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Preface

Pursuant to Presidential Executive Order (EO) 13817 of December 20, 2017, “A Federal 
Strategy to Ensure Secure and Reliable Supplies of Critical Minerals” (82 FR 60835–60837), 
the Secretary of the Interior directed the U.S. Geological Survey (USGS), in coordination 
with other Federal agencies, to draft a list of critical minerals. The USGS developed a draft 
list of 35 critical minerals using a quantitative screening tool (S.M. Fortier and others, 2018, 
USGS Open-File Report 2018–1021, https://doi.org/ 10.3133/ ofr20181021). The draft list of 
35 minerals or mineral material groups deemed critical was finalized in May 2018
(83 FR 23295–23296), although the designation of “critical” will be reviewed at least every
3 years in accordance with the Energy Act of 2020 (Public Law 116–260, 134 Stat. 2565).
A “critical mineral” is defined by EO 13817, section 2, as follows:

 Definition. (a) A “critical mineral” is a mineral identified by the Secretary of the Interior
 pursuant to subsection (b) of this section to be (i) a non-fuel mineral or mineral material
 essential to the economic and national security of the United States, (ii) the supply
 chain of which is vulnerable to disruption, and (iii) that serves an essential function in
 the manufacturing of a product, the absence of which would have significant
 consequences for our economy or our national security.

Disruptions in supply chains may arise for any number of reasons, including natural disasters, 
labor strife, trade disputes, resource nationalism, and conflict.

EO 13817 noted that “despite the presence of significant deposits of some of these 
minerals across the United States, our miners and producers are currently limited by a 
lack of comprehensive, machine-readable data concerning topographical, geological, and 
geophysical surveys.”

In response to the need for information on potential domestic sources of these critical minerals, 
the USGS launched the Earth Mapping Resources Initiative (Earth MRI). The Earth MRI is a 
partnership between the U.S. Geological Survey, other Federal agencies, State geological 
surveys, and the private sector, and it is designed to acquire the national geologic framework 
information essential for identifying areas with potential for hosting the Nation’s critical mineral 
resources. The goal of the Earth MRI is to improve the geological, geophysical, and topographic 
mapping of the United States and to procure new data to stimulate mineral exploration to 
secure the Nation’s supply of critical minerals.

https://doi.org/10.3133/ofr20181021
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Abstract
The Earth Mapping Resources Initiative (Earth MRI) 

is conducted in phases to identify areas for acquiring new 
geologic framework data to identify potential domestic 
resources of the 35 mineral materials designated as critical 
minerals for the United States. This report describes the data 
sources and summary results for 13 critical minerals evaluated 
in the conterminous United States and Puerto Rico during 
phase 3 of the study (antimony, barite, beryllium, chromium, 
fluorspar, hafnium, helium, magnesium, manganese, potash, 
uranium, vanadium, and zirconium). Phases 1 and 2 of the 
Earth MRI addressed aluminum, cobalt, graphite, lithium, 
niobium, platinum-group elements (PGEs), rare earth 
elements (REEs), tantalum, tin, titanium, and tungsten. Critical 
minerals in Alaska are covered in a separate report. No focus 
areas for phase 3 critical minerals are delineated for Hawaii.

The geologic, geochemical, topographic, and geophysical 
mapping provided by the Earth MRI documents geologic 
features that reflect the extent of individual mineral 
systems and provides information about critical mineral 
deposits that may not have been previously considered. 
The mineral-systems approach links critical mineral 
commodities to deposit types that represent the manifestations 
of large mineral systems.

Each of the 13 critical mineral commodities for phase 3 
of the Earth MRI is discussed in terms of its importance to the 
Nation’s economy, modes of occurrence, mineral systems, and 
deposit types, and is accompanied by maps and tables listing 
examples of focus areas in the conterminous United States 
and Puerto Rico. Examples of important mineral systems for 
this group of 13 critical minerals include basin brine path 
systems for barite and fluorspar, Carlin-type systems and 
Coeur d’Alene systems for antimony, chemical weathering and 

volcanogenic seafloor systems for manganese, Climax-type 
systems for beryllium, mafic magmatic systems for chromium, 
marine evaporite systems for potash and magnesium, meteoric 
recharge systems for uranium, petroleum systems for helium, 
and placer systems for zirconium and hafnium.

Introduction
The Earth Mapping Resources Initiative (Earth MRI) 

was developed in 2019 as a collaborative effort with the 
Association of American State Geologists (AASG) to identify 
and prioritize areas for the acquisition of new geologic 
framework data for the United States (Day, 2019). This 
report describes the background and methods used to define 
broad areas within the conterminous United States and 
Puerto Rico as focus areas for future geoscience research on 
potential sources of 13 critical minerals. A companion report 
addresses this topic for Alaska (Kreiner and others, 2022). 
The first two phases of the Earth MRI addressed aluminum, 
cobalt, graphite (natural), lithium, niobium, platinum group 
elements (PGEs), rare earth elements (REEs), tantalum, tin, 
titanium, and tungsten (Hammarstrom and Dicken, 2019; 
Hammarstrom and others, 2020; Kreiner and Jones, 2020). 
The initial group of 11 critical minerals was selected because 
the United States is highly reliant on imports for each, 
and their use has increased beyond foreseeable domestic 
production (Fortier and others, 2018; U.S. Department of the 
Interior, Office of the Secretary, 2018). Factors other than net 
import reliance are considered in determining criticality. These 
factors include indirect trade reliance (country of origin is 
obscured), embedded trade reliance (commodity is contained 
in an imported product), and foreign ownership of mineral 
assets and processing facilities (Fortier and others, 2021).
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The 13 critical minerals in phase 3 (table 1) include 
commodities that are not currently mined in the United States 
or are subject to supply chain vulnerabilities (Fortier and 
others, 2019). Antimony, chromium, and manganese are not 
currently mined in the United States. Potash and vanadium 
were mined in the United States in 2020, but annual 
consumption in 2020 is an order of magnitude greater than 
production (table 1). In 2020, zirconium and hafnium were 
produced from heavy-mineral sands. Some barite, fluorspar, 
and magnesium were produced in 2020, but mine production 
data are proprietary (table 1). Although the United States is the 
major world producer of beryllium, it is considered a critical 
mineral because the number of beryllium producers is limited, 
and substitute materials are inadequate for vital domestic 
applications (Lederer and others, 2016).

Similarly, the United States is a major producer of 
helium, a critical commodity used in health care by magnetic 
resonance imaging (MRI) instruments. Helium is a byproduct 
of natural gas (methane) production and, as a gas, poses 
storage issues. Global helium-supply disruptions, such as 

occurred in 2017, demonstrated that supply chain issues, 
inabilities to increase production, few sources, and an absence 
of storage facilities, along with other factors, warranted its 
designation as a critical mineral (Anderson, 2018).

