
In Summary;

I analyzed Walmart sales data by leveraging Python and MySQL to derive meaningful

insights and answer key business questions. Using Python, I began by importing the

necessary libraries for data manipulation and analysis. I explored the dataset to understand

its structure, reviewed data types, and generated descriptive statistics to gain an overview of

the data. Through Python’s mathematical and analytical capabilities, I calculated various

metrics and summarized trends that provided a foundation for deeper analysis.

Next, I utilized MySQL to further analyze the data and address specific queries. By

writing SQL queries, I extracted and aggregated data to uncover patterns and relationships

within the sales data. This combined approach of Python and MySQL allowed me to

efficiently process, analyze, and present results that can support data-driven decision-

making for Walmart’s sales strategy. For each code, you can find the explanation above.

PYTHON;

import pandas as pd

df = pd.read_csv('C:\\Users\\Asus\\OneDrive\\Masaüstü\\walmart.csv')

df.shape

df.head()

df.describe()

df.info()

df.duplicated().sum()

df.isnull().sum()

df.dtypes

df.columns

df['unit_price'] = df['unit_price'].replace('[\$,]', '', regex=True).astype(float)

df['total'] = df['unit_price'] * df['quantity']

df.head()

import pymysql

from sqlalchemy import create_engine

import psycopg2

help(df.to_sql)

help(create_engine)

#host = localhost

#port = 3306

#user = root

#password = Mine12345.

engine_mysql =

create_engine("mysql+pymysql://root:Mine12345.@localhost:3306/walmart_db")

try:

 engine_mysql

 print("successfull")

except:

 print("unsuccessfull")

df.to_sql(name='walmart', con = engine_mysql, if_exists='append', index = False)

df.columns

df.columns = df.columns.str.lower()

df.columns

MYSQL;

SELECT

*

FROM

walmart;

SELECT

COUNT(*)

FROM

walmart;

SELECT

payment_method, COUNT(*)

FROM

walmart

group by payment_method;

SELECT

COUNT(DISTINCT branch)

FROM

walmart;

SELECT

MIN(quantity)

FROM

walmart;

-- different payment method, number of transaction, number of quantity sold

SELECT

payment_method, COUNT(*) as no_payments, SUM(quantity) as no_qty_sold

FROM

walmart

GROUP BY payment_method;

-- highest rated category in each brand, displaying the branch, category AVG rated

SELECT

*

FROM

(SELECT

Branch, category, AVG(rating) as avg_rating,

RANK() OVER(PARTITION BY Branch ORDER BY AVG(rating) DESC) as rank_rank

FROM

walmart

group by 1,2

) AS t

WHERE rank_rank=1;

-- identify the busiest day for each branch based on transcation

SELECT

*

FROM

(SELECT

branch,

date_format(STR_TO_DATE(date, '%d/%m/%y'), '%W') AS day_name,

COUNT(*) as no_trans,

RANK() OVER(PARTITION BY branch ORDER BY COUNT(*) desc) as rankk

FROM

walmart

group by 1,2) AS t

WHERE rankk = 1;

-- total wuantitiy of items sold per payment method

SELECT

payment_method, SUM(quantity) as no_qty_sold

FROM

walmart

GROUP BY payment_method;

-- determine the average, min and max rating of prodcts for each city

SELECT

city, category, MIN(rating), MAX(rating), AVG(rating)

FROM

walmart

GROUP BY 1,2;

-- CALCULATE THE Total profit for each category by considering total profit as unit price* quantity*

proft margin.

SELECT

category, SUM(total) as revenue, SUM(total*profit_margin) as profit

FROM

walmart

GROUP BY 1;

-- most commont payment method for eacg branch

WITH cte

AS

(SELECT

Branch, payment_method, COUNT(*) total_trans,

RANK() OVER(PARTITION BY Branch ORDER BY COUNT(*) DESC) as rankk

FROM

walmart

GROUP BY 1,2

)

SELECT *

FROM cte

WHERE rankk=1;

