Ubuntu Server - Home Lab Project
A project by Daniel Felipe Perez Rincon.
Welcome to the Ubuntu Home Lab Project documentation! In this project, I aim to build a self-hosted server that consolidates multiple services, including file storage and media streaming, all running in Docker containers. This setup will allow me to host Nextcloud for cloud storage and Jellyfin for media streaming.
We will configure both local and remote access using Nginx for proxy host management and SSL certificates. A domain is required for this setup—you can obtain a free one from DuckDNS. Additionally, we will need a platform to manage DNS records for the domain.
The server is built on a Dell Vostro laptop, featuring an i5-10210 CPU, 8 GB of RAM, and 1 TB of storage. With these specifications, I can comfortably run multiple Docker containers while ensuring good performance for both local and remote access to my services. By repurposing an old laptop, I am able to make the most of the existing hardware and contribute to reducing e-waste, which is an important step towards sustainability.
This document will walk through the entire process, from setting up a fresh Ubuntu server to configuring the services and ensuring secure access both locally and remotely. Whether you're looking to create your own home server or simply exploring new ways to manage and organize services, this guide will provide you with all the steps and configurations needed.
INSTALLING UBUNTU
In this section, we will cover the process of installing Ubuntu Server on your hardware. Ubuntu Server is a popular, stable, and secure Linux distribution, making it an excellent choice for setting up your home server. This installation will serve as the foundation for running various services, including Nextcloud and Jellyfin, within Docker containers. The installation process is straightforward, and we will walk through the necessary steps, from preparing the installation media to configuring the server post-installation.

Creating Bootable USB
Before we can install Ubuntu Server, we need to create a bootable USB drive with the Ubuntu Server ISO. This USB drive will allow us to install the operating system on the server hardware. In this section, we will use a tool to write the Ubuntu Server image to a USB drive, preparing it for installation.
1. Download the ISO File for Ubuntu server from this link.
2. Download rufus
3. Create bootable USB
[image: A screenshot of a computer

AI-generated content may be incorrect.]

Installation Process
The installation process is straightforward, but if you need additional guidance, feel free to refer to this helpful video. During the installation, be sure to configure your network settings, as assigning a static IP address is highly recommended for your server. This ensures a stable connection and makes it easier to manage your services later on.
Remember to change the boot device!
In the setup process you can select to install OpenSSH to SSH to your machine as soon as the installation is over. This will save time in the configuration.
This is me doing the installation:

SECURING MY SERVER
Once Ubuntu Server is installed, the next crucial step is securing it. A properly secured server helps protect your data and services from unauthorized access and potential threats. In this section, we will implement fundamental security measures, including updating the system, configuring a firewall, and disabling root login. These steps will enhance the overall security and stability of your server.
Update The System
Update the package list:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
Upgrade installed packages:
[image: A screenshot of a computer program

AI-generated content may be incorrect.]
Remove unnecessary packages:
[image: A screenshot of a computer program

AI-generated content may be incorrect.]
Set Up a Firewall
Install ufw:
[image: A screenshot of a computer program

AI-generated content may be incorrect.]
Allow SSH, HTTP AND HTTPS:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
Enable the firewall and check configurations:
[image:]
Disable Root Login
Edit SSH config file:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
Uncomment and change “PermitRootLogin” to no:
[image:]
Restart SSH service
[image: A screenshot of a computer

AI-generated content may be incorrect.]

DOCKER INSTALLATION
Docker is a lightweight containerization platform that allows you to run applications in isolated environments. By using Docker, we can easily deploy and manage services like Nextcloud and Jellyfin without worrying about software dependencies or system conflicts. This approach ensures a more flexible and scalable home server setup.
In this section, we will install Docker on Ubuntu Server and verify that it is running correctly.
I am going to follow the steps given by the docker webpage for the Docker engine installation. Check it out here!
Steps:
1. Set up Docker’s apt repository:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
2. Install Docker packages:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
3. Verify the installation:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
Docker Compose Installation
Docker Compose is a powerful tool that allows you to define and manage multi-container applications with a simple YAML file. Instead of running multiple docker run commands, Docker Compose makes it easier to deploy and manage services in a structured way. In this step, we will install Docker Compose to simplify the management of our containerized applications.
Steps:
1. Update the package index and install Docker compose:
[image: A screenshot of a computer program

AI-generated content may be incorrect.]
2. Verify the installation:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
NEXTCLOUD CONFIGURATION
Nextcloud is an open-source self-hosted cloud storage solution that allows you to securely store, access, and share your files from anywhere. By hosting Nextcloud on your own server, you gain full control over your data while avoiding third-party cloud providers.
In this section, we will install Nextcloud using Docker Compose, making deployment and management more efficient.
Steps:
1. Create a directory for Nextcloud and cd to it:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
2. Create a docker-compose.yml file:
[image:]
3. Add the following configuration to this file:
services:
 nextcloud:
 image: nextcloud
 container_name: nextcloud
 restart: unless-stopped
 ports:
 - "8080:80"
 volumes:
 - ./app:/var/www/html
 environment:
 - MYSQL_HOST=nextcloud_db
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_PASSWORD=yourpassword
 depends_on:
 - nextcloud_db

 nextcloud_db:
 image: mariadb
 container_name: nextcloud_db
 restart: unless-stopped
 environment:
 - MYSQL_ROOT_PASSWORD=yourpassword
 - MYSQL_DATABASE=nextcloud
 - MYSQL_USER=nextcloud
 - MYSQL_PASSWORD=yourpassword
 volumes:
 - ./db:/var/lib/mysql
network:
 customnetwork:
 external: true

4. Start Nextcloud instance:

[image: A screen shot of a computer

AI-generated content may be incorrect.]