Some imported critical mineral commodities are mainly 
produced as primary products; however, some imported and 
domestic critical mineral commodities, such as vanadium 
and hafnium, are byproducts or coproducts in mineral 
deposit types that are chiefly used to produce other primary 
commodities.

The areas with the potential for one or more critical 
minerals are referred to as “focus areas” in this report. 
Focus areas are designated as such based on existing data. 
Focus areas can include known deposits and areas with the 
potential for deposits based on the geologic characteristics of 
mineral deposits and the mineral systems that host the critical 
minerals considered. The methods used to define focus areas 
are described in Hammarstrom and others (2020). For the 
information and methods used to define focus areas in Alaska, 
consult Kreiner and Jones (2020).

Table 1. Salient data for phase 3 critical minerals.

[Production and consumption data from U.S. Geological Survey (2021a); Notable application examples from Fortier and others (2019). W, withheld (data 
withheld to avoid disclosing company proprietary data); t, metric ton; m3, cubic meter; Mlb, million pounds. Uranium data from U.S. Energy Information 
Administration (EIA) (EIA, 2020a) and World Nuclear Association (2021). Magnesium consumption as MgO]

Critical mineral U.S. mine production in 2020
U.S. apparent 

consumption in 
2020

Top producer 
globally in 2020

Example of notable applications

Antimony None 22,000 t China Lead-acid batteries
Barite 

Sold or used, mined 
Ground and crushed

W 
1,300,000 t

W China Oil and gas drilling fluid

Beryllium 150 t 170 t United States Satellite communications, beryllium 
metal for aerospace

Chromium None 510,000 t South Africa Jet engines (superalloys), rechargeable 
batteries

Fluorspar Not available 380,000 t China Aluminum and steel production, 
uranium processing

Helium 61,000,000 m3 40,000,000 m3 United States Magnetic resonance imaging (MRI)
Magnesium-Contained 

MgO
W 760,000 t China Agricultural, chemical, and 

construction industries, incendiary 
countermeasures for aerospace

Manganese None since 1970 520,000 t South Africa Aluminum and steel production, 
lightweight alloys.

Potash (K2O 
equivalent)

470,000 t 5,500,000 t Canada Agricultural fertilizer

Uranium 0.17 Mlb of U3O8 concentrate 
(2019)

51 Mlb of U3O8 Kazakhstan Generation of electricity by nuclear 
power

Vanadium 170 t 4,800 t China Jet engines (superalloys) and 
airframes (titanium 
alloys), high-strength steel

Zirconium and hafnium <100,000 t <100,000 t Australia Thermal barrier coating in jet engines, 
nuclear applications
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This report has sections for each phase 3 critical 
mineral and information describing each critical mineral’s 
importance to the Nation’s economy, its modes of occurrence, 
and a discussion of applicable mineral systems. The most 
important mineral systems, deposit types, and examples of 
focus areas defined for each critical mineral are listed in a 
table along with a map showing the focus areas. Information 
on domestic production, use, and world resources is 
also included—taken directly from the USGS “Mineral 
Commodity Summaries 2021” (U.S. Geological Survey, 
2021a)—to provide perspectives on the importance of each 
critical mineral to the Nation’s economy. A full report on 
domestic and global statistics for each of the other critical 
minerals discussed here, as well as additional publications, 
are available from the USGS National Minerals Information 
Center (h ttps://www .usgs.gov/ centers/ national- minerals- 
information- center). Because uranium is not among the 
commodities that the USGS considers, other sources are cited 
for that information. Schulz and others (2017), and chapters 
therein, include detailed information on geology, resources 
and production, exploration, and environmental considerations 
for deposits that host some of the critical minerals discussed in 
this report (antimony, barite, beryllium, fluorspar, manganese, 
vanadium, zirconium, and hafnium).  

A related USGS data release (Dicken and others, 2021) 
uses a geographic information system (GIS) to show the focus 
areas. The GIS allows focus areas to be plotted on maps by 
region, mineral system, deposit type, and critical mineral 
commodity. The data release includes tables that document 
the rationale for delineating each focus area along with other 
attributes and comprehensive references. Examples included 
in this summary report are derived from the data release, 
which contains complete focus-area information.

Users of this report should consider the following 
caveats, as described in Hammarstrom and others (2020): 
(1) focus areas provide a screening tool for initiating the 
identification of priority areas for new data acquisition, 
(2) many focus areas are very large, and their inclusion is 
meant to draw attention to regions of the country that may 
contain critical minerals, (3) the areas selected for new 
work are small relative to the size of the focus areas, (4) the 
discovery and development of new mineral deposits can take 
a decade or longer, and (5) the number of new data acquisition 
projects that can be initiated each year is dependent upon 
factors such as funding, land access, and the availability of 
personnel, time, and expertise.

The exploration and subsequent development of 
mineral resources in the United States is the role of private 
industry. Many factors influence the likelihood that critical 
minerals, if present, could ever be developed. These include 
land-use policies, regulations, world markets, and technology 
appropriate for the mining and processing of critical minerals.

Earth Mapping Resources Initiative 
Status and Products

Projects developed to acquire new geological, 
geophysical, geochemical, and lidar data in selected 
areas throughout the country were initiated in 2019 
by the Earth MRI. Projects underway in 2021 include 
six high-resolution airborne magnetic and radiometric 
surveys designed to complement geologic mapping and 
mineral-resource research and optimize the coverage of 
important geologic features throughout the country (fig. 1). 
No projects are underway in Hawaii or Puerto Rico. The 
acquisition of new district- to regional-scale airborne magnetic 
and radiometric surveys was hampered by the COVID-19 
pandemic in 2020, but data collection was rescheduled for 
2021. The Earth MRI partnered with the USGS 3D Elevation 
Program (3DEP), the Department of Energy, the Natural 
Resources Conservation Service, and the Bureau of Land 
Management for airborne geophysical and 3DEP lidar surveys 
over parts of Nevada and California through the Geoscience 
Data Acquisition for Western Nevada (GeoDAWN) 
project (U.S. Geological Survey, 2020). The GeoDAWN 
effort can provide information that can be used to identify and 
characterize undiscovered geothermal and critical mineral 
resources, as well as groundwater potential, soil mapping for 
agriculture, and landslide and seismic geohazards.

The complete list of ongoing projects, as of 2021, is 
available on the Earth MRI Acquisitions viewer website  
(htt ps://ngmdb .usgs.gov/ emri/ #3/ 40/ - 96). This website shows 
the locations of all projects, along with a description of the 
project and contacts for information. New data acquired 
through the Earth MRI are available on the Earth MRI website  
(h ttps://www .usgs.gov/ special- topics/ earth- mri) through the 
navigation pane links “Data and Tools” and “Publications.” 
Geophysical and geochemical data are released as USGS data 
release projects in ScienceBase (https:// www.scienc ebase.gov/ 
catalog/ ), a USGS Trusted Digital Repository.

