depends on

εz̃L,θL which is a function of r, qL, βL, and sL, as shown in eq. (A.13) in Appendix A.3. In

addition to these parameters, the slope of the WC in the task-based model also depends

on dln εL,w̃L
/dln I, i.e. on how changes in the task allocation affect the wage elasticity of

labor demand.

In a conventional matching model an increase in labor market tightness leads to higher

wage claims of workers, implying an upward–sloping WC in θL–w̃L space. In eq. (30) this

situation arises if d ln εL,w̃L
/dln I < 1. However, as is evident from Proposition 1, the

case d ln εL,w̃L
/dln I > 1 is also possible, implying that the corresponding WC would

be downward-sloping. In that case, two situations can be distinguished depending on

whether the JC is steeper or flatter than the WC, i.e. depending on whether |Φ| ≷ |Γ|. In

Online Appendix B.2 we first demonstrate that, irrespectively of the slope of the WC, a

steady state equilibrium exists in all situations. Moreover, we show that all steady state

equilibria can be in principle (saddle-path) stable so that we cannot rule out the possibility

of a downward-sloping WC in a general comparative-static analysis. The results of this

analysis are summarized in

Proposition 3 (Comparative-Static Results). High-skilled labor-augmenting technical

change has the following effects on the labor market equilibrium:

(i) Low-skilled labor market tightness:

dln θL
dlnAH

> 0, if
dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
< 0, otherwise.
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(ii) Low-skilled labor costs:

dln w̃L

dlnAH

> 0, if
dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| < |Γ|

)
< 0, otherwise.

(iii) Task threshold:

dln I

dlnAH

< 0, if
dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| < |Γ|

)
> 0, otherwise.

Proof. Solving eqs. (29) and (30) leads to:

d ln θL
dlnAH

=
1− I

εL,w̃L

1

|Φ|+ Γ
,

dln w̃L

dlnAH

=
εz̃L,θL

1− dln εL,w̃L

dln I

dln θL
dlnAH

=
(1− I) Γ

εL,w̃L

1

|Φ|+ Γ
.

Because of eq. (28) it holds:

d ln I

dlnAH

= −(εL,w̃L
− 1)

d ln w̃L

dlnAH

= −(1− I) Γ

κL

1

|Φ|+ Γ
.

Figure 2 illustrates the comparative-static results. If d ln εL,w̃L
/dln I < 1, the WC is

upward-sloping (see Figure 2a). In this case, an increase in AH leads to an increase in

labor market tightness θL and in firms’ labor costs w̃L. Figure 2b depicts the situation

where both curves are downward-sloping and the WC is steeper than the JC. In that case,

an increase in AH still leads to an increase in w̃L, but θL is declining. If the JC is steeper

than the WC, as depicted in Figure 2c, the opposite results are obtained, i.e. θL increases

whereas w̃L decreases.
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(a) Case 1: dln εL,w̃L
/dln I < 1
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(b) Case 2: dln εL,w̃L
/dln I > 1; WC steeper than JC
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(c) Case 3: dln εL,w̃L
/dln I > 1; JC steeper than WC

Figure 2: Effects of skill-biased technological progress (increase in the productivity of high-skilled
workers AH) on labor market outcomes and task allocation

Notes: The effects depend on the size of dln εL,w̃L
/dln I and the relative slopes of the job creation curve

(JC) and the wage curve (WC). Graphical illustration of the JC, WC, and TAC (task allocation curve)

follows from the formal analysis of the slopes and curvatures of these curves; see Online Appendix B.3

for detailed derivations. The diagrams should nevertheless be interpreted as a sketch. The axes scale is

allowed to differ across cases and may encompass different ranges of values for w̃L, θL, and I.

To provide some intuition for the comparative-static results, it is useful to distinguish

between firm-level decisions and general equilibrium results. At the firm level, the high-
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skilled wage and labor market tightness are considered as given. An increase in AH

increases the marginal product of low-skilled workers, inducing firms to increase the labor

input in each low-skilled task. At the same time, the increase in AH also lowers the

unit labor costs for high-skilled workers relative to low-skilled workers at the old task

threshold I. Hence, the firm has an incentive to reduce the range of tasks performed by

low-skilled workers and to assign high-skilled workers to those tasks instead. The firm’s

labor union chooses a wage wL that implies w̃L = κL z̃L, where z̃L is taken as given.

Depending on the curvature of the task productivity schedule ᾱ, the decline in I affects

the labor demand elasticity as outlined in Proposition 1. In response to that, the labor

union’s wage claims may rise, remain unchanged or fall.

In the general equilibrium, the increase in the firms’ demand for high-skilled workers

cet. par. leads to a rise in high-skilled wages and in the firms’ relative wage costs ω̃ =

wH/w̃L.
8 The increase in ω̃ cet. par. increases labor demand for low-skilled workers. As

shown in Appendix A.3,

d lnL =
1

1− I
dln I + dln ω̃, (33)

d ln θL =
1

(1− βL)uL

dlnL. (34)

Hence, whether L and therefore θL increase relative to the initial equilibrium depends on

whether the positive effect on labor demand caused by the increase in ω̃ is larger than

the negative effect caused by the decline in the task threshold I. Of course, changes in

θL lead to changes in z̃L which lead to further adjustments in labor unions’ wage claims

for low-skilled workers.

In Figure 2a, the increase in d ln ω̃ dominates, and θL and w̃L increase. Despite the

decline in the task threshold I, labor demand for low-skilled workers is higher in the

new equilibrium because more workers are employed in each of the remaining low-skilled

tasks. The WC is relatively steep for 0 < dln εL,w̃L
/dln I < 1 because the decline in I

then leads to a lower labor demand elasticity and hence higher wage pressure. Vice versa,

for d ln εL,w̃L
/dln I < 0 the WC is relatively flat because the increase in labor unions’

wage claims (due to higher θL) is dampened by the increase in the labor demand elas-

ticity. For d ln εL,w̃L
/dln I = 0 the slope of the resulting WC lies in between the other

two cases. Since the slope of the WC is related to the concept of real wage rigidity, this

8By how much wH and ω̃ rise also depends on the change in low-skilled wage costs w̃L.
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analysis offers additional explanations for different degrees of real wage rigidity between

countries or industries. In the literature, the degree of real wage rigidity is often explained

by institutional factors such as the unemployment compensation system or the degree of

centralization of wage bargaining; see, e.g., Layard, Nickell, and Jackman (1991), Chap-

ter 9. According to our analysis, changes in the task composition also affect the real wage

response to changes in labor market tightness depending on the curvature of the task

productivity schedule. In that sense, the production technology may also influence the

extent of real wage rigidity in an industry or country.