5. Go into your browser and type http://your-server-ip:8080
6. Configure an Admin account and password and hit install.

Now we have installed Nextcloud on our server. We will finish the rest of the installations.

JELLYFIN CONFIGURATION
Jellyfin is a free, open-source media server that allows you to stream your personal media collection to various devices. It provides a self-hosted alternative to commercial streaming services, giving you full control over your media without subscriptions or data tracking.
In this section, we will install Jellyfin using Docker Compose, ensuring a simple and flexible deployment.
Steps:
1. Make a new directory and cd to it:
[image:]
2. Create a docker-compose.yml file:
[image:]
3. Insert this configuration:
services:
 jellyfin:
 image: jellyfin/jellyfin
 container_name: jellyfin
 ports:
 - '8096:8096/tcp' # Jellyfin web interface
 - '7359:7359/udp' # Network discovery
 - '1900:1900/udp' # DLNA port
 volumes:
 - /home/marek/Jellyfin/config:/config
 - /home/marek/Jellyfin/Movies:/data/Movies
 - /home/marek/Jellyfin/Shows:/data/Shows
 environment:
 - PUID=1000
 - PGID=1000
 - TZ=America/Toronto
 restart: unless-stopped
network:
 customnetwork:
 external: true

4. Access your Jellyfin server from your browser typing http://your-server-ip:8096
5. Go through the wizard and configure your Jellyfin account.

NGINX INSTALLATION
Now that we have installed and configured our core services, Nextcloud and Jellyfin, the next step is to set up Nginx Proxy Manager (NPM). This tool will allow us to manage and secure access to our services easily.
Nginx Proxy Manager acts as a reverse proxy, meaning it will handle incoming requests and direct them to the appropriate service running on our server

1. Make a directory and cd to it:
[image: A black background with green and blue text

AI-generated content may be incorrect.]
2. Create a docker-compose.yml file
[image:]
3. Insert this configuration:
services:
 app:
 image: 'jc21/nginx-proxy-manager:latest'
 restart: unless-stopped
 ports:
 # These ports are in format <host-port>:<container-port>
 - '80:80' # Public HTTP Port
 - '443:443' # Public HTTPS Port
 - '81:81' # Admin Web Port

 environment:
 # Mysql/Maria connection parameters:
 DB_MYSQL_HOST: "db"
 DB_MYSQL_PORT: 3306
 DB_MYSQL_USER: "npm"
 DB_MYSQL_PASSWORD: "Candycita2005"
 DB_MYSQL_NAME: "npm"

 volumes:
 - ./data:/data
 - ./letsencrypt:/etc/letsencrypt
 depends_on:
 - db

 db:
 image: 'jc21/mariadb-aria:latest'
 restart: unless-stopped
 environment:
 MYSQL_ROOT_PASSWORD: 'Merlin1301'
 MYSQL_DATABASE: 'npm'
 MYSQL_USER: 'npm'
 MYSQL_PASSWORD: 'Candycita2005'
 MARIADB_AUTO_UPGRADE: '1'
 volumes:
 - ./mysql:/var/lib/mysql

network:
 customnetwork:
 external: true

4. Access your Nginx instance from your browser typing http://your-server-ip:81
5. Access using admin@example.com for email and changeme for password.
6. Change your password
LOCAL ACCESS CONFIGURATION
To enable local access with a valid SSL certificate, we need to configure DNS records and set up Nginx Proxy Manager. First, we create a subdomain that points to our home server’s private IP. Then we configure a Docker network and add all of our containers to it. After this, we generate SSL certificates using a DNS challenge and apply them to our services. Finally, we create a proxy host for each service, allowing secure access through domain names.
This setup allows us to access Nextcloud, Jellyfin, and other services using domain names instead of IP addresses, eliminating security warnings and making access more convenient. The following sections will cover the DNS configuration and Nginx setup in detail.
Cloudflare Configuration (DNS Configuration)
To configure local access using domain names, we need to set up proper DNS records. This allows us to access our services using human-readable addresses instead of IP addresses, making management more convenient and secure.
A domain name is required for this setup. You can either purchase a domain from a registrar like Namecheap, Google Domains, or Cloudflare, or get a free dynamic domain from services like DuckDNS or No-IP.
In this section, we will configure:
· An A record that points a subdomain to our home server’s private IP.
· A CNAME record to enable wildcard subdomains, making it easier to manage multiple services under the same domain.
With this setup, we ensure seamless access to our local services while maintaining flexibility for future configurations.

Steps:
1. Get a Domain
a. You can get your own custom domain from websites like: Namecheap, GoDaddy, Google Domains.
b. Alternatively, get a free domain from services like DuckDNS, FreeDNS (afraid.org), or EU.org.
In my case I own a custom domain and manage my DNS records using Cloudflare.
2. Add A record
a. Go to your domain’s DNS management panel, (in my case Cloudflare)
b. Add an A record with the name of your domain. If you are using this domain only for this project, add it to yourdomain.com. In my case, my domain is used for a website, so I will create the A record with a name of local.mydomain.com.
c. The target should be your server’s private ip address.
d. Disable Cloudflare Proxy (if applicable)
[image: A screenshot of a computer

AI-generated content may be incorrect.]