The first geochemical data release was published in 
March 2021 (U.S. Geological Survey, 2021b). Subsequent 
geochemical data releases are updated periodically and 
offered through the Earth MRI web portal. Reports, GIS, and 
supporting data for focus areas for the 11 critical mineral 
commodities covered in phases 1 and 2 of the Earth MRI are 
also available through the navigation pane links “Data and 
Tools” and “Publications” (Dicken and others, 2019, 2021; 
Hammarstrom and Dicken, 2019; Dicken and Hammarstrom, 
2020; Hammarstrom and others, 2020). Summaries of the 
Earth MRI activities are included in the annual review of 
USGS work on critical minerals published in the May issue of 
Mining Engineering (Fortier and others, 2019, 2020, 2021).

https://www.usgs.gov/centers/national-minerals-information-center
https://www.usgs.gov/centers/national-minerals-information-center
https://ngmdb.usgs.gov/emri/#3/40/-96
https://www.usgs.gov/special-topics/earth-mri
https://www.sciencebase.gov/catalog/
https://www.sciencebase.gov/catalog/
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In the fall of 2020, the USGS hosted a virtual workshop 
with geologists from 42 State geological surveys and 3 other 
institutions to help develop focus areas for the 13 critical 
mineral commodities considered in this report. In October 
and November of 2020, each State developed top priorities 
for new projects. In January 2021, priority projects were 
evaluated based on the following criteria:

· the area contains or has potential for mineral systems 
that commonly contain critical minerals,

· new-framework geologic, geophysical, and lidar data 
can materially add to delineating terranes for critical 
minerals,

· land status can allow for mineral exploration and 
development in the reasonably foreseeable future,

· new data can support other geoscience needs, and

· synergy with ongoing USGS and State activities.

Methods
The mineral systems framework used by the project 

was developed by Hofstra and Kreiner (2020) to allow the 
Earth MRI to link critical minerals to genetically related 
deposit types that can form within a given mineral system. 
See appendix 1 for a description of each system and a list 
of deposit types and commodities commonly associated 
with each system. By delineating the possible extent of a 
given mineral system, target areas can be selected for both 
detailed geologic mapping by State geological surveys and 
the acquisition of new airborne geophysical surveys via the 
Earth MRI.

Table 2 lists the mineral systems identified for the 
phase 3 critical mineral commodities. Note that a mineral 
system can include many types of mineral deposits with 
multiple commodities (appendix 1). Many phase 3 critical 
mineral commodities occur in focus areas for mineral systems 
identified in phases 1 and 2 of the Earth MRI. Some new 
systems and deposit types were added for phase 3 (Hofstra 
and Kreiner, 2020). For example, petroleum systems were 
added because helium occurs in natural gas.

Data Sources
Many data sources were used to develop focus 

areas and identify data gaps. State geological survey 
representatives provided geologic maps, mineral occurrence 
data, and critical minerals expertise in their respective 
States. In addition to a digital compilation of state-scale 
maps (Horton, 2017), the National Geologic Map 
Database (htt ps://ngmdb .usgs.gov/ ngmdb/ ngmdb_ home.html) 
provided a gateway to available geological maps at 
different scales. Principal sources of mineral-occurrence 
data included the USGS Mineral Resources Data 
System (http s://mrdata .usgs.gov/ mrds/ ), the USMIN mineral 
deposit database (http s://mrdata .usgs.gov/ deposit/ ), other 
deposit type databases, and previous mineral resource 
assessments, as well as databases maintained by State 
geological surveys. The availability and quality of 
aeromagnetic and airborne radiometric data were determined 
using a compilation of national-scale, ranked geophysical 
data (Johnson and others, 2019). The status of lidar data 
for the conterminous United States is available on the 
3DEP website (h ttps://www .usgs.gov/ 3d- elevation- program).

All references, including references to geologic maps 
that cover the focus areas at various map scales and other 
geological and deposit information, are included in the tables 
that accompany the GIS in the associated data release (Dicken 
and others, 2021).

Delineation of Focus Areas
Focus areas for the phase 3 critical mineral commodities 

in the United States were delineated by teams of USGS 
geologists working with representatives from State geological 
surveys and other geologic institutions. Some phase 3 focus 
areas were based on selected geologic map units. Other 
focus areas were based on generalized outlines of mining 
districts or mineral belts, distributions of critical mineral 
occurrences, polygons of mining areas and surface features 
from USMIN, or geochemical and geophysical anomalies 
that could be associated with deposits. The factors considered 
include the basis for the focus area, any past production data, 
availability of geologic maps and other data for the area, and 
references (table 3). These factors and complete references are 
included in the data tables that accompany the GIS (Dicken 
and others, 2021).

https://ngmdb.usgs.gov/ngmdb/ngmdb_home.html
https://mrdata.usgs.gov/mrds/
https://mrdata.usgs.gov/deposit/
https://www.usgs.gov/3d-elevation-program
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Table 2. Mineral systems that may contain phase 3 critical minerals as principal commodities.

[Data from Hofstra and Kreiner (2020). See appendix 1 for a complete list of the deposit types, principal commodities, and other 
critical minerals associated with each mineral system. Note that appendix 1 distinguishes between critical minerals produced from 
some deposit types in each system and those enriched but not yet produced. IOA, iron oxide-apatite; IOCG, iron oxide-copper-gold; 
Cu, copper; Mo, molybdenum; Au, gold; Sn, tin; REE, rare earth elements]

Mineral system Phase 3 critical mineral commodity

Alkalic porphyry antimony, fluorspar, potash, manganese, vanadium
Arsenide antimony, uranium
Basin brine path barite, magnesium, potash, uranium, vanadium
Carlin-type antimony
Chemical weathering manganese, uranium
Climax-type beryllium, fluorspar, manganese, potash, uranium
Coeur d’Alene-type antimony, uranium
Hybrid magmatic REE/basin brine path fluorspar, barite
IOA-IOCG antimony, manganese, uranium
Lacustrine evaporite magnesium, potash
Mafic magmatic chromium, vanadium
Magmatic REE barite, beryllium, fluorspar, hafnium, uranium, vanadium, zirconium
Marine chemocline fluorspar, manganese, uranium, vanadium
Marine evaporite magnesium, potash
Metamorphic magnesium, uranium
Meteoric convection antimony
Meteoric recharge magnesium, uranium, vanadium
Orogenic antimony
Petroleum helium, vanadium
Placer barite, hafnium, uranium, zirconium
Porphyry Cu-Mo-Au antimony, magnesium, manganese, potash
Porphyry Sn antimony, beryllium, manganese, potash
Reduced intrusion-related antimony, manganese
Volcanogenic seafloor antimony, barite, manganese
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Table 3. Factors used to delineate U.S. focus areas potentially containing critical minerals along with specific 
new data needs.

