
In Summary; 

 In this Python project, I developed an exchange portfolio by first importing the 

necessary libraries and selecting the desired exchanges for analysis. I then arranged the 

dates and connected Python to the exchange websites to retrieve relevant data. This data 

was used to calculate lognormal returns, which measure the continuous compound returns 

of the selected exchanges. Using this data, I calculated various financial metrics such as the 

covariance matrix, which captures the relationship between the returns of different 

exchanges, as well as the portfolio standard deviation, which measures the overall risk of the 

portfolio. Additionally, I determined the expected return of the portfolio based on historical 

data, as well as the Sharpe ratio, which evaluates the risk-adjusted return, and the risk-free 

rate, representing the return on a theoretically risk-free asset. 

Once the necessary calculations were made, I applied constraints and bounds to the 

optimization process, ensuring the portfolio adhered to certain limits, such as not exceeding 

certain allocation percentages for specific exchanges. Initial weights were also defined to 

establish a starting point for the optimization algorithm. Using these initial weights and 

constraints, the algorithm was able to optimize the portfolio's asset allocation to maximize 

returns while minimizing risk. The results were then visualized, providing a clear view of the 

portfolio's performance and allocation, helping to assess the trade-off between risk and 

return. This visualization also helped in making data-driven decisions for refining the 

portfolio to achieve optimal performance. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



## IMPORT REQUIRED LIBRARIES 

import yfinance as yf 

import pandas as pd 

from datetime import datetime, timedelta  

import numpy as np 

from scipy.optimize import minimize 

import matplotlib.pyplot as plt 

 

## DEFINE THE LIST OF TICKERS 

* Select the desired exchange. 

tickers = ['SFY', 'BND', 'GLD', 'QQQ', 'VTI'] 

 

* Set the end date to today. 

end_date = datetime.today() 

print(end_date) 

 

* Set start date to 5 years ago. 

start_date = end_date - timedelta(days = 10*365) 

print(start_date) 

 

* Create an empty Dataframe to store. 

adj_close_df = pd.DataFrame() 

 

* Import data from exchange website. 

for ticker in tickers: 

    data = yf.download(ticker, start = start_date, end = end_date) 

    adj_close_df[ticker] = data['Adj Close'] 

 

* Print the desired exchange values between desired years. 

print(adj_close_df) 

 



* Calculate the Lognormal returns for each ticker. Lognormal returns refer to the concept that 

financial returns, when expressed in terms of logarithmic returns, follow a normal distribution.  

* Positive Returns: Indicate a growth or appreciation in asset value. 

* Negative Returns: Indicate a decline or depreciation in asset value. 

log_returns = np.log(adj_close_df/adj_close_df.shift(1)) 

print(log_returns) 

 

* Drop any missing values. 

log_returns = log_returns.dropna() 

 

* Calculate the covariance matrix using annualized log returns. 

* A covariance matrix using annualized log returns is a key statistical tool in finance that measures 

the relationship between the annualized log returns of multiple assets.  

* Variance (diagonal): Shows the individual risk of each asset. 

* Covariance (off-diagonal): Shows how asset returns interact. 

cov_matrix = log_returns.cov()*252 

print(cov_matrix) 

# Positive covariance: Indicates that variables tend to increase together. 

# Negative covariance: Indicates that one variable tends to increase while the other decreases. 

 

* Calculate the portfolio standard deviation. 

* The portfolio standard deviation measures the overall risk of a portfolio's returns, accounting for 

the individual asset risks and how those assets interact with each other through correlations. It 

provides insight into the portfolio's total variability of returns. 

* Higher Standard Deviation: Indicates higher portfolio volatility and risk. Returns are more spread 

out from the mean. 

* Lower Standard Deviation: 

Suggests more stability and lower risk. 

Returns are closer to the mean, indicating less variability. 

def standart_deviation(weights, cov_matrix): 

    variance = weights.T @ cov_matrix @ weights 

    return np.sqrt(variance) 

 



* Calculate the expected return. 

def expected_return(weights, log_returns, cov_matrix=None, risk_free_rate=None): 

    return np.sum(log_returns.mean()*weights)*252 

 

* Calculate the Sharp Ratio. The Sharpe Ratio is a measure of the risk-adjusted return of an 

investment or portfolio. It evaluates how well the investment compensates an investor for the level 

of risk taken, providing a standardized way to compare different investments. 

def sharp_ratio(weights, log_returns, cov_matrix, risk_free_rate): 

    return(expected_return(weights, log_returns, cov_matrix, risk_free_rate)) 

 

* Set risk free rate. The risk-free rate is the theoretical return on an investment with zero risk of 

financial loss. It represents the minimum return an investor would expect for any investment 

because it assumes no uncertainty or risk. 

from fredapi import Fred 

fred = Fred(api_key='92d2e66ede89ea6ef46a8149e6f96ad8') 

ten_year_treasury_rate = fred.get_series_latest_release('GS10')/100 

 

# Set the risk free rate 

risk_free_rate = ten_year_treasury_rate.iloc[-1] 

print(risk_free_rate) 

 

* Define the function to minimize (negative Sharp Ratio). 

def neg_sharp_ratio(wheights, log_returns, cov_matrix, risk_free_rate): 

    return -sharp_ratio(wheights, log_returns, cov_matrix, risk_free_rate) 

* Set the constraints and bounds. Constraints are the specific conditions or rules that a solution must 

satisfy in a mathematical model or optimization problem. They can be equations or inequalities that 

define relationships between variables. Bounds are simple restrictions on the range of individual 

variables in a problem. They define the minimum and maximum values that a variable can take. 

constraints = {'type': 'eq', 'fun': lambda weights: np.sum(weights) -1} 

bounds = [(0, 0.5) for _ in range(len(tickers))] 

 

 

 



* Set the initial weights. In the context of machine learning and neural networks, initial weight refers 

to the starting values assigned to the weights of the connections between neurons in the model. 

Weights are the parameters that determine how input data is transformed and propagated through 

the network to make predictions. 

initial_weights = np.array([1/len(tickers)]*len(tickers)) 

 

* Optimize the weights to maximize the Sharp Ratio. 

optimized_results = minimize( 

    neg_sharp_ratio, 

    initial_weights, 

    args=(log_returns, cov_matrix, risk_free_rate), 

    method='SLSQP', 

    constraints=constraints, 

    bounds=bounds 

) 

 

* Get the opitmal weights. 

optimal_weights = optimized_results.x 

 

* Analyze the Optimal Portfolio. 

print('Optimal Weights:') 

for ticker, weight in zip(tickers, optimal_weights): 

    print(f"{ticker}: {weight:4f}") 

    print() 

    optimal_portfolio_return = expected_return(optimal_weights, log_returns) 

    optimal_portfolio_volatility = standart_deviation(optimal_weights, cov_matrix) 

    optimal_sharpe_ratio = sharp_ratio(optimal_weights, log_returns, cov_matrix, 

risk_free_rate) 

 

    print(f"Expected Annual Return: {optimal_portfolio_return: 4f}") 

    print(f"Expected Volatility: {optimal_portfolio_volatility: 4f}") 

    print(f"Sharpe Ratio: {optimal_sharpe_ratio: 4f}") 



* Display the Final Portfolio. 

plt.figure(figsize=(10,6)) 

plt.bar(tickers, optimal_weights) 

 

plt.xlabel('Assets') 

plt.ylabel('Optimal Weights') 

plt.title('Optimal Portfolio Weights') 

 

plt.show() 

 