3. Add CNAME Record
a. Create a CNAME record for the subdomains of yourdomain.com.
b. Set the target to yourdomain.com.
[image: A screenshot of a computer

AI-generated content may be incorrect.]
4. Create an API Token
a. If using Cloudflare for DNS, go to Cloudflare Dashboard → My Profile → API Tokens.
[image: A screenshot of a computer

AI-generated content may be incorrect.]
b. Click Create Token and choose the Create Custom Token.
c. Give the token a name.
d. Grant permissions:
i. Zone → DNS → Edit
ii. Zone → Zone → Read
[image: A screenshot of a computer

AI-generated content may be incorrect.]
e. Click Continue to Summary, then Create Token.
f. Copy the token and store it securely (you’ll need it for SSL setup).
Docker Network Configuration
With our DNS records set up, the next step is to configure the Docker network to ensure seamless communication between our services (e.g., Nextcloud, Jellyfin) and Nginx Proxy Manager. Docker networks allow containers to communicate with each other using their service names as hostnames, simplifying internal routing and ensuring isolation from external networks.

· Create a custom Docker network to connect our services.
· Configure containers to use the same network, enabling them to communicate securely.
· Verify network connectivity between containers.
By the end of this process, our services will be able to communicate efficiently within the same Docker network, providing a robust foundation for local access and future scalability.
Steps:
1. Create a Custom Docker network:
docker network create my_custom_network
· Verify the network was created:
docker network ls
2. Connect Existing Containers to the Network
docker network connect my_custom_network nextcloud-app-1
docker network connect my_custom_network jellyfin-app-1
docker network connect my_custom_network nginx-app-1

Nginx Proxy Manager Configuration
With our DNS records set up, the next step is to configure Nginx Proxy Manager (NPM) to handle local access and SSL certificates. This ensures that our services are accessible using domain names instead of IP addresses and that they have valid SSL encryption, preventing browser security warnings.
In this section, we will:
Obtain SSL Certificates for our local domain using a DNS challenge.
Create Proxy Hosts in Nginx Proxy Manager to route traffic to our services (e.g., Nextcloud, Jellyfin).
By the end of this process, we will have a secure and user-friendly setup, allowing us to access our services with trusted domain names inside our network.
Steps:
3. Access Nginx Proxy Manager
· Go to http://yourserveripaddress:81
· Log in to the NPM dashboard
4. Obtain SSL Certificate
· Go to the SSL certificates tab:
[image: A screenshot of a computer

AI-generated content may be incorrect.]
· Click Add SSL Certificate → Let's Encrypt.
· Enter your domain (e.g., local.mydomain.com and *.local.mydomain.com).
[image: A screenshot of a computer

AI-generated content may be incorrect.]
· Select Use a DNS Challenge
· Choose Cloudflare as the DNS provider (or another provider based on your setup).
· Enter your Cloudflare API token (or credentials for your DNS provider). Example: dns_cloudflare_api_token=Yourtoken
[image: A screenshot of a computer

AI-generated content may be incorrect.]
· Click Save and wait for the certificate to be issued.
5. Create Proxy Hosts for Your Services
· Go to the Hosts tab and select Proxy Hosts.
· We will create the host for Nginx first
· Click Add Proxy Host and configure the following:
· Domain Names: Enter the subdomain for your service (local.mydomain.com).
· Forward Hostname / IP: enter 127.0.0.1 (loopback IP)
· Forward Port: Enter the port of the service (default for Nginx is 81).
[image: A screenshot of a computer

AI-generated content may be incorrect.]
· Under SSL, select the Let's Encrypt certificate you created earlier and enable Force SSL.
[image: A screenshot of a computer

AI-generated content may be incorrect.]
· Repeat these steps for each service (Nextcloud, Jellyfin, etc.).
· You can use the docker container name for each service.
· In this setup Nextcloud uses port 80 and Jellyfin port 8096.
[image: A screenshot of a computer

AI-generated content may be incorrect.]
6. Test Local Access
· Open a browser and try accessing your services using the domain names you configured (e.g., https://nextcloud.local.mydomain.com).
· Ensure there are no SSL warnings and that everything works correctly.

REMOTE ACCESS CONFIGURATION
Setting up remote access for your home server allows you to securely connect to your services from anywhere. Instead of exposing ports directly to the internet, Cloudflare Tunnel provides a secure way to route traffic through Cloudflare’s network, reducing security risks and simplifying access management. With this setup, you can access your Nextcloud and Jellyfin servers remotely while keeping your home network safe.
Set Up Cloudflare Tunnel
Cloudflare Tunnel provides a secure and efficient way to expose your home server services to the internet without opening ports on your router. Instead of direct port forwarding, Cloudflare’s network securely routes traffic to your local services. This enhances security by hiding your home IP and mitigating potential threats.
In this section, we will set up a Cloudflare Tunnel using Docker and configure it to route traffic to your Nextcloud and Jellyfin servers.
Steps:
1. Log in or sign up at cloudflare.com
2. Add your domain to Cloudflare:
a. Go to the Cloudflare Dashboard and select "Add Site". Enter your domain name and follow the instructions to change the name server addresses from the ones of your DNS provider to the addresses of the Cloudflare's name servers. Note that this process may take up to 24 hours.
3. Deploy Cloudflare tunnel application:
a. From the Cloudflare dashboard go to Zero Trust. The first time you access you will have to go through the process of selecting a plan and paying for it. Just choose he free plan and finish the payment process.
b. Go to Networks -> Tunnels. Select create a tunnel.
c. Select Cloudflared and name your tunnel
[image: A screenshot of a computer