[U.S. Geological Survey (USGS) databases: ARDF, Alaska Resource Data File (http s://mrdata .usgs.gov/ ardf/ ); MRDS, 
Mineral Resources Data System (http s://mrdata .usgs.gov/ mrds/ ); USMIN, USGS Mineral Deposit Database (h ttps://www .usgs.gov/ 
centers/ gggsc/ science/ usmin- mineral- deposit- database). Lidar, light detection and ranging; NA, not applicable]

Topic Explanation

Name of focus area Descriptive geographic or geologic name
Region Alaska, West, Central, East
Subregion Alaska, Northwest, Southwest, Rocky Mountain, North Central, South 

Central, Northeast, Southeast
Mineral system Select from appendix 1
Deposit types Select from appendix 1
Commodities Mineral commodities associated with the focus area
Identifier A unique identifier for each focus area; some focus areas may 

be multipart
States States included in the focus area
Basis for focus area Short description of the main geologic criteria (basis) for delineating 

the area
Production Yes (when), no, or unknown
Status of activity Active mining, current or past exploration, unknown
Estimated resources Cite, if known
Geologic maps Estimate of the percentage of the focus area covered by geologic 

mapping at different scales; cite specific references if applicable
Geophysical data Types and quality of available data (aeromagnetic, gravity, 

radiometric, other)
Favorable rocks and structures Lithostratigraphic suitability for deposits; structures that may 

control mineralization
Deposits Named deposits within the focus area that have identified resources or 

past production
Mineral occurrences Summarized occurrences, if any, from USMIN, MRDS, ARDF, or 

other databases
Geochemical evidence Stream sediment, rock, or soil indications of various commodities
Geophysical evidence Data that may indicate exposed or buried intrusions, extensions of 

known mineralization, or structural controls
Evidence from other sources If applicable
Comments Author’s general comments on the focus area
Cover thickness and description Comment, if applicable. Otherwise, not applicable (NA)
Selected references Short reference (authors, year)
Authors USGS and State geological surveys

  Specific new data needs

Geologic mapping and modeling needs List geologic mapping needs.
Geophysical survey and modeling needs List types of geophysical data needed and explain why.
Lidar Give examples of the utility of lidar for the focus area.

https://mrdata.usgs.gov/ardf/
https://mrdata.usgs.gov/mrds/
https://www.usgs.gov/centers/gggsc/science/usmin-mineral-deposit-database
https://www.usgs.gov/centers/gggsc/science/usmin-mineral-deposit-database
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Using Focus Area Maps
Focus area maps and the accompanying tables of geologic 

and mineral deposit information for the phase 3 critical 
mineral commodities in the United States and Puerto Rico are 
included in a GIS data release (Dicken and others, 2021). The 
data release GIS for phase 3 includes 530 focus-area polygon 
features: 81 areas in Alaska, 448 areas in the conterminous 
United States, and 1 area in Puerto Rico (fig. 2). The size 
of individual focus areas is highly variable, ranging from 
<100 square kilometers (km2) to 31,000 km2, depending on the 
type of mineral system considered. Very large areas highlight 

broad regions of the country where specific mineral systems 
are known to occur; this does not imply that every part of 
the area is geologically permissive for critical minerals. 
Approximately 25 percent of the focus areas are <200 km2, 
or about the size of a 1:24,000-scale quadrangle map or 
smaller. Most small areas outline mineral districts or clusters 
of known mineral occurrences for a given deposit type. 
Other areas outline the maximum extent of large geological 
features, such as large sedimentary basins or belts of intrusive 
igneous rocks of a certain age that contain the mineral 
systems addressed.
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Phase 3 Critical Mineral Commodities 
and Associated Mineral Systems

The following sections describe the importance and mode 
of occurrence of the phase 3 critical mineral commodities and 
the mineral systems and deposit types in the conterminous 
United States that can host each critical mineral as either 
a primary product, coproduct, or byproduct commodity. 
The first topic in each section, “Importance to the Nation’s 
Economy,” includes excerpts on domestic production and use 
and world resources for critical minerals from the “Mineral 
Commodity Summaries 2021” for all commodities except 
uranium (U.S. Geological Survey, 2021a).

The organization of this part of the report follows the 
format used for phase 2 (Hammarstrom and others, 2020). 
For each of the phase 3 critical minerals, major focus areas 
are plotted by mineral system, along with point locations, 
for examples of significant occurrences. Examples of focus 
areas are listed in tables. All of the focus areas and supporting 
data tables are available in Dicken and others (2021). Many 
focus areas have the geological characteristics needed to 
contain critical mineral resources but have not produced 
critical minerals in the past. Brief descriptions of the important 
mineral systems highlight recent or ongoing mining and 
exploration in the focus area.

Antimony

Importance to the Nation’s Economy
The following two subsections describing factors that 

indicate the importance of antimony to the Nation’s economy 
are quoted from the “Mineral Commodity Summaries 
2021” (U.S. Geological Survey, 2021a, p. 22–23).

Domestic Production and Use: In 2020, no 
marketable antimony was mined in the United States. 
A mine in Nevada that had extracted about 800 tons 
of stibnite ore from 2013 through 2014 was placed 
on care-and-maintenance status in 2015 and had 
no reported production in 2020. Primary antimony 
metal and oxide were produced by one company 
in Montana using imported feedstock. Secondary 
antimony production was derived mostly from 
antimonial lead recovered from spent lead-acid 
batteries. The estimated value of secondary antimony 
produced in 2020, based on the average New York 
dealer price for antimony, was about $35 million. 
Recycling supplied about 18% of estimated domestic 
consumption, and the remainder came mostly from 
imports. The value of antimony consumption in 2020, 

based on the average New York dealer price, was 
about $193 million. In the United States, the leading 
uses of antimony were as follows: flame retardants, 
42%; metal products, including antimonial lead and 
ammunition, 36%; and nonmetal products, including 
ceramics and glass and rubber products, 22%.

World Resources: U.S. resources of antimony are 
mainly in Alaska, Idaho, Montana, and Nevada. 
Principal identified world resources are in Australia, 
Bolivia, China, Mexico, Russia, South Africa, and 
Tajikistan. Additional antimony resources may 
occur in Mississippi Valley-type lead deposits in the 
Eastern United States.

Mode of Occurrence
Stibnite (Sb2S3), the most common antimony ore mineral, 

occurs in many ore deposit types. However, primary antimony 
deposits are rare. Most antimony ore production comes from 
simple quartz-stibnite veins and replacement deposits (Seal 
and others, 2017). Antimony occurs as a byproduct of 
complex polymetallic ores that form in hydrothermal 
mineral systems. Although antimony is present in many 
gold deposits, it is typically not recovered, owing in part to 
cyanide heap-leaching processing constraints (Seal and others, 
2017; Seal, 2021). Antimony is also a trace constituent in 
some intermediate-sulfidation gold-silver deposits (John and 
others, 2018).

Mineral Systems for Antimony
Many mineral systems can host antimony as a primary or 

byproduct commodity. The main mineral systems and deposit 
types for antimony are highlighted in figure 3. Selected 
examples are listed in table 4. See the data tables in Dicken 
and others (2021) for the complete list of focus areas that may 
contain antimony.

