
In Summary;

 In this Python project, I developed an exchange portfolio by first importing the

necessary libraries and selecting the desired exchanges for analysis. I then arranged the

dates and connected Python to the exchange websites to retrieve relevant data. This data

was used to calculate lognormal returns, which measure the continuous compound returns

of the selected exchanges. Using this data, I calculated various financial metrics such as the

covariance matrix, which captures the relationship between the returns of different

exchanges, as well as the portfolio standard deviation, which measures the overall risk of the

portfolio. Additionally, I determined the expected return of the portfolio based on historical

data, as well as the Sharpe ratio, which evaluates the risk-adjusted return, and the risk-free

rate, representing the return on a theoretically risk-free asset.

Once the necessary calculations were made, I applied constraints and bounds to the

optimization process, ensuring the portfolio adhered to certain limits, such as not exceeding

certain allocation percentages for specific exchanges. Initial weights were also defined to

establish a starting point for the optimization algorithm. Using these initial weights and

constraints, the algorithm was able to optimize the portfolio's asset allocation to maximize

returns while minimizing risk. The results were then visualized, providing a clear view of the

portfolio's performance and allocation, helping to assess the trade-off between risk and

return. This visualization also helped in making data-driven decisions for refining the

portfolio to achieve optimal performance.

IMPORT REQUIRED LIBRARIES

import yfinance as yf

import pandas as pd

from datetime import datetime, timedelta

import numpy as np

from scipy.optimize import minimize

import matplotlib.pyplot as plt

DEFINE THE LIST OF TICKERS

* Select the desired exchange.

tickers = ['SFY', 'BND', 'GLD', 'QQQ', 'VTI']

* Set the end date to today.

end_date = datetime.today()

print(end_date)

* Set start date to 5 years ago.

start_date = end_date - timedelta(days = 10*365)

print(start_date)

* Create an empty Dataframe to store.

adj_close_df = pd.DataFrame()

* Import data from exchange website.

for ticker in tickers:

 data = yf.download(ticker, start = start_date, end = end_date)

 adj_close_df[ticker] = data['Adj Close']

* Print the desired exchange values between desired years.

print(adj_close_df)

* Calculate the Lognormal returns for each ticker. Lognormal returns refer to the concept that

financial returns, when expressed in terms of logarithmic returns, follow a normal distribution.

* Positive Returns: Indicate a growth or appreciation in asset value.

* Negative Returns: Indicate a decline or depreciation in asset value.

log_returns = np.log(adj_close_df/adj_close_df.shift(1))

print(log_returns)

* Drop any missing values.

log_returns = log_returns.dropna()

* Calculate the covariance matrix using annualized log returns.

* A covariance matrix using annualized log returns is a key statistical tool in finance that measures

the relationship between the annualized log returns of multiple assets.

* Variance (diagonal): Shows the individual risk of each asset.

* Covariance (off-diagonal): Shows how asset returns interact.

cov_matrix = log_returns.cov()*252

print(cov_matrix)

Positive covariance: Indicates that variables tend to increase together.

Negative covariance: Indicates that one variable tends to increase while the other decreases.

* Calculate the portfolio standard deviation.

* The portfolio standard deviation measures the overall risk of a portfolio's returns, accounting for

the individual asset risks and how those assets interact with each other through correlations. It

provides insight into the portfolio's total variability of returns.

* Higher Standard Deviation: Indicates higher portfolio volatility and risk. Returns are more spread

out from the mean.

* Lower Standard Deviation:

Suggests more stability and lower risk.

Returns are closer to the mean, indicating less variability.

def standart_deviation(weights, cov_matrix):

 variance = weights.T @ cov_matrix @ weights

 return np.sqrt(variance)

* Calculate the expected return.

def expected_return(weights, log_returns, cov_matrix=None, risk_free_rate=None):

 return np.sum(log_returns.mean()*weights)*252

* Calculate the Sharp Ratio. The Sharpe Ratio is a measure of the risk-adjusted return of an

investment or portfolio. It evaluates how well the investment compensates an investor for the level

of risk taken, providing a standardized way to compare different investments.

def sharp_ratio(weights, log_returns, cov_matrix, risk_free_rate):

 return(expected_return(weights, log_returns, cov_matrix, risk_free_rate))

* Set risk free rate. The risk-free rate is the theoretical return on an investment with zero risk of

financial loss. It represents the minimum return an investor would expect for any investment

because it assumes no uncertainty or risk.

from fredapi import Fred

fred = Fred(api_key='92d2e66ede89ea6ef46a8149e6f96ad8')

ten_year_treasury_rate = fred.get_series_latest_release('GS10')/100

Set the risk free rate

risk_free_rate = ten_year_treasury_rate.iloc[-1]

print(risk_free_rate)

* Define the function to minimize (negative Sharp Ratio).

def neg_sharp_ratio(wheights, log_returns, cov_matrix, risk_free_rate):

 return -sharp_ratio(wheights, log_returns, cov_matrix, risk_free_rate)

* Set the constraints and bounds. Constraints are the specific conditions or rules that a solution must

satisfy in a mathematical model or optimization problem. They can be equations or inequalities that

define relationships between variables. Bounds are simple restrictions on the range of individual

variables in a problem. They define the minimum and maximum values that a variable can take.

constraints = {'type': 'eq', 'fun': lambda weights: np.sum(weights) -1}

bounds = [(0, 0.5) for _ in range(len(tickers))]

* Set the initial weights. In the context of machine learning and neural networks, initial weight refers

to the starting values assigned to the weights of the connections between neurons in the model.

Weights are the parameters that determine how input data is transformed and propagated through

the network to make predictions.

initial_weights = np.array([1/len(tickers)]*len(tickers))

* Optimize the weights to maximize the Sharp Ratio.

optimized_results = minimize(

 neg_sharp_ratio,

 initial_weights,

 args=(log_returns, cov_matrix, risk_free_rate),

 method='SLSQP',

 constraints=constraints,

 bounds=bounds

)

* Get the opitmal weights.

optimal_weights = optimized_results.x

* Analyze the Optimal Portfolio.

print('Optimal Weights:')

for ticker, weight in zip(tickers, optimal_weights):

 print(f"{ticker}: {weight:4f}")

 print()

 optimal_portfolio_return = expected_return(optimal_weights, log_returns)

 optimal_portfolio_volatility = standart_deviation(optimal_weights, cov_matrix)

 optimal_sharpe_ratio = sharp_ratio(optimal_weights, log_returns, cov_matrix,

risk_free_rate)

 print(f"Expected Annual Return: {optimal_portfolio_return: 4f}")

 print(f"Expected Volatility: {optimal_portfolio_volatility: 4f}")

 print(f"Sharpe Ratio: {optimal_sharpe_ratio: 4f}")

* Display the Final Portfolio.

plt.figure(figsize=(10,6))

plt.bar(tickers, optimal_weights)

plt.xlabel('Assets')

plt.ylabel('Optimal Weights')

plt.title('Optimal Portfolio Weights')

plt.show()