In Figure 2b, d ln εL,w̃L
/dln I > 1 and the slope of the JC is smaller than the slope

of WC (in absolute values). Because of eq. (31), a relatively small |Φ| arises if the low-

skilled unemployment rate uL is relatively low and I is relatively high, i.e. many tasks

are allocated to low-skilled workers, implying that the labor share of low-skilled workers

is relatively high. The firm’s reduction in I leads to a strong decline in the labor demand

elasticity and thus to a strong increase in wage pressure. Since the labor share of low-

skilled workers is high, the increase in low-skilled wages raises each firm’s labor costs

significantly, implying a relatively small increase in output, the labor demand for high-

skilled workers, the high-skilled wage, and ω̃. As a consequence, in eq. (33) the effect on

L due to a decline in I dominates. The resulting decline in θL would cet. par. lead to

lower wage pressure. However, this effect is overcompensated by the decline in the labor

demand elasticity and thus the rising wage markup.

In Figure 2c, d ln εL,w̃L
/dln I > 1 and the slope of the JC is larger than the slope

of the WC (in absolute values). In comparison to the previous figure, the situation is

now reversed. The slope |Φ| is the larger, the lower the task threshold I, i.e. the lower

the low-skilled labor share in the initial equilibrium. Despite the initial increase in w̃L

caused by the decline in I, the rise of the firm’s labor cost is this time comparably small,

leading to a relatively strong increase in production, the demand for high-skilled workers,

the high-skilled wage and ω̃. These general equilibrium effects lead to a strong increase

in L and θL and even to an increase in the task threshold I that reduces wage pressure.

The rising wage pressure due to higher θL is overcompensated by the strongly declining

wage pressure as the response of the labor demand elasticity and thus the markup is very

strong. As a consequence, w̃L even falls in comparison to the initial equilibrium.

Appendix A.4 summarizes how an increase in AH affects other variables of the model.

If d ln εL,w̃L
/dln I < 1, SBTC will unambiguously increase ω̃, wH , L, and Y , and decrease
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uL. In most of the cases, for example always when 1 > dln εL,w̃L
/dln I > 0, low-skilled

workers will benefit from an increase in AH in terms of their wages wL as well. However,

for negative responses of the labor demand elasticity it is even possible that wL will

decline implying a pronounced increase in wage inequality. If d ln εL,w̃L
/dln I > 1 the

relative sizes of the slopes of the JC and WC again play a key role. In the majority of

the cases, the effects for wL match qualitatively those for w̃L discussed above. Therefore,

if the low-skilled workers experience higher unemployment rates due to SBTC the rise in

inequality is less pronounced than in a situation of declining unemployment rates.

The analysis of this section shows that, other than in a canonical model with con-

ventional modeling of a production process, SBTC can in our model harm low-skilled

workers. This is always the case if the labor demand elasticity increases with higher I

and this response is strong. Whether low-skilled workers lose in such a case in terms of

their wages or their labor market tightness is to a large extent governed by the initial task

composition. This insight could be relevant in a sectoral context when different sectors

may face similarly strong responses to increasing task thresholds but different divisions

of tasks between low- and high-skilled workers.

5 Calibration

The first objective of the quantitative analysis is to calibrate the model to align with

real-world data, thereby identifying the unobserved parameters of the relative task pro-

ductivity schedule ᾱ(i). The second objective is to demonstrate that the effects of SBTC

can vary across countries and time periods, even when these countries have similar eco-

nomic conditions. Quantifying the effects of SBTC, we illustrate the most important

mechanisms of our model: (i) how task reallocation affects the labor demand elasticity

and thus the wage pressure in the economy, and (ii) how these resulting changes in the

labor demand elasticity impact labor market outcomes.

5.1 Design

We calibrate the model to German and French data for two time periods: 1995 to 2005

and 2010 to 2017. We select Germany and France for our quantitative analysis as both

countries represent large economies with high union coverage rates. We exclude the period
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2006–2009, which covers the Great Recession. This is in line with Iftikhar and Zaharieva

(2019), who argue that the financial crisis in Germany was relatively quickly overcome.

We treat the two periods under consideration as separate steady states. More specifically,

we interpret the mean values of the labor market variables used as calibration targets as

steady-state values for the respective periods.9 We consider two different steady states

to demonstrate that even for the same country SBTC can have opposing effects on some

labor market variables depending on the initial steady state.

Since our model distinguishes between only two skill levels, the low-skilled group in

our calibration comprises both low-skilled and medium-skilled workers. We follow Battisti

et al. (2018), Iftikhar and Zaharieva (2019), and Krusell et al. (2000) in defining high-

skilled workers as workers with at least a Bachelor’s degree. To improve the model’s fit

to the data, we introduce a scale parameter ζ in the Cobb-Douglas matching function,

M(VL, UL) = ζ V 1−βL

L UβL

L , which indexes the efficiency of the matching process.

To calibrate the model, we need to select a specific functional form for the relative

task productivity schedule ᾱ(i). For simplicity, we employ the following isoelastic function:

ᾱ(i) = iρ for 0 < i < 1. Despite its simplicity, this form can generate any of the scenarios

described in Figures 2a–2c, without imposing restrictions on the curvature of the relative

task productivity schedule. The parameterization of the model then identifies the explicit

form of the relative task productivity schedule for both countries and across the two time

periods, thereby determining which scenario in Figures 2a–2c occurs.

The model is characterized by 10 exogenous parameters: {βL, qL, ζ, r, zL, sL, H,AH , AL,

ρ}. We derive six parameters from the data or the literature (see Table 1), and calculate

four parameters to match German and French data during the periods 1995–2005 and

2010–2017 (see Tables 2 and 3). One period in the model corresponds to one quarter, so

all parameters are interpreted quarterly.

The first two parameters remain constant across countries and periods. We set the

matching elasticity βL to 0.5, which falls within the range of estimates reported in

Petrongolo and Pissarides (2001). The quarterly separation rate qL is set to 0.0873,

converted from a monthly separation rate of 0.03 as calibrated by Battisti et al. (2018).10

9Even though the period 1995–2005 includes the 2001/2002 recession in Germany and France, this
recession was less severe than the Great Recession. Including both years in the first period allows us to
consider a longer period as a steady-state period.