Carlin-Type
Carlin-type mineral systems include antimony deposits 

as well as gold-silver-mercury deposits with potential 
byproduct antimony. An antimony district in Utah produced 
105,000 short tons of antimony in the past; samples taken 
near old mines suggest subeconomic inferred resources on the 
order of 14 million metric tons (Mt) at an average grade of 
0.75 percent antimony (Krahulec, 2018). Although antimony 
concentrations can be anomalously enriched in Carlin-type 
gold deposits, no antimony resource estimates are available. 
A small amount of antimony was previously produced from 
other Nevada gold and antimony deposits.
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Coeur d’Alene-Type
Coeur d’Alene-type antimony deposits in Idaho and 

Montana are hosted in Precambrian Belt sediments (Hofstra 
and others, 2013). Similar to deposits in orogenic systems, 
Coeur d’Alene-type antimony deposits are related to 
metamorphic dewatering during exhumation, but the 
source rocks are moderately oxidized rather than reduced 
siliciclastic sequences (Hofstra and Kreiner, 2020). Antimony 
and polymetallic silver-rich ores of the Coeur d’Alene 
district (Silver Valley antimony) represent the second-largest 
known antimony resource in the United States (fig. 3).  
The U.S. Antimony mine in Montana, also known as Stibnite 
Hill, closed in 1983 due to declining prices, with reported 
production and reserves of about 15.4 metric kilotons of 
antimony; the nearby Sunshine silver mine stopped recovering 
antimony in 2001 (Hofstra and others, 2013). Antimony in this 
district occurs in simple quartz-stibnite veins where antimony 
is recovered as the primary commodity. Antimony is also 
recovered as a byproduct from the silver mineral tetrahedrite 
in polymetallic silver-lead-zinc veins. Other examples of 
antimony in the Coeur d’Alene-type system include shallow 
mines developed in polymetallic, antimony-bearing fissure 
veins in Mississippian shale in the southwest Arkansas 
antimony district (fig. 3), which produced 5,400 short tons of 
antimony from 1873 to 1947 (Howard, 1979).

Meteoric Convection
Antimony is a byproduct commodity associated with 

gold, silver, and mercury in some low-sulfidation epithermal 
Au-Ag and antimony deposits of the meteoric convection 
mineral system. The mined out and reclaimed McLaughlin 
hot spring gold-mercury deposit and other hot spring deposits 
in the Coast Ranges of California lie along faulted contacts 
between the Coast Range ophiolites and the Great Valley 
sequence (fig. 3). At the McLaughlin deposit, antimony 
occurs in stibnite and sulfosalts; the deposit also hosted 
various arsenic-bearing sulfosalts, arsenian pyrite, and native 
arsenic (Sherlock and others, 1995).

Orogenic
Processes that form simple quartz-antimony deposits are 

related to the metamorphic dewatering of different rock types, 
including sulfidic, carbonaceous, or calcareous siliciclastic 
rocks during exhumation, where fluid flow along dilatant 
structures leads to vein deposition (Hofstra and Kreiner, 
2020). The Yellow Pine deposit in Idaho (fig. 3) represents 
the largest known antimony resource in the United States. In 
the Stibnite-Yellow Pine mining district in Idaho, antimony 
occurs in narrow (<1 foot wide) high-grade quartz-stibnite 
veins and disseminated stibnite in shear zones in the granitic 
rocks of the Idaho batholith (White, 1940). The district was 
mined intermittently for gold, silver, tungsten, and antimony 
over the past century (Gillerman and others, 2019). In 2021, 
exploration and permitting are in progress at the Stibnite Gold 
project with plans to develop an open-pit gold-antimony mine, 

produce gold, silver, and antimony on-site, reprocess historical 
mine tailings, and conduct reclamation and restoration on the 
effects of historical mining (Zimmerman and others, 2021).

As of December 2020, the proven and probable mineral 
reserves at the Stibnite Gold project were estimated to be 
104 Mt grading 1.43 grams per ton (g/t) gold, 1.91 g/t silver, 
and 0.064 percent antimony. The project was estimated to 
contain 4.8 million ounces (Moz) of gold, 1.2 Moz of silver, 
as well as 148.6 million pounds (Mlb) of antimony, with 
an estimated mine life of 14 years (Zimmerman and others, 
2021). In addition to orogenic antimony deposits, orogenic 
gold and mercury deposits commonly contain byproduct 
antimony.

Other Mineral Systems
Antimony occurs in polymetallic sulfide S-R-V-IS (skarn, 

replacement, vein, intermediate sulfidation epithermal) 
deposits in porphyry Cu-Mo-Au, reduced intrusion-related, 
and IOA-IOCG mineral systems. For example, a cluster of 
polymetallic antimony occurrences in the Lakeview mining 
district near the Coeur d’Alene district in northern Idaho 
includes the Weber mine, which has historical assays of 
1 percent antimony and silver, gold, lead, zinc, and arsenic. 
Similarly, antimony can be enriched in high-sulfidation 
epithermal deposits in Porphyry Sn and Climax-type systems. 
While these deposit types and mineral systems can be enriched 
in antimony, they have not represented significant antimony 
resources historically.

Barite

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of barite to the Nation’s economy 
are quoted from the “Mineral Commodity Summaries 2021” 
(U.S. Geological Survey, 2021a, p. 28–29).

Domestic Production and Use: Numerous domestic 
barite mining and processing facilities were idled 
in 2020, and only one company in Nevada mined 
barite. Production data were withheld to avoid 
disclosing company proprietary data. An estimated 
1.3 million tons of barite (from domestic production 
and imports) was sold by crushers and grinders 
operating in seven States. Typically, more than 90% 
of the barite sold in the United States is used as 
a weighting agent in fluids used in the drilling of 
oil and natural gas wells. The majority of Nevada 
crude barite was ground in Nevada and then sold 
to companies drilling in the Central and Western 
United States. Because of the higher cost of rail and 
truck transportation compared with ocean freight, 
offshore drilling operations in the Gulf of Mexico and 
onshore drilling operations in other regions primarily 
used imported barite.
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Barite also is used as a filler, extender, or weighting 
agent in products such as paints, plastics, and rubber. 
Some specific applications include use in automobile 
brake and clutch pads, automobile paint primer for 
metal protection and gloss, use as a weighting agent 
in rubber, and in the cement jacket around underwater 
petroleum pipelines. In the metal-casting industry, 
barite is part of the mold-release compounds. 
Because barite significantly blocks x-ray and 
gamma-ray emissions, it is used as aggregate in 
high-density concrete for radiation shielding around 
x-ray units in hospitals, nuclear power plants, and 
university nuclear research facilities. Ultrapure barite 
is used as a contrast medium in x-ray and computed 
tomography examinations of the gastrointestinal tract.