AI-generated content may be incorrect.]
d. Now you can select how to install Cloudflared on your server. For this setup, we will use docker compose (this method is not included in the options shown in the website).
i. Create a directory for Cloudflare on your machine and create a docker-compose.yaml file.
sudo mkdir cloudflare
sudo nano docker-compose.yaml
ii. Paste this configuration and save the file.
etworks:
 customnetwork:
 external: true

services:
 cloudflaretunnel:
 container_name: cloudflaretunnel
 image: cloudflare/cloudflared:2025.2.1
 restart: unless-stopped
 environment:
 - TUNNEL_TOKEN=$TUNNEL_TOKEN
 command: tunnel --no-autoupdate run
 networks:
 - customnetwork
iii. Now use this command. export TUNNEL_TOKEN=xxxxx where xxxx is the token that is given on the Cloudfare docker installation. It is all the text after the ‘—token’ on the command given.
[image: A screenshot of a computer

AI-generated content may be incorrect.]
iv. Start the docker container
docker compose up -d
4. Go to Networks -> Tunnels. Your Cloudflare tunnel should be displayed and with ‘healthy’ as its status.
Configure Public Hostnames
After setting up a Cloudflare Tunnel, the next step is to configure public hostnames for your self-hosted services. Public hostnames act as entry points, allowing you to access your services remotely through a domain instead of an IP address. By setting up public hostnames in Cloudflare, you can map your Nextcloud, Jellyfin, or any other services to user-friendly URLs like `cloud.mydomain.com` and `jellyfin.mydomain.com`.
Additionally, Cloudflare provides security features such as authentication and access control, allowing you to protect sensitive services from unauthorized access. In this section, we'll go through the process of adding public hostnames and enabling authentication where needed.
Steps:
1. Add public hostnames to your tunnel.
a. Go to Zero trust -> Network -> Tunnels. Select your tunnel name and click edit.
b. Go to the Public Hostname tab. Select Add a public hostname.
c. Configure the name of the subdomain, add your domain, select what type of service, and type the address for your server running the desired service.
i. In this setup, you should be able to use the Docker container names as the URL.
ii. The configuration for Nextcloud should look something like this:
[image:]
iii. The configuration for Jellyfin should look something like this:
[image:]
2. Check that your public hostnames work. Go to your browser and type the URL of one of your services. It should be displayed without any problem.
3. Add a one-time PIN authentication for your services. You can add this if you want to improve the security of your services. This is optional.
a. Go to settings -> authentication and select add new.
b. Select one-time PIN. Here you can select any identity provider that you wish.
c. Go to access -> policies and select add a policy.
d. Name your policy and add the rules you want. You can select only certain emails to be able to access or any rule you want.
e. Click save to save the policy.
f. Go to access -> applications and select add an application.
g. Select Self-hosted. Give it a name and a session duration.
h. Click on add a public hostname. Fill the information of the subdomain or domain that you want protected by the one-time PIN.
i. On the Access policies section, click on select existing policies and add the policy you created.
[image:]
j. Click Next.
k. Click Next for the Experience settings. You can make changes if you want.
l. Click Save on the Advances settings. You can make changes if you want.
m. Your application should now be running
4. Go to your subdomain by pasting the URL on your browser. It should prompt you to the one-time PIN page. All done
[image: A screenshot of a computer

AI-generated content may be incorrect.]

This is The End of The Project
Thanks For Reading!
image1.png
Drive Properties

Device

UBUNTUSRY (€) (32 GB]

Boot selection

ubuntu-24.042-ve-server-amd6diso Y © [st
Persistent parition size:

' 0 (No persistence)

Partition scheme. Target system
MBR v BIOS or UEFI

~ Show advanced drive properties

Format Options

\
| Volume bel
| Ubuntu-Server 24042175 amdst
| Fiesysiem Clustersize
FAT32 Defaut) v 16 kilobytes (Default)

~ Show advanced format options

Status

READY

DO = START cLose

Using image: ubuntu-24.04.2-live-server-amds4.iso

image2.png
daniel@localserver: ~

x

+

Last login: Mon Feb 24 20:20:23 2025 from 10.0.0.57
daniel@localserver:~$ sudo apt update
[sudo] password for daniel:
1 http://ca.archive.ubuntu.com/ubuntu noble InRelease

Hit:
Get:
Get:
Get:
Get:
Get:
Get:
Get:
Get:
:10 http://ca.
11 http://ca.
12 http://ca.
13 http://ca.
:14 http://ca.
:15 http://ca.

Get

Get:
Get:
Get:

Get
Get

archive.
archive.
archive.
archive.
archive.
archive.

ubuntu
ubuntu
ubuntu
ubuntu
ubuntu
ubuntu

/ca.archive.ubuntu.com/ubuntu noble-updates InRelease [126 kB]
/security.ubuntu.com/ubuntu noble-security InRelease [126 kB]
://ca.archive.ubuntu.com/ubuntu noble-backports InRelease [126 kB]
/ca.archive.ubuntu.com/ubuntu noble-updates/main amd64 Packages [867 kB]
/security.ubuntu.com/ubuntu noble-security/main amd64 Packages [619 kB]
/ca.archive.ubuntu.com/ubuntu noble-updates/main Translation-en [197 kB]
://ca.archive.ubuntu.com/ubuntu noble-updates/main amd64 Components [150 kB]
/ca.archive.ubuntu.com/ubuntu noble-updates/restricted amd64 Packages [655 kB]
-com/ubuntu
-com/ubuntu
-com/ubuntu
-com/ubuntu
-com/ubuntu
-com/ubuntu