10Battisti et al. (2018) provide the average low-skilled separation rate for 20 countries. We are aware
that Germany and France have slightly different quarterly separation rates (0.0315 vs. 0.0338), as shown
in Hobijn and Şahin (2009). Because the difference between the separation rates of low- and high-skilled
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Table 1: Parameter values for Germany (DE) and France (FR)

Parameter Country Value Source

95–05 10–17

Parameters without country variation

Matching elasticity: βL – 0.5 0.5 Petrongolo and Pissarides (2001)

Separation rate: qL – 0.0873 0.0873 Battisti et al. (2018)

Parameters with country variation

Real interest rate: r DE 0.0117 0.0016 Deutsche Bundesbank, FRED

FR 0.0104 0.0047 Banque de France, FRED

Unemployment benefits: zL DE 0.41 0.32 Values are set to match net replacement
rates from the OECDFR 0.42 0.40

Share of high-skilled: H DE 0.24 0.285
EU-LFS

FR 0.263 0.359

Skill bias: AH

AL
DE 1.121 1.344 Own calculations based on data from

EU-LFS, EU-SILC, DestatisFR 1.237 1.332

Notes: For detailed data description see Online Appendix B.5.

The real interest rate r and the share of high-skilled workers H are derived from the

data and vary across time and countries. Unemployment benefits are set to match the

average net replacement rates calculated using OECD data (OECD Benefits, Taxes and

Wages Dataset) for each country and period.11 Lastly, we calculate the time-dependent

skill bias AH/AL for Germany and France. For a detailed description of the data and the

corresponding calculations, see Online Appendix B.5.

For each country, we calibrate the remaining four parameters by matching four targets

calculated with German and French data, respectively, over the two periods. The targets

are summarized in Table 2, and the parameters obtained in the calibration are shown

in Table 3. For the model equations used in the calibration, see Online Appendix B.6.

The most important target is the task threshold I, which is calculated as the relative

share of low-skilled and medium-skilled labor compensation in total labor compensation.

The comparative-static results depend on whether d ln εL,w̃L
/dln I is below or above one,

i.e., whether the task threshold I is smaller or larger than the specific boundary value

workers is much more pronounced (0.0873 vs. 0.0472), we deliberately decided to use the values calibrated
by Battisti et al. (2018). Nevertheless, we checked that using the country-specific separation rates from
Hobijn and Şahin (2009) would have no impact on the comparative static results.

11The calibrated low-skilled wage in Germany and France in 1995–2005 (2010–2017) is 0.668 (0.639) and
0.673 (0.689), respectively. To obtain net average replacement rates from OECD data, we first compute
the average replacement rates for two previous in-work earnings and two different family situations,
including social assistance benefits. Then, we calculate the weighted average of the net replacement
rates for short-term (less than one year) and long-term unemployed (more than one year). The final
replacement rates for Germany and France in 2001–2005 (2010–2017) are 0.61 (0.50) and 0.62 (0.58),
respectively.
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Table 2: Matched targets for Germany (DE) and France (FR)

Target Country Value Source

95–05 10–17

Low-skilled unemployment rate:
uL

DE 0.106 0.062
EU-LFS

FR 0.112 0.113

Low-skilled labor market
tightness: θL

DE 0.204 0.471 IAB-JVS, EU-LFS, BA

FR 0.279 0.301 DARES, Pôle emploi, EU-LFS,
IAB-JVS

Skill premium: wH

wL
DE 1.32 1.49 EU-SILC, Destatis

FR 1.43 1.41 EU-SILC

Task threshold: I DE 0.6499 0.6229 WIOD SEA Release 2013, EU
Klems Release 2017FR 0.6333 0.5436

Notes: For detailed data description see Online Appendix B.5.

Ib = 1− (
√
1 + ρ− 1)/ρ. The value for Ib for each country and period is derived from the

calibrated ρ.

5.2 Steady-State Productivity Functions

In this section, we use the calibrated parameters of the relative task productivity schedule

ᾱ(i) to obtain the steady-state productivity functions for Germany and France. By setting

ᾱ(i) = iρ, the total relative productivity in our quantitative analysis can be described by

the function Ā ᾱ(i) = Ā iρ. Figure 3 depicts the calibrated productivity functions for both

steady states and countries. The calibrated total relative productivity depends on the skill

bias Ā = AH/AL calculated from the data and on the calibrated ρ value. Differences in

the positions and/or curvatures of the total relative productivity curves in each country

do not represent a simulated increase in Ā, but instead reflect differences in technology

parameters in the two different initial steady states. Simulated effects of an increase

in Ā on labor market variables in each of the steady states will be covered in the next

subsection.

The productivity functions for both steady states and countries are concave, reflecting

a calibrated ρ value below one. The German and French productivity curves in the initial

steady state exhibit a similar degree of concavity, driven by nearly identical calibrated

values of ρ (0.694 for Germany vs. 0.671 for France). Additionally, the skill bias is higher

in France, resulting in a steeper initial productivity curve compared to Germany. This

difference can be largely attributed to the composition of skill groups in each country. The

share of medium-skilled workers within the group of low- and medium-skilled workers is
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Table 3: Calibrated parameters

Parameter Germany France

95–05 10–17 95–05 10–17

Matching efficiency parameter: ζ 0.452 0.686 0.528 0.549

Vacancy cost: sL 3.197 4.369 3.363 4.014

High-skill biased technology: AH 1.121 1.344 1.237 1.332

Parameter of function ᾱ(I): ρ 0.694 0.915 0.671 0.681

Notes: Calibration has been done by matching the targets in Table 2. The model parameters satisfy
the stability conditions described in Online Appendix B.2.

higher in Germany, amounting to 79.9% in the initial period compared to 59.1% in France,

according to data from EU-LFS. Combined with the fact that medium-skilled workers

obtain more education and are generally more productive than less educated workers, this

implies a higher AL in Germany than in France. Moreover, both countries differ in how the

educational system is linked to the work organization. Traditionally, France is considered

as “organizational” space and Germany as “qualificational” space—this classification has

been introduced in Maurice et al. (1986). In France, hiring criteria are based on workers’

general education, whereas in Germany, specific jobs require qualifications tailored to

those jobs. These qualifications are primarily obtained by medium-skilled workers through

vocational education, which is more prevalent in Germany than in France. This type of

education creates stronger school-to-work linkages, leading to higher productivity, see,

e.g., Elbers et al. (2021) and DiPrete et al. (2017). This factor additionally contributes

to a higher AL and ultimately lower skill bias in Germany than in France.