World Resources: In the United States, 
identified resources of barite are estimated to be 
150 million tons, and undiscovered resources 
contribute an additional 150 million tons.  
The world’s barite resources in all categories are 
about 2 billion tons, but only about 740 million tons 
are identified resources. However, no known 
quantitative assessment of either United States or 
global barite resources has been conducted since 
the 1980s.

Mode of Occurrence
Barite (BaSO4) occurs in four main types of mineral 

deposits: (1) bedded-sedimentary, (2) bedded-volcanic, 
(3) vein, cavity fill, and metasomatic, and 
(4) residual (Johnson and others, 2017). The largest and 
most important source of barite is the bedded-sedimentary 
type, which is stratiform, massive ore formed in marine 

basins within sedimentary sequences that typically contain 
organic-rich shale, mudstone, or chert. Barite beds can be 
laterally extensive and up to 100 meters or more in thickness. 
Barite deposits form where reduced brines encounter marine 
sulfate or carbonate in marine evaporite basins, forming 
bedded and replacement barite and witherite (BaCO3) 
deposits. Most bedded barite deposits are associated with 
sulfide mineralization related to large fluid-flow systems that 
produce Mississippi Valley-type and sedex-type zinc-lead 
deposits, as well as other deposit types. Bedded-volcanic 
barite deposits form at submarine volcanic centers, often 
in association with volcanogenic massive sulfide deposits. 
Vein and cavity-fill barite deposits form along permeable 
structures such as faults, breccia zones, or other open spaces 
or permeable rock infiltrated by barium-bearing fluids.  
The weathering of any of these deposit types can lead to the 
development of residual barite deposits.

Mineral Systems for Barite Resources
Barite is a primary commodity in deposits in mineral 

systems formed in marine settings. Historically, barite was 
mined in Arkansas, Georgia, Illinois, Missouri, Tennessee, and 
Nevada (fig. 4). Table 5 lists examples of focus areas.

Basin Brine Path
Bedded-sedimentary barite deposits have been 

extensively mined in Nevada since the 1960s, where 
high-grade deposits requiring minimal processing 
meet specifications for use in drilling muds by the oil 
industry (Johnson and others, 2017). The Greystone and 
Argenta mines are active barite producers (Nevada in 
fig. 4). The Snake Mountains mining district in Nevada 
produced more than 1 million short tons of barite 

Table 4. Examples of mineral systems, deposit types, and focus areas for potential antimony resources in the conterminous 
United States.

[*, mineral systems and deposit types most likely to represent significant sources of antimony. See Hofstra and Kreiner (2020) for detailed descriptions 
of mineral systems and deposit types. Ag, silver; Au, gold; Cu, copper; Mo, molybdenum; S-R-V-IS, skarn, replacement, vein, intermediate 
sulfidation epithermal]

Mineral system Deposit type Focus area State

Carlin-type Gold; Antimony Nevada Carlin-type Antimony Nevada
Antimony district Utah

Coeur d’Alene type* Antimony* Coeur d’Alene mining district (Silver Valley Antimony) Idaho, Montana
Polymetallic sulfide Southwest Arkansas antimony district Arkansas

Box Elder district Utah
Meteoric convection Low sulfidation epithermal 

Au-Ag
Coast Ranges California

Orogenic* Antimony* Yellow Pine-Stibnite mining district Idaho
Porphyry Cu-Mo-Au Polymetallic sulfide S-R-V-IS Medicine Bow Mountains Colorado, Wyoming

High sulfidation gold-silver Cragford district Alabama
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between 1974 and 1985 (LaPointe and others, 1991). In 
the Eastern United States, the Sweetwater barite district in 
Tennessee produced more than 1 million short tons of barite; 
districts in southeast Missouri, Alabama, and Virginia also 
historically produced barite from bedded-sedimentary and 
residual deposits.

Hybrid Magmatic REE/Basin Brine Path
In hybrid magmatic/basin brine mineral systems, CO2- 

and HF-bearing magmatic volatiles condense into basinal 
brines that replace carbonate with fluorspar ± barite, REE, 
titanium, niobium, and beryllium. Examples include the 
Illinois-Kentucky Fluorspar district and the Hicks Dome in 
southern Illinois. These are primary fluorspar deposits with 
byproduct or coproduct barite.

Magmatic REE
Barite can occur as a principal commodity in carbonatites 

and peralkaline syenite assemblages in magmatic REE 
systems. For example, at Mountain Pass, California, barite 
comprises about 25 percent of the carbonatite (Johnson and 
others, 2017).

Volcanogenic Seafloor
Bedded volcanic deposits form as volcanic seafloor 

deposits associated with copper, lead, zinc, or precious 
metal sulfide ores. The Barite Hill gold deposit in South 
Carolina is a Kuroko-type volcanogenic massive sulfide 
deposit in the Carolina slate belt with lenses of massive barite 
and quartz (Clark, 1999). Other examples of barite in this 
system include the Kings Creek barite district on the North 
Carolina-South Carolina border (table 5). Volcanic seafloor 
systems in other parts of the country are permissive for barite 
but unlikely to host significant resources.

Beryllium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of beryllium to the Nation’s 
economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, p. 32–33).

Domestic Production and Use: One company in 
Utah mined bertrandite ore and converted it, along 
with imported beryl, into beryllium hydroxide. 
Some of the beryllium hydroxide was shipped 
to the company’s plant in Ohio, where it was 
converted into metal, oxide, and downstream 
beryllium-copper master alloy, and some was sold. 

Based on the estimated unit value for beryllium in 
imported beryllium-copper master alloy, beryllium 
apparent consumption of 170 tons was valued 
at about $110 million. Based on sales revenues, 
approximately 24% of beryllium products were 
used in aerospace and defense applications; 23% 
in industrial components; 12% each in automotive 
electronics and telecommunications infrastructure; 
11% in consumer electronics; 9% in energy 
applications; 1% in semiconductor applications; 
and 8% in other applications. Beryllium alloy strip 
and bulk products, the most common forms of 
processed beryllium, were used in all application 
areas. Most unalloyed beryllium metal and beryllium 
composite products were used in defense and 
scientific applications.

World Resources: The world’s identified resources 
of beryllium have been estimated to be more than 
100,000 tons. About 60% of these resources are in the 
United States; by tonnage, the Spor Mountain area 
in Utah, the McCullough Butte area in Nevada, the 
Black Hills area in South Dakota, the Sierra Blanca 
area in Texas, the Seward Peninsula in Alaska, 
and the Gold Hill area in Utah account for most of 
the total.