noble-updates/restricted Translation-en [128 kB]
noble-updates/restricted amd64 Components [212 B]
noble-updates/universe amd6U Packages [1,021 kB]
noble-updates/universe Translation-en [255 kB]

noble-updates/universe amd64 Components [363 kB]
noble-updates/multiverse amdél Packages [23.4 kB]

image3.png
daniel@localserver: ~ X o+ v - o x

Reading state information... Done
129 packages can be upgraded. Run ‘apt list —upgradable' to see them
daniel@localserver:~$ sudo apt upgrade -y
Reading package Lists. .. Done
Building dependency tree... Done
Reading state information... Done
Calculating upgrade... Done
The following NEW packages will be installed:
python3-boto3 python3-botocore python3-dateutil python3-jmespath python3-packaging
python3-s3transfer
The following packages will be upgraded:
apparmor apport apport-core-dump-handler base—files bsdextrautils bsdutils cloud-init
cloud-initranfs-copymods cloud-initramfs-dyn-netconf cryptsetup cryptsetup-bin
cryptsetup-initranfs distro-info-data dmeventd dmidecode dmsetup eject fdisk fwupd
girl.2-packagekitglib-1.0 initramfs-tools initramfs-tools-bin initramfs-tools-core intel-mi
crocode
knod landscape-common libacll libaiolt64 libapparmorl libattrl libaudit-common libauditl i
bblkidl

image4.png
daniel@localserver: ~ X o+ v

User sessions running outdated binaries:
daniel @ session #1: login[935]

daniel @ session #5: apt[1597], sshd[1209]
daniel @ user manager service: systemd[1086]

No VM guests are running outdated hypervisor (qemu) binaries on this host.
daniel@localserver:~$ who

daniel ttyl 2025-02-24 2
daniel pts/0 2025-62-2U 2
daniel@localserver:~§
daniel@localserver:~$ sudo apt autoremove -y

[sudo] password for daniel:

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

© upgraded, 0 newly installed, © to remove and © not upgraded
daniel@localserver:~§

8
5 (10.0.0.57)

image5.png
daniel@localserver: ~ X o+ v

daniel pts/0 2025-62-24 20:25 (10.0.0.57)
daniel@localserver:~§

daniel@localserver:~$ sudo apt autoremove -y
[sudo] password for daniel:

Reading package Lists. .. Done
Building dependency tree... Done
Reading state information... Done

© upgraded, 0 newly installed, © to remove and 0 not upgraded.
daniel@localserver:~$ sud oapt install ufw -y

Command 'sud' not found, but there are 15 similar ones.
daniel@localserver:~$ sudo apt install ufw -y

Reading package lists... Done

Building dependency tree... Done

Reading state information... Done

ufw is already the newest version (0.36.2-6).

ufw set to manually installed.

© upgraded, 0 newly installed, © to remove and 0 not upgraded.
daniel@localserver:~§

image6.png
daniel@localserver: ~ X o+ v

daniel@localserver:~$ sudo ufw allow ssh
Rules updated

Rules updated (v6)

daniel@localserver:~$ sudo ufw allow http
Rules updated

Rules updated (v6)

daniel@localserver:~$ sudo ufw allow https
Rules updated

Rules updated (v6)

daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§
daniel@localserver:~§

image7.png
daniel@localserver: ~ X o+ v

daniel@localserver:~§ sudo ufw status verbose
Status: active

Logging: on (low)

Default: deny (incoming), allow (outgoing), disabled (routed)
New profiles: skip

To Action From

22/tcp ALLOW IN Anywhere
80/tcp ALLOW IN Anywhere

uu3 ALLOW IN Anywhere
22/tcp (v6) ALLOW IN Anywhere (v6)
80/tcp (v6) ALLOW IN Anywhere (v6)
uu3 (v6) ALLOW IN Anywhere (v6)

daniel@localserver:~$
daniel@localserver:~$

image8.png
daniel@localserver: ~

ssh/ ssl/

daniel@localserver:~§ sudo nano /etc/ssh/sshd_config
daniel@localserver:~$ sudo nano /etc/ssh/sshd_config
daniel@localserver:~$ sudo system

systemctl

systend
systemd-ac-poner
systend-analyze
systend-ask-password
systemd-cat
systemd-cgls
systemd-cgtop
systemd-confext
systend-creds
systemd-cryptenroll
systemd-cryptsetup
systend-delta
systend-detect-virt

systemd-hwdb
systemd-id128
systemd-inhibit
systend-machine-id-setup
systemd-mount
systemd-notify
systend-path
systemd-repart
systemd-run
systemd-socket-activate
systend-stdio-bridge
systemd-sysext
systend-sysusers
systend-tmpfiles

image9.png
daniel@localserver: ~ X o+ v - o

GNU nano 7.2 /etc/ssh/sshd_conf:
#SyslogFacility AUTH
#LogLevel INFO

Authentication:
#LoginGraceTime 2m
PermitRootLogin no
#StrictModes yes
#MaxAuthTries 6
#MaxSessions 10
#PubkeyAuthentication yes

J# Expect .ssh/authorized_keys2 to be disregarded by default in future.