In comparing both periods, the slope of the French productivity function increases

in the more recent period due to an increasing skill bias in France. This shift is driven

by a strong increase in the share of high-skilled workers and a pronounced decrease in

the share of low-skilled workers, while the proportion of medium-skilled workers remains

constant over time (see data from EU-LFS). However, the concavity of the productivity

function remains largely unchanged due to a similarly calibrated ρ in the second period.

Our calibration indicates that the gap in the relative productivity of high-skilled workers

between the two periods widens as task complexity increases. For Germany, the pattern is

different—the relative productivity of high-skilled workers in the period 2010–2017 is lower

than in the period 1995–2005 for tasks with lower complexity, with the gap decreasing

up to a task index i of around 0.4. Beyond this value, the relative productivity of high-

skilled workers is higher in the more recent period and the gap widens with increasing
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Figure 3: Calibrated productivity functions for Germany (DE) and France (FR) in periods 1995–2005
and 2010–2017.

Notes: The relative productivity function is described by Āᾱ(i) = Āiρ. The circle marker on each of the

plotted curves indicates the position of the corresponding task threshold i = I set as a target in the

calibration; see Table 2.

task complexity.

Figure 4 provides a more detailed picture of the differences in the productivity profile

across periods for Germany. In the second period, a higher skill bias in Germany shifts

the entire relative productivity profile upwards, leading to a growing discrepancy between

the old and new productivity functions. This effect is illustrated by the violet dashed line,

where ρ is kept at its initial level, and only the higher skill bias in the second period is taken

into account. The increase in skill bias can be attributed to a change in skill composition,

similar to the trends observed in France, according to data from EU-LFS. In the second

period, the higher calibrated ρ results in a lower degree of concavity, as illustrated by

the solid yellow line, where Ā remains at the level of the period 1995–2005. This induces

an increase in the relative productivity of low-skilled workers that could alternatively be

interpreted as a shift in task complexity i at the given relative productivity ᾱ. This

shift is consistent with the empirically documented increase in occupational complexity

in Germany, especially among less educated workers. For instance, Pikos and Thomsen

(2016) document an increase in the categories of performed tasks, and Spitz-Oener (2006)

highlight the change in task composition of occupations towards more non-routine tasks.

Bachmann et al. (2022) demonstrate that jobs previously intensive in routine tasks but

becoming more intensive in cognitive tasks are associated with increased training, which

in turn enhances the productivity of workers in these jobs.12 In contrast, for France,

12Caines et al. (2017) provide similar evidence of a complex-task-biased technical change for the US.
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Bittarello et al. (2024) show that low- and medium-skilled workers experienced a similar

increase in routine and social tasks as high-skilled workers from 1991 to 2013, but either no

change (low- plus medium-skilled) or a decrease (high-skilled) in cognitive tasks.13 This

may justify why the calibrated French relative productivity function does not exhibit a

similar shift as the German one.
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Figure 4: Calibrated productivity functions for Germany (DE) in two periods 1995–2005 and 2010–2017.

Notes: The relative productivity function is described by Āᾱ(i) = Āiρ. The solid yellow line (dashed

violet line) corresponds to the productivity function for the period 2010–2017 when keeping Ā (ρ) at

the level of the period 1995–2005.

5.3 Comparative Statics: Increase in AH

In this section, we simulate a 10% increase in AH across both countries and time periods

to analyze the varying effects of SBTC on labor market outcomes. We illustrate how task

reallocation influences the labor demand elasticity and consequently the wage pressure

in the economy, and how these resulting changes in the labor demand elasticity impact

labor market outcomes. The simulated results are presented in Table 4.

In the period 1995–2005, the impact of a 10% increase in AH on θL is negative in both

countries, with the decrease being more pronounced in Germany than in France. The

negative effect on θL corresponds to an increase in the unemployment rate of low-skilled

workers in both countries and occurs due to two factors. First, for both countries, the

calibrated values of the task productivity schedule parameter ρ result in the target values

of I lying above the boundary value Ib in this period. This implies d ln εL,w̃L
/dln I > 1,

13With expanding higher education, the skill premium has decreased, and highly educated workers
have been assigned more routine tasks. Bittarello et al. (2024) illustrate this using a comparison of task
categories of a bank clerk in 1991 and 2013 as an example.
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Table 4: Labor market effects of an increase in high-skill productivity AH by 10% (changes in variables
expressed in percent).

Variable Germany France

95-05 10-17 95-05 10-17

Low-skilled labor market tightness: θL –1.57 –0.81 –1.30 0.41

Low-skilled unemployment rate: uL 0.70 0.38 0.57 –0.18

Task threshold: I –2.84 –2.81 –2.96 –3.47

Low-skilled wage: wL 1.38 1.80 1.39 1.55

High-skilled wage: wH 8.72 8.40 8.74 8.71

Skill premium: wH

wL
7.34 6.59 7.35 7.17

Notes: Changes in uL in percentage points are for Germany 0.075 (period 1995–2005) and 0.023
(2010–2017); the corresponding numbers for France are 0.064 and –0.021.

meaning that when firms reallocate tasks towards more high-skilled workers due to higher

AH the labor demand elasticity decreases significantly, thereby leading to a substantial

improvement in the wage-setting power of labor unions. In this scenario, the wage curve

(WC) is downward-sloping, as explained in Section 4. Second, given the model parameters

and targets in this period, it holds for both countries that |Φ| < |Γ| so that the wage curve

is steeper than the job creation curve (JC); see also Figure 2b.

In the period 2010–2017, the impact on θL remains negative for Germany but is weaker

than in the previous period. Correspondingly, also in this period the unemployment rate

increases due to SBTC in Germany, albeit to a lesser extent (0.023 percentage points

compared to 0.075 percentage points in the previous period). In contrast, in France,

the impact on θL (uL) becomes positive (negative). The boundary value Ib in France

remains constant from the first to the second period. However, a significant reduction in

I, reflecting educational expansion in France and thus an increasing share of high-skilled

income in total income, results in this case in I < Ib, for which we have dln εL,w̃L
/dln I <

1. Similar to the previous case, the wage-setting power of labor unions increases due

to the task reallocation towards more high-skilled workers. However, the increase in the

wage markup is more moderate this time. The wage curve is upward-sloping and the

SBTC effect on θL corresponds to the scenario in Figure 2a.