Mode of Occurrence
Beryllium occurs in varied deposit types, mainly 

as magmatic-related beryllium deposits associated with 
alkaline to peralkaline and metaluminous to peraluminous 
igneous rocks (Foley and others, 2017). The major sources 
of beryllium are the minerals bertrandite [Be4Si2O7(OH)2] 
and beryl (Be3Al2Si6O18). Bertrandite ores are produced 
from volcanogenic-hosted beryllium deposits, such 
as Utah’s world-class Spor Mountain deposit (fig. 5). 
Industrial beryl is mainly produced from rare-metal 
lithium-cesium-tantalum (LCT)-type pegmatites, as 
from the pegmatite districts in the Black Hills of South 
Dakota. In the Eastern United States, the tin-spodumene 
belt of North Carolina and South Carolina represents 
potential beryllium resources.

Mineral Systems for Beryllium Resources
Beryllium is a primary or byproduct commodity in 

deposits in mineral systems that contain evolved igneous 
intrusions with related pegmatites and greisens (fig. 5). Table 6 
lists examples of phase 3 focus areas with known or potential 
beryllium resources.
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Climax-Type
Climax-type systems form in continental rift settings 

characterized by hydrous bimodal magmatism (Hofstra 
and Kreiner, 2020). A variety of deposit types can form as 
aqueous supercritical fluids exsolved from anorogenic topaz 
rhyolite plutons, and the apices of subvolcanic stocks move 
upward and outward, split into liquid and vapor phases, react 
with country rocks, and mix with groundwater. The large 
thermal and chemical gradients in these systems result 
in diverse deposit types, such as volcanogenic beryllium 
deposits or beryllium in greisen, skarn, and replacement 
deposits. At deep levels in these systems, late-stage 
niobium-yttrium-fluorine (NYF)-type pegmatites carrying 
beryllium emanate from plutons.

The volcanogenic beryllium deposit at Spor Mountain 
in Utah, which opened in 1968, provides most of the world’s 
beryllium. Beryllium ore deposits occur with topaz-bearing 
rhyolite flows, pyroclastic deposits, and fluorite-bearing pipes 
along the ring fracture zone of an Oligocene caldera (Foley 
and others, 2016). Spor Mountain contains sufficient reserves 
to meet current expected domestic demands with resources of 
7,011,000 metric tons (t) of ore and a grade of 0.76 percent 
BeO (Brush Engineered Materials, Inc., 2009). Other known 
large deposits include Apache Warm Springs in New Mexico, 
which has a beryllium resource of 39,063 t of ore at a grade of 
0.72 percent BeO (McLemore, 2010).

Greisen and skarn in a large, fluorspar-rich system 
at McCullough Butte, Nevada, produced beryllium in the 
past (fig. 5). The deposit has a resource of 175 Mt of ore at 
an average grade of 0.27 percent BeO (J. Muntean, Nevada 
Bureau of Mines and Geology, written commun., 2021). 
NYF-type pegmatites and greisens associated with the 

Redskin Granite at Boomer Lake in Colorado produced 3,000 
t of high-grade ore (2.0–11.2 percent BeO) between 1948 and 
1969 (Hawley, 1969; Piper, 2007).

Magmatic REE
Beryllium occurs in Magmatic REE systems in deposits 

grouped as Peralkaline syenite/granite/rhyolite/alaskite/
pegmatites (Hofstra and Kreiner, 2020). Examples include the 
Hicks Dome deposit in Illinois, where the mineral bertrandite 
occurs in breccia bodies (Baxter and Bradbury, 1980) and the 
Round Top deposit in Texas. Round Top is being primarily 
developed as an REE deposit with the potential for byproduct 
recovery of both beryllium and lithium (Pingitore and 
others, 2016). Resource estimates are available for potential 
commodities at Round Top, but no reserves are reported; 
364,000 t of measured and indicated resources have an 
average beryllium grade of 32.15 parts per million (Hulse and 
others, 2019).

Porphyry Sn
Granite-related porphyry Sn systems form in back-arc or 

hinterland settings by similar processes from fluids exsolved 
from more crustally contaminated S-type peraluminous 
plutons and stocks. At deep levels, LCT pegmatites emanate 
from plutons (Hofstra and Kreiner, 2020). Beryllium occurs 
as a main or byproduct commodity with tin and tungsten 
in porphyry, skarn, and greisen deposits in this system and 
related LCT-type pegmatites. Examples of beryllium-rich 
LCT-type pegmatites include the famous pegmatite deposits 
in the Black Hills of South Dakota, as well as the pegmatite 
districts in Maine and Colorado (fig. 5).

Table 5. Examples of mineral systems, deposit types, and focus areas for potential barite resources in the 
conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of barite. See Hofstra and Kreiner (2020) for detailed 
descriptions of mineral systems and deposit types. REE, rare earth element]

Mineral system Deposit type Focus area State

Basin brine path* Barite 
(replacement and bedded)*

Greystone and Argenta mines Nevada
North Stevens County barite Washington
Ouachita barite deposits Arkansas
Sweetwater Barite district Tennessee

Hybrid magmatic REE/
basin brine path

Fluorspar Hicks Dome Illinois

Magmatic REE Carbonatite Mountain Pass California
Volcanogenic seafloor Barite Barite Hill Georgia, South Carolina

King’s Creek North Carolina, South Carolina
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Chromium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of chromium to the Nation’s 
economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, p. 46–47).

Domestic Production and Use: In 2020, the 
United States was expected to consume 4% of world 
chromite ore production in various forms of imported 
materials, such as chromite ore, chromium chemicals, 
chromium ferroalloys, chromium metal, and stain-
less steel. Imported chromite ore was consumed by 
one chemical firm to produce chromium chemicals. 
Stainless-steel and heat-resisting-steel producers were 
the leading consumers of ferrochromium. Stainless 
steels and superalloys require the addition of chro-
mium via ferrochromium or chromium containing 
scrap. The value of chromium material consump-
tion was expected to be about $600 million in 2020, 
as measured by the value of net imports, excluding 
stainless steel, and was an increase from $304 mil-
lion in 2019.

World Resources: World resources are greater than 
12 billion tons of shipping-grade chromite, sufficient 
to meet conceivable demand for centuries. World 
chromium resources are heavily geographically con-
centrated (95%) in Kazakhstan and southern Africa; 
United States chromium resources are mostly in the 
Stillwater Complex in Montana.

Mode of Occurrence
The mineral chromite [(Mg, Fe2+) (Cr, Al, Fe3+)2O4] 

is the only source of commercial chromium. Two major 
types of chromite deposits are both related to ultramafic 
igneous rocks: (1) layered or stratiform chromite deposits 
in layered intrusions and (2) podiform chromite deposits. 
Chromite is a high-density mineral that can also accumulate in 
heavy-mineral sands in placer deposits that were sourced from 
mafic and ultramafic igneous rocks.

In stratiform mafic and ultramafic layered complexes, 
chromite crystallizes directly from magma as a cumulate 
mineral that concentrates in layers ranging in thickness from 
centimeters to meters. Typically, chromite seams are laterally 
extensive and can occur along the entire length of the layered 
intrusion (Zientek, 1993). These stratiform chromite-enriched 
layers are classified as Bushveld-type chromium deposits, 
named for the world-class Bushveld Complex, South Africa. 
Some chromite layers are also enriched in PGEs, as in the 
Stillwater Complex, Montana.

