# Directory structure for based-trading-agent.zip: requirements.txt: numpy>=1.21.0 pandas>=1.3.0 python-dateutil>=2.8.2 typing>=3.7.4 pytest>=6.2.5 logging>=0.5.1.2 README.md: # ๐Ÿš€ Based Trading Agent The most based trading bot implementation for degens who want to automate their gains! Built different - with AI that makes your average trading bot look like a calculator from 2009. ## ๐Ÿ”ฅ Features - Position sizing more protective than your hardware wallet - Risk management that keeps you from getting rekt - Technical analysis smoother than a MEV bot - Performance tracking like a block explorer - Sentiment analysis that reads market vibes better than CT ## ๐Ÿ› ๏ธ Installation ```bash git clone https://github.com/your-repo/based-trading-agent cd based-trading-agent pip install -r requirements.txt ``` ## ๐Ÿƒโ€โ™‚๏ธ Quick Start ```python from based_trading.agent import BasedTradingAgent # Initialize your chad trading agent agent = BasedTradingAgent( max_position_size=1.0, # How much to ape in risk_per_trade=0.02, # Stay safu with 2% risk min_risk_ratio=1.5, # Like a pro trader leverage=1.0, # Set to 100x to get rekt ape_mode=False # Enable for maximum degen ) # Start trading like a boss result = agent.execute_trade(your_market_data) ``` ## ๐Ÿงช Testing ```bash pytest tests/ ``` ## ๐Ÿ“œ License WAGMI License v1.0 - Do whatever you want, just don't get rekt! based_trading/ __init__.py: """ Based Trading Agent - The ultimate WAGMI trading solution """ from .agent import BasedTradingAgent from .position import Position __version__ = '1.0.0' based_trading/agent.py: [Previous agent code goes here, unchanged] based_trading/position.py: from dataclasses import dataclass from datetime import datetime @dataclass class Position: """ Track our bags like a true degen ๐Ÿ’Ž๐Ÿ™Œ """ entry_price: float size: float side: str # 'long' or 'short' entry_time: datetime take_profit: float stop_loss: float tests/test_agent.py: import pytest from datetime import datetime import pandas as pd from based_trading import BasedTradingAgent def test_agent_initialization(): """Test if agent initializes like a chad""" agent = BasedTradingAgent() assert agent.current_position is None assert agent.pnl_history == [] assert agent.ape_mode is False def test_position_sizing(): """Test if position sizing stays safu""" agent = BasedTradingAgent(max_position_size=1.0, risk_per_trade=0.02) size = agent.calculate_position_size(price=100, stop_loss=95) assert size <= agent.max_position_size def test_sentiment_analysis(): """Test if sentiment analysis is more accurate than CT""" agent = BasedTradingAgent() data = pd.DataFrame({ 'close': [100, 101, 102, 103, 102, 101, 100], 'volume': [1000, 1100, 1200, 1300, 1200, 1100, 1000] }) sentiment = agent.analyze_market_sentiment(data) assert -1 <= sentiment <= 1 examples/basic_usage.py: from based_trading import BasedTradingAgent import pandas as pd # Create some example market data data = pd.DataFrame({ 'close': [100, 101, 102, 103, 102, 101, 100], 'volume': [1000, 1100, 1200, 1300, 1200, 1100, 1000] }) # Initialize the most based trading agent agent = BasedTradingAgent( max_position_size=1.0, risk_per_trade=0.02, min_risk_ratio=1.5, leverage=1.0, ape_mode=False # Set to True to go full degen ) # Execute some galaxy brain trades for _ in range(5): result = agent.execute_trade(data) print(f"Trade result: {result}") # Check them gains stats = agent.get_portfolio_stats() print(f"Portfolio stats: {stats}")