Concerning the effect of an increase in AH on the task threshold, there is a stronger

reallocation of tasks towards high-skilled workers in France than in Germany in both

periods. Low-skilled wages rise due to SBTC in both countries and periods. This is due

to a lower labor demand elasticity, and thus stronger wage-setting power of labor unions,

induced by the decline in I. However, the increase in low-skilled wages is moderate in
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both countries and periods compared to the significant increase in wages of high-skilled

workers. This translates into a pronounced increase in the skill premium in both countries

and periods.

Our simulation shows that two factors determine the direction and the strength of the

labor demand elasticity reaction in response to changes in I: the relative task productivity

schedule and the task threshold in the economy determined by the share of high-skilled

income in total income. Since these factors can vary across different steady states, the

effects of SBTC on labor market variables can be completely different as well. The opposed

signs of SBTC effects on labor market tightness in France in 1995–2005 and 2010–2017

steady states perfectly exemplify this insight.

6 Empirical Task Productivity Schedule

In this section, we aim to validate an important result of the calibration exercise. Both the

theoretical analysis and the calibration results indicate that the shape of the relative task

productivity schedule ᾱ(i) significantly influences labor market outcomes for low-skilled

workers in the context of SBTC. Unfortunately, the function ᾱ(i) cannot be directly

observed in real-world data. This limitation makes the carefully calibrated version of

our theoretical framework a central tool for quantifying the effects of SBTC through the

task reallocation channel. For the calibration, we employed a flexible functional form

for ᾱ(i) = iρ, which allows for both concave and convex shapes of the relative task

productivity schedule. One of the results of this calibration is that we obtained different

values for ρ for Germany and France in both considered periods, resulting in distinct

calibrated task productivity schedules, as shown in Figure 3. Specifically, for Germany, we

found that the relative task productivity of high-skilled workers declined in lower-indexed

tasks from the first to the second period, while it increased significantly in higher-indexed

tasks. In the following, we utilize German microdata from the Socio-Economic Panel

(SOEP) and approximate tasks using occupational data. We estimate the approximate

task productivity schedules for Germany for two periods and examine how the estimated

shapes and changes over time compare to their calibrated counterparts. We focus on

Germany for illustrative purposes, and because of our comparative advantage in handling

German microdata.
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6.1 Deriving the empirical task productivity schedule

Our approach to estimating the relative task productivity schedule is based on the method-

ology suggested by Ales et al. (2015).14 The point of departure for deriving an estimable

task productivity schedule is the functional form of ᾱ(i) used in the calibration (in logs):

ln ᾱ(i) = ρ ln i.

Whereas the theoretical function ᾱ(i) = αH(i)/αL(i) takes values for all task complexity

indices i, in the real world only the equilibrium task threshold would be observed and,

therefore, only the value ᾱ(I). This equilibrium value is determined in our model by

eq. (7), i.e., the task allocation condition. From this, it follows:

AHαH(I)

ALαL(I)
=

wH

w̃L

.

With the simplifying assumption of no search-and-matching frictions, and defining aH(I) ≡

AHαH(I) and aL(I) ≡ ALαL(I), the above condition can be written in logs as

ln aH(I)− ln aL(I) = lnwH − lnwL. (35)

Using the chosen specification for ᾱ(i), the left-hand-side of eq. (35) is

ln aH(I)− ln aL(I) = ln Ā+ ln ᾱ(I) = ā+ ρ ln I,

and, therefore:

lnwH − lnwL = ā+ ρ ln I.

This equation holds for one specific value of i, which makes it clear that we cannot estimate

the task productivity function using observed wages for low- and high-skilled workers

alone. One natural way to address this problem is to extend the theoretical approach by

considering the heterogeneity in ability or talent levels among low-skilled and high-skilled

workers. IntroducingK > 2 talent levels results in (K−1) different thresholds. The firm’s

assignment of workers with a given talent to tasks is done analogously to the results in

14Ales et al. (2015) use a task assignment model to consider the implications of technical change for
tax policy design. Their focus is on the slope rather than the curvature of the task productivity schedule,
and they therefore simply estimate a linear function.
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the basic theoretical model, i.e., the workers with the lowest talent index are assigned

to the lowest task interval, and so on. In line with Ales et al. (2015), for the empirical

analysis, we translate this setup to continuous talent types. Using k as the talent index,

we can then formulate the following function that serves as an approximation for the total

productivity function Āᾱ(i) in our two-skill case:15

dln a(k, i)

dk
= ā+ ρ ln i.

Extending condition (35) to the continuous talent-types case gives an equation that is

used for the estimation of Āᾱ(i):

d lnw(k)

dk
= ā+ ρ ln i. (36)

6.2 Data

In the empirical analysis, we use the 1991–2017 waves of the German Socio-Economic

Panel (SOEP), a high-quality and representative dataset of nearly 15,000 households and

about 30,000 individuals in Germany.16 For more information about the SOEP, see Goebel

et al. (2019). In the first step, we perform a careful data selection process, which is de-

scribed in detail in Online Appendix B.7.1. For the estimation of eq. (36), we consider

two periods, 1991–1997 (period 1) and 2011–2017 (period 2), which roughly correspond

to the two periods in the calibration exercise. The gap between periods 1 and 2 is slightly

longer than in the calibration. By making the periods more distant from each other, we

increase the likelihood of identifying potential changes in the real-world task productiv-

ity schedule. In the following, we outline the relevant variables required for the estimation.

Wages

First, we construct median real hourly wages at the occupational level for each period. In

the benchmark scenario, we use the German Classification of Occupations 1992 (KldB92)

at the 3-digit level and restrict each occupation to have at least 50 workers, resulting

in a total of 166 occupations. Using the median instead of the mean, along with this

15Of course, Ā is only a shift parameter. The curvature of the total productivity schedule depends on
the shape of the relative task productivity schedule ᾱ(i).

16Socio-Economic Panel (SOEP), data for years 1984-2021, SOEP-Core v38.1, EU Edition–Update,
2023, doi:10.5684/soep.core.v38.1eu
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size requirement, should ensure that we obtain reliable figures for average occupational

wages. Online Appendix B.7.2 additionally describes alternative scenarios that use the

International Standard Classification of Occupations 1988 (ISCO88) and a different size

requirement.