{E Help write out [J¥ where Is [cut W Execute [Location
R Exit Read File [Replace Wl Paste B Justify Wi Go To Line

image10.png
daniel@localserver: ~ X o+ v

daniel@localserver:~$ sudo systemctl restart ssh
daniel@localserver:~$ |

image11.png
[daniel@localserver: ~ x o+ v = @

daniel@localserver:~$ # Add Docker's official GPG key:

sudo apt-get update

sudo apt-get install ca-certificates curl

sudo install -m 0755 -d /etc/apt/keyrings

sudo curl —fsSL https://download.docker.com/linux/ubuntu/gpg -o /etc/apt/keyrings/docker.asc

sudo chmod a+r /etc/apt/keyrings/docker.asc

Add the repository to Apt sources:
echo \
"deb [arch=§(dpkg ——print-architecture) signed-by=/etc/apt/keyrings/docker.asc] https://download.doc
ker. com/Linux/ubuntu \
$(. /etc/os-release && echo "${UBUNTU_CODENAME:-$VERSION_CODENAME}") stable" | \
sudo tee /etc/apt/sources.list.d/docker.list > /dev/null
sudo apt-get update|

image12.png
[daniel@localserver: ~ x o+ v = @ =

daniel@localserver:~$ sudo apt-get install docker-ce docker-ce-cli containerd.io docker-buildx-plugin
docker-compose-plugin
Reading package lists... Done
Building dependency tree... Done
Reading state information... Done
The following additional packages will be installed:
docker-ce-rootless-extras libslirpd pigz slirplinetns
Suggested packages:
cgroupfs-mount | cgroup-lite
The following NEW packages will be installed:
containerd.io docker-buildx-plugin docker-ce docker-ce-cli docker-ce-rootless-extras
docker-compose-plugin Llibslirpd pigz slirpinetns
© upgraded, 9 newly installed, to remove and 0 not upgraded.
Need to get 120 MB of archives.
After this operation, 437 MB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://ca.archive.ubuntu.com/ubuntu noble/universe amdél pigz amdél 2.8-1 [65.6 kB]
Get:2 https://download.docker.com/linux/ubuntu noble/stable amd6U containerd.io amd6u 1.7.25-1 [29.6 M
B]
Get:3 http://ca.archive.ubuntu.com/ubuntu noble/main amd6l libslirp® amdéd 4.7.8-lubuntu3 [63.8 kB]
Get:4 http://ca.archive.ubuntu.com/ubuntu noble/universe amdé4 slirpnetns amdét 1.2.1-1build2 [3u.9 k
B]
Get:5 https://download.docker.com/linux/ubuntu noble/stable amd6l docker-buildx-plugin amd6l ©.21.0-1~
ubuntu.24.04~noble [35.3 MB]

image13.png
[daniel@localserver: ~ X 4+ v

daniel@localserver:~$ sudo docker run hello-world

Hello from Docker!
This message shows that your installation appears to be working correctly.

To generate this message, Docker took the following steps:

1. The Docker client contacted the Docker daemon.

2. The Docker daemon pulled the "hello-world” image from the Docker Hub.
(anmd6)

3. The Docker daemon created a new container from that image which runs the
executable that produces the output you are currently reading.

4. The Docker daemon streamed that output to the Docker client, which sent it
to your terminal.

To try something more ambitious, you can run an Ubuntu container with:
$ docker run -it ubuntu bash

Share images, automate workflows, and more with a free Docker ID:
https://hub.docker.com/

For more examples and ideas, visit:
https://docs.docker. com/get-started/

daniel@localserver:~$ |

image14.png
daniel@localserver: ~ X 4 v —

daniel@localserver:~$ sudo apt-get update
[sudo] password for daniel:
Hit:1 https://download.docker.com/Llinux/ubuntu noble InRelease

Get: /security.ubuntu.com/ubuntu noble-security InRelease [126 kB]

Hit: .archive.ubuntu.com/ubuntu noble InRelease

Get: .archive.ubuntu.com/ubuntu noble-updates InRelease [126 kB]

Get: .archive.ubuntu.com/ubuntu noble-backports InRelease [126 kB]

Get: .archive.ubuntu.com/ubuntu noble-updates/main amd64 Components [150 kB]

Get: .archive.ubuntu.com/ubuntu noble-updates/restricted amdé4 Components [212 B]
Get: .archive.ubuntu.com/ubuntu noble-updates/universe amd64 Components [363 kB]
Get: .archive.ubuntu.com/ubuntu noble-updates/multiverse amd64 Components [940 B]
Get:10 http://ca.archive.ubuntu.com/ubuntu noble-backports/main amd64 Components [208 B]

Get:11 http://ca.archive.ubuntu.com/ubuntu noble-backports/restricted amdéli Components [216 B]
Get:12 http://ca.archive.ubuntu.com/ubuntu noble-backports/universe amdé Components [20.0 kB]
Get:13 http://ca.archive.ubuntu.com/ubuntu noble-backports/multiverse amd64 Components [212 B]
Get:14 http://security.ubuntu.com/ubuntu noble-security/main amd6l Components [8,976 B]
Get:15 http://security.ubuntu.com/ubuntu noble-security/restricted amd6l Components [212 B]
Get:16 http://security.ubuntu.com/ubuntu noble-security/universe amd64 Components [51.9 kB]
Get:17 http://security.ubuntu.com/ubuntu noble-security/multiverse amd6l Components [212 B]
Fetched 975 kB in 1s (902 kB/s)