Empirical task indices

We treat occupations as the empirical analogs of tasks. Following Ales et al. (2015), we

consider the average wage level of an occupation as indicative of its complexity. We rank

occupations according to their complexity based on occupational wages. In the bench-

mark scenario, we use wages from period 1 to rank the occupations and keep this ranking

fixed for period 2. By using the same ranking for both 1991–1998 and 2011–2017, we

assume that the complexity of occupations remains time-invariant. This approach pre-

vents potential differences in the estimated period-specific task productivity schedules

from being attributed to any change in wage rankings. Online Appendix B.7.2 discusses

an alternative period considered for the occupational ranking. The ordered occupations

are assigned an index i from a normalized interval [0, 1] such that the indices are evenly

spaced within this unit-length interval.

Empirical talent indices

The theoretical underpinning of our empirical strategy, outlined in the previous subsec-

tion, requires continuous talent types. In the empirical application, we consider discrete

talent indices k distributed across the normalized interval [0, 1]. We assume thereby that

talents are assigned to task thresholds and this assignment function is strictly increas-

ing. Talent indices are obtained as follows: First, we calculate the shares of low- and

medium-skilled workers (low-skill intensities) in the ranked occupations and apply the

LOWESS smoother to this data. Then, we reweight the smoothed low-skilled intensities

so that they sum up to one across all occupations. Finally, we compute talent ranks k as

cumulative low-skill intensities in the ranked occupations. They increase with increasing

i, but unlike task indices, the k values are not evenly spaced within the unit-length inter-

val. The smoothed low-skilled intensities decrease with increasing occupational ranking,

which strengthens our confidence in the plausibility of occupational ordering based on

wages. For a graphical representation of low-skill intensities and talent ranks k, we refer

to Online Appendix B.7.2.
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Wages as a function of talent indices

The ranked occupational wages are smoothed using the LOWESS smoother. Since talent

indices k are an increasing function of i, ranked wages can be represented as a function

of k. Figure 5 depicts log smoothed wages over talent indices for both periods. These

plots show that wages of workers at the lower and higher talent spectrum increased in

period 2 compared to period 1, whereas they remained roughly the same for workers in

the middle of the talent distribution. Moreover, returns to talent, as reflected by the slope

of each wage graph, are decreasing for lower k, constant at middle k, and increasing at

higher k. This suggests an increasing pattern of returns to talent with increasing task

complexity and thus corroborates the crucial comparative advantage assumption that the

productivity of higher-skilled workers increases in more complex tasks. Returns to talent,

which are the dependent variable in eq. (36), are calculated using numerical methods and

evaluated at each k.
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Figure 5: Log wages as a function of talents in period 1 (1991–1997) and period 2 (2011–2017)

6.3 Results

Table 5 summarizes the estimation results.17 These findings show that the estimated

values for the parameter ρ (0.72 in period 1 and 1.37 in period 2) are very similar to

17We consider the interval [1, 2] for i in the estimation rather than [0, 1]. This is because the logarithmic
transformation of values between 0 and 1 induces large spaces between ln(i) at lower i which become
smaller towards the end of the interval. Since ln(i) is the explanatory variable in eq. (36), such extremely
uneven spacing artificially overemphasizes returns to skills at lower k. In contrast, due to the property
ln(1 + i) ≈ i, i ∈ [0, 1] values of log task indices from the interval [1, 2] are close to evenly spaced.
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the calibrated values (0.69 in period 1 and 0.92 in period 2). Figure 6 depicts the esti-

mated task productivity schedules in both periods, which closely resemble the calibrated

counterparts for Germany in Figure 3. As in the calibration exercise, the estimated func-

tion Āᾱ(i) is concave in period 1 and becomes almost linear in period 2. Both curves

intersect in the middle range of task complexity.18 With this empirical evidence, we can

be confident that the results of the calibration exercise are reliable. To ensure that the

empirical results are not sensitive to alternative data selection specifications, we perform

several robustness checks, which are reported in Online Appendix B.7.2. According to

these findings, the pattern of estimated task productivity schedules remains robust if we

consider (a) 1998–2010 (between periods 1 and 2) as the period used for the ordering of

occupations, (b) ISCO88 as an alternative occupation classification, (c) a less restrictive

requirement for a minimum occupation size.

Table 5: Estimation results for the task productivity function for period 1 (1991–1997) and period 2
(2011–2017); confidence intervals for estimated parameters are given in parentheses.

Period ā ρ Estimated Āᾱ(i)

1991–1997 0.77 (0.56, 0.99) 0.72 (0.18, 1.26) 2.17 i0.72

2011–2017 0.52 (0.32, 0.72) 1.37 (0.85, 1.88) 1.68 i1.37

Notes: N = 166; estimated Āᾱ-function is recovered from the estimated equation dlnw(k)/dk =
ā+ ρ ln i and takes the form eā iρ.
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Figure 6: Estimated task productivity function for period 1 (1991–1997) and period 2 (2011–2017)

18The intercept in this diagram represents the relative productivity between the workers with the lowest
skill and the next-lowest talent and, therefore, cannot be directly interpreted as the relative productivity
of high-skilled workers (skill bias), Ā.
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7 Summary and Conclusions

This paper combines the task approach, labor union wage setting, and the matching

framework to analyze the impact of skill-biased technical change (SBTC) on labor union

wage setting brought about by changes in firms’ assignment of tasks to low- and high-

skilled workers. In labor union models, the wage elasticity of labor demand plays a

crucial role in the extent of wage pressure in the economy. We show that this elasticity

is influenced by the task threshold that divides the range of tasks performed by low- and

high-skilled workers. Specifically, we demonstrate that the labor demand elasticity for

low-skilled workers consists of a direct wage effect and a task reallocation effect. The

latter implies that with an increase in low-skilled labor costs, fewer tasks are allocated

to low-skilled labor. The strength of the task reallocation effect depends on the intensity

with which low-skilled workers are used in the production process and on the shape of

the relative task productivity schedule that reflects the substitutability of high- and low-

skilled workers. Since both convex and concave shapes of the relative task productivity

schedule are theoretically possible, the effect of a change in the task allocation on the

labor demand elasticity remains ambiguous.

This ambiguity carries over to the general equilibrium, condensed into a two-equation

system reflecting job creation by firms and wage claims of labor unions. Whereas in

standard matching models an increase in labor market tightness leads to higher wage

pressure along a positively sloped wage curve, in our model the wage curve can also be

downward sloping. This has significant implications for the effects of SBTC. In contrast

to the standard result that an increase in the factor productivity of high-skilled workers

also positively impacts the employment and wages of low-skilled workers, in our model,

low-skilled workers may instead experience higher unemployment or lower real wages.

Calibrating the model to German and French data for the periods 1995–2005 and

2010–2017, we find that the impact of SBTC may even change its sign over time. With

the parameterization for the first period, SBTC increases low-skilled unemployment in

both countries. With the parameterization for the second period, SBTC still increases

low-skilled unemployment in Germany but reduces it in France. In both countries and

periods, real wages of high-skilled workers increase more than those of low-skilled workers,

thus increasing the skill premium. The driving force behind these outcomes is the decline

in the labor demand elasticity due to SBTC, particularly the strength of this decline. It
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depends on the shape of the relative task productivity schedule and the task allocation

of low- and high-skilled workers, which differ across countries and periods. To ensure

the credibility of our calibration results for the task productivity schedule, we utilize

German microdata from the SOEP and approximate tasks using occupational data. The

estimated shape of this approximated task productivity schedule, as well as its changes

over time, closely matches our quantitative findings, thereby bolstering our confidence in

the calibration results.

These results highlight several interesting extensions for future research. For example,

our modeling framework could be applied to compare the outcomes of the wage-setting

process in different sectors of the economy. Some sectors may entail a range of tasks

that rapidly increase in complexity, leading to more exponential increases in the relative

productivity of high-skilled workers. Other sectors may exhibit a task complexity profile

conducive to stronger skill substitution. Different sectors may also have varying task

allocations among skill groups. Applying insights from our model could in this case

explain differing sectoral real wage developments for workers with the same skill level

facing the same extent of SBTC. Additionally, including capital, especially automation

capital, into the model would allow to analyze the impact of automation on the bargaining

power of labor unions and unemployment. These possible extensions of our model would

deepen our understanding of the broader implications of technological change on labor

market outcomes.
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A Appendix

A.1 The Firm’s Optimization Problem

Combining eqs. (1)–(5), and considering the restrictions (6) for lt(i) and ht(i), the firm’s

optimization problem can be written as

max
{lt(i),ht(i),VLt,µLt}

L =
∞∑
t=1

(
1

1 + r

)t−1{
exp

[∫ 1

0

ln (ALtαL(i)lt(i) + AHtαH(i)ht(i)) di

]
−wLt

∫ 1

0

lt(i)di− wHt

∫ 1

0

ht(i)di− sLVLt

}
+

∞∑
t=0

µLt

(
1

1 + r

)t−1 [
m(θLt)VLt + (1− qL)

∫ 1

0

lt−1(i)di−
∫ 1

0

lt(i)di

]
s.t. lt(i) ≥ 0, ht(i) ≥ 0, and l0(i), h0(i) given,

where µLt denotes the shadow price of Lt in period t. The single firm takes aggregate labor

market tightness θLt as given. The first-order conditions are ∂L/∂µLt = 0, ∂L/∂VLt = 0

(which gives µLt = sL/m(θLt)), and the complementary slackness conditions

∂L
∂ht(i)

≤ 0, ht(i) ≥ 0,
∂L

∂ht(i)
ht(i) = 0,

∂L
∂lt(i)

≤ 0, lt(i) ≥ 0,
∂L
∂lt(i)

lt(i) = 0.

This leads to

Yt

yt(i)
AHtαH(i) ≤ wHt, ht(i) ≥ 0, (A.1)

Yt

yt(i)
ALtαL(i) ≤ w̃Lt ≡ wLt +

sL
m(θLt)

− sL
m(θL,t+1)

(1− qL)

(1 + r)
, lt(i) ≥ 0. (A.2)

Due to complementary slackness in each equation, only one inequality can hold at the

same time. As can be seen from eq. (A.2), the low-skilled labor costs relevant to the firm,

w̃Lt, consist of the wage wLt plus the search costs incurred in period t, which are reduced

by the vacancy posting costs that are saved in period t+1 if the employment relationship

continues. For the discussion of the different cases we focus on the steady state in which

θL,t+1 = θLt = θL. In that case, w̃Lt = w̃L, where

w̃L ≡ wL +
(qL + r)

(1 + r)

sL
m(θL)

. (A.3)
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Case 1: l(i) > 0 and h(i) = 0. Due to eq. (2) in the main text y(i) = ALαL(i)l(i),

implying Y/l(i) = w̃L in eq. (A.2). The marginal contribution of unskilled labor in task i

to total output Y equals the low-skilled labor costs relevant to the firm. It follows that

l(i) = l, i.e. the same labor input l is chosen in all low-skilled tasks. From eq. (A.1)

follows
w̃L

ALαL(i)
<

wH

AHαH(i)
,

if the constraint on h(i) is binding. Hence, low-skilled workers are employed in those

tasks in which their unit labor costs are lower than those of high-skilled workers. At the

margin where ∂L/∂h(i) = 0, there is a specific task i = I for which w̃L/(ALαL(I)) =

wH/(AHαH(I)).

Case 2: h(i) > 0 and l(i) = 0. From eq. (2) follows y(i) = AHαH(i)h(i), implying

Y/h(i) = wH in eq. (A.1) which is interpreted analogously. It follows that h(i) = h, i.e.

the same labor input h is chosen in all high-skilled tasks. From eq. (A.2) follows

w̃L

ALαL(i)
>

wH

AHαH(i)
,

if the constraint on l(i) is binding. Hence, high-skilled workers are employed in those

tasks in which their unit labor costs are lower than those of low-skilled workers. At the

margin where ∂L/∂l(i) = 0, there is a specific task i = I for which w̃L/(ALαL(I)) =

wH/(AHαH(I)).

Case 3: h(i) > 0 and l(i) > 0. Because of eq. (2) y(i) = ALαL(i)l(i) + AHαH(i)h(i). In

eq. (A.2) it holds that (Y/y(i))ALαL(i) = w̃L. In eq. (A.1) it holds that (Y/y(i))AHαH(i) =

wH . Hence,
w̃L

ALαL(I)
=

wH

AHαH(I)
.

Case 4: h(i) = 0 and l(i) = 0. In that case, y(i) = 0 which due to the production

function in eq. (1) is not possible.