Reading package lists... Done

daniel@localserver:~$ sudo apt-get install docker-compose-plugin|

image15.png
[daniel@localserver: ~ X 4+ v

daniel@localserver:~$ docker compose version
Docker Compose version v2.33.0
daniel@localserver:~$ |

image16.png
daniel@localserver: ~/nextcla X+ v

daniel@localserver: /var/Lib$ cd /home/daniel
daniel@localserver:~$ mkdir nextcloud
daniel@localserver:~$ 1s

nextcloud

daniel@localserver:~$ cd nextcloud
daniel@localserver:~/nextcloud$ nano docker-compose.yml
daniel@localserver:~/nextcloud$ nano docker-compose.yml
daniel@localserver:~/nextcloud$ nano docker-compose.yml
daniel@localserver:~/nextcloud$ nano docker-compose.yml
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$
daniel@localserver:~/nextcloud$

image17.png
daniel@localserver:~/nextcloud$ nano docker-compose.yml|

image18.png
daniel@localserver:~/nextcloud$ sudo docker compose up -d

[+] Running 32/32

wnextcloud Pulled 40.1s
wnextcloud_db Pulled 11.8s

[+] Running 3/3

Network nextcloud_default Created 0.1s
Container nextcloud_db Started 9.us
Container nextcloud Started 1.9s

image19.png
daniel@localserver:~$ mkdir jellyfin
ArpREL e et s @) SEli iy

image20.png
daniel@localserver:~/jellyfin$ nano docker-compose.yml

image21.png
daniel@localserver:~$ mkdir nginx
daniel@localserver:~$ cd nginx
daniel@localserver:~/nginx$ |

image22.png
| daniel@localserver:~/nginx$ sudo nano docker-compose.yml

image23.png
@] A local 10.0.0.100 DNS only - reserved P Auto Editw

Name IPv4 address
Type (required) (required) Proxy status
A | [t | 000100 DNS only

Use @ for root

Record Attributes @ Documentation
The information provided here will not impact DNS record resolution and is only meant for your reference.

Comment

‘ Enter your comment here (up to 100 characters). ‘

o

image24.png
O CNAME *local local.danielperezit.com %@ DNS only
Name Target
Type (required) (required)
CNAME M ‘ *local . ‘ ‘ local.danielperezit.com . ‘
Use @ for root E.g. www.example.com

Documentation

Record Attributes

The information provided here will not impact DNS record resolution and is only meant for your reference.

Comment

Auto

Proxy status
@, DN only

Editv

‘ Enter your comment here (up to 100 characters).

Cancel

image25.png
CLOUDFLARE

< My Profile

& Preferences
O Authentication
{} APITokens

@ Active sessions

<« Collapse sidebar

wireguard - Linuy

User API Tokens

API Tokens

™ APl Tokens | Cloudflare.

Manage access and permissions for your accounts, sites, and products

Token name Perm

Nginx Zone Zone, Zone.DNS

Nginx Zone Zone, Zone.DNS
API Keys

Keys used to access Cloudflare APs.

Global API Key

Origin CA Key

Support | System Status | Careers

Terms of Use

Resources

All zones

All zones

Report Security Issues

Nain Proxy Man:

Privacy Policy

Status

Change

Change

© 2025 Cloudflare, Inc.

image26.png
- APITok: X

N [e} Il @ A

CLOUDFLARE

< My Profile

User API Tokens

& Preferences .
o < Back to view all tokens

O Authentication

0 s Create Custom Token

Token name

© Active sessions Give your API token a descriptive name.

example

Permissions

Select edit or read permissions to apply to your accounts or websites for this token.

'Zone VH'DNS vH:Ed\('} X
'Zone VH'ZOHE vH:REad "‘ X
+ Add more

Zone Resources.

Select zones to include or exclude.

Include - ‘ ‘ Al zones -

+ Add more

Client IP Address Filtering

Select IP addresses or ranges of IP addresses to filter. This filter limits the client IP addresses that
can use the API token with Cloudflare. By default, this token will apply to all addresses.

Operator Value

Select item... v

+ Add more

<« Collapse sidebar

TTL -

image27.png
NA | NAT (Part 1) | Day 44 and as c ur own VPN wireguard - Linuy Nginx Proxy Manager

©

@ Nginx Proxy Manager

SSL Certificates (@] [aassicen

“local danielperezit.com local danielperezit.com
Let's Encrypt - Cloudflare 26th May 2025, 8:54 am ® Inuse

jc21.com Tabler Fork me on Github

image28.png
Add Let's Encrypt Certificate x

Domain Names *

yourdomain.com *yourdomain.com

A These domains must be already configured to point to thi

Test Server Reachabi

© Test whether the domains are reachable from the public internet using Site2éxT.
This is not necessary when using the DNS Challenge.

Email Address for Let's Encrypt *

danperezri0105@gmail.com
Use a DNS Challenge

1 Agree to the Let's Encrypt Terms of Service *

o - |

image29.png
local.danielperezit.com/nginx/certificates

Add Let's Encrypt Certificate

Domain Names *

rdomain.com *yourdomain.com

£ These domains must be already co
Email Address for Let's Encrypt *

danperezri0105@gmail.com

D) UseaDNS Challenge

A This section requires some knowledge a

plugins. P nsult the respecti
DNS Provider *

Cloudflare

Credentials File Content *

#Cloudfiare API toks

DNS pr

@ 1Agreetothe

NgimkP X+ v -

topoint to this installation

bout Certbot and
plugins documentation.

image30.png
New Proxy Host

4 Details € Custom locations O SSL

Domain Names *

local.mydomain.com

Scheme * Forward Hostname / IP *

http 127.001
Cache Assets

Websockets Support

Access List

Publicly Accessible

& Advanced

Forward Port *

81 :

Block Common Exploits

o - |

image31.png
New Proxy Host x

4 Details < Custom locations O SSL &} Advanced

ssL certificate

local danielperezit.com, *.local.danielperezit.com

@ ForcessL @ HTTP2 Support

HSTS Enabled @ HSTS Subdomains

coneet E

image32.png
Edit Proxy Host

4 Details € Custom locations O SSL

Domain Names *

cloud.local danielperezit.com

Scheme * Forward Hostname / IP *

http nextcloud-app-1
Cache Assets.