In cases 1-3 the task threshold I is defined as the task where unit labor costs for high-
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and low-skilled workers are equal. This condition can be written as

ᾱ(I) ≡ αH(I)

αL(I)
=

ALwH

AHw̃L

. (A.4)

Since ᾱ′(i) > 0, there is only one task i = I where unit labor costs of both worker types

are equal. It must hold that I < 1, because values I ≥ 1 would imply that no high-skilled

workers are used in the production process, in contradiction to our assumption that high-

skilled workers are fully employed. Moreover, if unemployment benefits are not too high,

it is never optimal for labor unions to demand such high wages that no unskilled workers

are employed. In that case, it must also hold that I > 0. As a consequence, 0 < I < 1.

A.2 Wage Setting of Labor Unions

The representative labor union chooses wLt to maximize VLt = RLt Lt s.t. to the expression

for RLt in eq. (17) and the labor demand equation (11), Lt = Ld (ω̃t, ·), where ω̃t ≡

wHt/w̃Lt. In line with steady-state considerations, aggregate labor market tightness is

considered to be given and constant. Therefore, w̃Lt corresponds to the expression in

eq. (A.3). The first-order condition dVLt/dwLt = 0 gives

∂RLt

∂wLt

Lt +RLt
∂Ld

∂ω̃t

∂ω̃t

∂wLt

= 0. (A.5)

Multiplying by w̃Lt/Lt and defining

εLw̃L,t ≡
∣∣∣∣∂ lnLd(·)
∂ ln w̃Lt

∣∣∣∣ = ∂ lnLd(·)
∂ ln ω̃t

(A.6)

leads to (
1− δn

1− δ

)
w̃Lt −RLt εLw̃L,t = 0.

Defining

z̃Lt ≡ zLt +
(qL + r)

(1 + r)

sL
m(θL)

and noting that wLt − zLt = w̃Lt − z̃Lt gives

(1− δn)

1− δ
w̃Lt −

[
(1− δn)

1− δ
(w̃Lt − z̃Lt) + δnRL,t+n

]
εLw̃L,t = 0.
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Therefore, the wage wLt set in period t for n periods implies the following wage costs w̃Lt

in period t:

w̃Lt =
εLw̃L,t

εLw̃L,t − 1

(
z̃Lt −

(1− δ)δn

1− δn
RL,t+n

)
. (A.7)

In the steady state, RL,t+n = (w̃Lt − z̃Lt)/(1− δ). Hence,

w̃Lt =
εLw̃L,t

εLw̃L,t + δn − 1
z̃Lt. (A.8)

A.3 Proof of Proposition 2

From eqs. (7) and (10) follows

d ln I =
1

εᾱ,I

(
dln ω̃ − dln Ā

)
(A.9)

and

dlnL =
1

1− I
dln I + dln ω̃, (A.10)

where it has been taken into account that d lnH = 0, and

dln ω̃ = dlnwH − dln w̃L. (A.11)

From eq. (19) follows

d ln w̃L = εz̃L,θLdln θL + εκL,I dln I, (A.12)

where

εz̃L,θL ≡ dln z̃L
dln θL

= βL
z̃L − zL

z̃L
= βLκL

w̃L − wL

w̃L

= βL

(qL+r)
1+r

sLθ
βL

L

zL + (qL+r)
1+r

sLθ
βL

L

< βL (A.13)

and

εκL,I ≡
dlnκL

dln I
= −(κL − 1)

d ln εL,w̃L

dln I
= −κL − 1

κL

(
I

1− I
− dln εᾱ,I

dln I

)
. (A.14)
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Because of eq. (23)

d ln θL =
1

(1− βL)uL

dlnL, (A.15)

where uL ≡ (1−H − L)/(1−H) denotes the low-skilled unemployment rate.

The price index equation (24) can be written as

I(ln w̃L − lnAL) + (1− I)(lnwH − lnAH)− ξ(I) = 0,

where

ξ(I) ≡
∫ I

0

lnαL(i)di+

∫ 1

I

lnαH(i)di.

The total differential of this equation is

I(d ln w̃L − dlnAL) + (1− I)(d lnwH − dlnAH)

− [(lnwH − ln w̃L)− (lnAH − lnAL)− ln ᾱ(I)] dI = 0, (A.16)

where it has been taken into account that ξ′(I) = − ln ᾱ(I). Since the task threshold is

endogenously determined from profit maximization, eq. (7) must hold, implying ln ᾱ(I) =

(lnwH − ln w̃L)− (lnAH − lnAL). Hence, the term in brackets in the second line is zero,

leading to

d lnwH = dlnAH +
I

1− I
dlnAL − I

1− I
dln w̃L. (A.17)

The job creation equation (26) in Proposition 2 is obtained by combining eqs. (A.17),

(A.11), (A.10), and (A.15), and by assuming dlnAL = 0. The wage-setting equation cor-

responds to eq. (A.12) and the task allocation equation follows from eqs. (A.9), (A.11) and

(A.17), where d ln Ā = dlnAH if d lnAL = 0. This concludes the proof of Proposition 2.

□

45



A.4 Comparative Statics: Effects on Other Variables

dln ω̃

dlnAH

=

(
|Φ|+ 1

κL

Γ

)
1

|Φ|+ Γ
> 0, if

dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
∨(

dln εL,w̃L

dln I
> 1 ∧ |Φ| < 1

κL
|Γ|
)

< 0, otherwise

d lnwH

dlnAH

=

(
|Φ|+ εL,w̃L

− I

εL,w̃L

Γ

)
1

|Φ|+ Γ
> 0, if

dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
∨(

dln εL,w̃L

dln I
> 1 ∧ |Φ| < εL,w̃L

−I

εL,w̃L

|Γ|
)

< 0, otherwise

d lnwL

dlnAH

=

(
κL

1− dln εL,w̃L

dln I

− 1

)
εz̃L,θL z̃L
εL,w̃L

wL

(1− I)
1

|Φ|+ Γ> 0, if 1 >
dln εL,w̃L

dln I
> 1− κL ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| < |Γ|

)
< 0, otherwise

d lnL

dlnAH

=
|Φ|

|Φ|+ Γ> 0, if
dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
< 0, otherwise

d lnuL

dlnAH

= −1− uL

uL

|Φ|
|Φ|+ Γ< 0, if
dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
> 0, otherwise

d lnY

dlnAH

=
(
|Φ|+ (1− I)Γ

) 1

|Φ|+ Γ
> 0, if

dln εL,w̃L

dln I
< 1 ∨

(
dln εL,w̃L

dln I
> 1 ∧ |Φ| > |Γ|

)
∨(

dln εL,w̃L

dln I
> 1 ∧ |Φ| < (1− I) |Γ|

)
< 0, otherwise
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