Websockets Support

Access List

Publicly Accessible

& Advanced

Forward Port *

80

Block Common Exploits

o - |

image33.png
Create a tunnel -

.

r' 3

CLOUDFLARE

B Zero Trust overvi

@ Analytics

£ Gateway

9 Access
Networks
Tunnels
Routes
Targets

s Myteam

B Logs

& cass

B o

& DEX

& Email Security

3 Settings

<« Collapse sidebar

< Danperezri0105@gm...

iew

New

»

Support ¥ English ¥ -

Please complete this two-question survey on your current endpoint security provider. Take survey,

= Back to Tunnels

Create a tunnel

Create 3 tunnel to connect HTTP web servers, SSH servers, remote desktops, and other protocols

safely to Cloudfiare.

8 Tunnel documentation

Select tunnel type / Name your tunnel / Install and run connectors / Route tunnel

Name your tunnel
Use a descriptive name based on the network you want to connect. We recommend creating only one
tunnel for each network.

Tunnel name

example

Save tunnel

image34.png
r' 3

CLOUDFLARE Support ¥ English ¥ v

wulniyure

< Danperezri0l05@gm... *
Select tunnel type / Name your tunnel / Install and run connectors / Route tunnel

B Zero Trust overview

) .
G Analyties Choose your environment
& Goteway . Choose an operating system:
9 Access -

Networks

Install and run a connector
Tunnel . . A
unnels To connect your tunnel to Cloudflare, copy-paste one of the following commands into a terminal window.

Routes Remotely managed tunnels require that you install cloudflared 2022.03.04 or later.

Targets
2 Myteam . (p) Store your token carefully. This command incudes 3 sensiive token that llows the connector o run. N

Anyone with access to this token will be able to run the tunnel.
B togs -
$ docker run cloudflare/cloudflared:latest tunnel --no-autoupdate run --token eyJhIjoivT...

& cass - ———
B ow - View Frequently Asked Questions £
& DEX -
& Email Security (Hew M Connectors
& Settings Your connectors will automatically show here once cloudflared has been successfully installed on your

machine.

No connectors installed

<« Collapse sidebar

image35.png
Public Hostname

L

r' 3

CLOUDFLARE Support ¥ English ¥ v
< Danperezri0105@gm... » Please complete this two-question survey on your current endpoint security provider. Take survey

B Zero Trust overview

= Back to HomelAN

D Anal .
@ Anaics Public Hostname
£} Gateway v
© Access . Add public hostname for HomeLAN
Public hostname
Networks Subdomain Domain
Tunnels nextcloud ‘ o ‘yourdoma\'n.com " /
Routes Path
Targets ‘ ‘
8 Myteam -
B togs . Service
Type URL
& casB - .
HTTP v | #// | nextcloud-app-1
B o - For example, https://localhost8001
& DEX -
&9 Email Security (New - Additional application settings
3 Settings

<« Collapse sidebar

image36.png
r' 3

CLOUDFLARE

@ Analytics

£ Gateway

9 Access
Networks
Tunnels
Routes
Targets

s Myteam

B Logs

& cass

B o

& DEX

& Email Security

3 Settings

<« Collapse sidebar

< Danperezri0105@gm...

B Zero Trust overview

New

»

Please compl

= Back to HomelAN

Public Hosthame

Add public hostname for HomeLAN

Public hostname

Subdomain

jon survey on your current endpoin

Domain

Support ¥ English ¥ -

nextcloud

Path

Service

Type

URL (=

‘HT[P v | 1 | jellyfin:8096

For exampl, https:/localhost8001

Additional application settings »

image37.png
r' 3

CLOUDFLARE

< Danperezri0105@gm... »

B Zero Trust overview

@ Analytics
 Gateway -
9 Access

Applications

Policies

Rule groups

Service auth

Tags
B Networks -
22 Mytesm -
B togs -
& cass -

oLP -
& DEX -
&) Email Security (New -
3 Settings

<« Collapse sidebar

L O HA006 %

Support ¥ English ¥

Basic information

Configure your application’s basic details and paths. Enter hostnames or IPs to protect an entire website or
specific subdomains and paths.

Application name Session Duration

example application

| [zares -

19/350

Public hostname

Input method Subdomain

‘ Default v

‘ yourdomain.com

Path

+ Add public hostname

+ Add private hostname + Add private IP

Access policies

Define who can access your applications. Add from your existing policies or create new ones.

Note: Access will evaluate policies with Bypass and Service Auth actions first. Then, policies are evaluated in
top-to-bottom order. Order of execution documentation 7.

[T [+ Create newpolicy

Order Policy name Action Rules Policy ID

3d988327-d708-4ad6-9470-5d6410c51db0 H

1 example_policy Auow 1

image38.png
Cloudflare
7 Access

<L

Nextcloud

Get a login code emailed to you

Email

‘ fxample@email.com

D Cloudflare Zero Trust