Podiform chromite deposits are found in alpine-type 
peridotites that form in ophiolites, which is oceanic crust 
tectonically emplaced along continental margins. Most 
major podiform chromite deposits in the United States occur 
in Alaska; other countries, such as Kazakhstan, Turkey, 
and the Philippines, also have large podiform chromite 
deposits (Mosier and others, 2012). Podiform chromite 
deposits in the conterminous United States are considered 
minor deposits, with a median deposit size of 100 t of ore 
compared to the median deposit size of 11,000 t for major 
deposits. Both stratiform and podiform chromite deposits have 
average grades of 51 percent Cr2O3 (Mosier and others, 2012).

Table 6. Examples of focus areas for potential beryllium resources.

[*, mineral systems and deposit types most likely to represent significant sources of beryllium. See Hofstra and 
Kreiner (2020) for detailed descriptions of mineral systems and deposit types. Sn, tin; NYF, niobium-yttrium-
fluorine; LCT, lithium-cesium-tantalum; REE, rare earth element; S-R, skarn and replacement]

Mineral system Deposit type Focus area State

Climax-type* Volcanogenic beryllium* Spor Mountain 
Apache Warm Springs

Utah 
New Mexico

Greisen S-R beryllium McCullough Butte Nevada

Pegmatite NYF Boomer, Redskin Granite Colorado

Magmatic REE Peralkaline syenite/granite/ 
rhyolite/alaskite/pegmatites

Hicks Dome Illinois
Round Top Texas

Porphyry Sn Pegmatite LCT Meyers Ranch Colorado
Southern Black Hills pegmatites South Dakota
Oxford County pegmatites Maine
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Mineral Systems for Chromium Resources
Most chromite comes from deposits in mafic magmatic 

mineral systems. Some placer deposits concentrate 
chromite (fig. 6). Examples of chromium focus areas are listed 
in table 7.

Mafic Magmatic
The Stillwater Complex, Montana (fig. 6, table 7), hosts 

multiple types of mineral deposits. The Basal series of this 
layered igneous complex contains low-grade copper-nickel 
sulfide mineralization. The overlying Ultramafic series 
contains laterally extensive stratiform chromite seams ranging 
in thickness from <1 m to about 4 m. The Upper and Banded 
series host PGE sulfide deposits. Sibanye Stillwater operates 
the Stillwater and East Boulder mines to produce palladium 
and platinum from the J-M Reef in the Banded series; a 
third project along the J-M Reef, the Blitz project, is in 
development (Sibanye Stillwater, 2021).

Chromite exploration at the Stillwater Complex started 
before 1900. Mines were developed during the Second 
World War under a government subsidy. Chromite seams 
in the Stillwater Complex are referred to by letters, starting 
with “A” at the base. The “A” and “B” seams are enriched 
in PGE. Between 1956 and 1962, the “G” and “H” chromite 
seams produced 2 Mt of chromite ore, averaging 22.8 percent 
Cr2O3 (Courtney, 2000). Further exploration in the 1980s 
identified a drill-indicated reserve of 14.6 Mt at the same 
average grade as the earlier production (Courtney, 2000).

In a mineral resource assessment of the Custer and 
Gallatin National Forests that covers the Stillwater Complex 
and adjacent areas, Zientek (1993) compiled available 
resource data for all deposits, prospects, and occurrences in 
the Stillwater Complex. He noted that chromite resources 
in some areas are partially delimited by exploration; 
additional resources are likely within undiscovered deposits 
as fault-offset extensions of known deposits and prospects. 
Exploration for chromite, however, is unlikely unless low-cost 
options for ore processing become available.

Podiform chromite deposits, many containing <1,000 t of 
ore, are scattered along the Pacific coast from Alaska to 
southern California. The chromite deposits of the Sierra 
Nevada foothills, the Klamath Mountain districts, and the 
Coastal Ranges in California shipped nearly 600,000 t of 
chromite in the 1940s (Thayer and Lipin, 1979). Small, 
ultramafic bodies were discovered in the Red Lodge district 
of southwest Montana in 1916; total production from the 

area was about 61,600 t of chromite ore at an average grade 
of 24–40 percent Cr2O3 (Simons and others, 1979; Loferski, 
1986). Most of the massive chromite at the Red Lodge 
district is mined out. The high iron content, alteration, and 
low concentrations of cobalt, nickel, and PGEs as potential 
byproducts should be considered negative factors for future 
mining (Loferski, 1986).

Podiform chromite deposits also occur in the 
Eastern United States in Maryland, Pennsylvania, and 
North Carolina. The State Line district in Maryland and 
Pennsylvania (table 7) was mined extensively in two periods 
between 1820 and the early 1870s. About 40 deposits 
were developed during that time with the production of 
250,000–280,000 t of chromite ore; these included the Wood 
deposit, which was the largest massive chromite deposit in the 
United States at that time (Pearre and Heyl, 1960). The large 
part of the focus area for mafic magmatic systems in the 
Southeastern United States (shown as the hachure pattern 
in fig. 6) represents the extent of possible, buried, mafic 
intrusions in Triassic basins that could host chromite or other 
resources, based on geophysical anomalies.

Placer
Chromite-rich placer deposits are uncommon. However, 

a notable example is the terraced black-sand deposits in the 
Coos Bay area of southwestern Oregon (table 7), which were 
explored for chromite, garnet, and iron-rich ilmenite starting 
in 1989. Oregon Resources Corp., a subsidiary of the former 
Industrial Minerals Corp, Ltd. (Australia), started recovering 
chromite in 2011 and was the only domestic producer of 
foundry-grade chromite until the property became inactive 
in 2013 (Papp, 2013). As of 2011, the Oregon deposit had 
JORC1-compliant reserves and resources of 18,217,009 
t of ore with average grades of 7.853 percent chromite, 
0.16 percent zircon, 9.768 percent heavy minerals sands, and 
0.692 percent garnet (Industrial Minerals Corp., Ltd., 2011).

Some chromite placers were related to the State Line 
podiform chromite deposits of Maryland and Pennsylvania. 
Pearre and Heyl (1960) suggested that a potential of at least 
30,000 tons of chromite concentrates (30–54 percent Cr2O3) 
could remain in placers in the State Line and nearby Soldier’s 
Delight districts. However, these areas are unlikely as sites of 
future resources due to urban development.

1Australasian Joint Ore Reserves Committee professional code of practice 
that sets minimum standards for Public Reporting of minerals Exploration 
Results, Mineral Resources and Ore Reserves.
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Fluorspar

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of fluorspar to the Nation’s 
economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, p. 60–61).

Domestic Production and Use: In 2020, minimal 
fluorspar (calcium fluoride, CaF2) was produced 
in the United States. One company sold fluorspar 
from stockpiles produced as a byproduct of its 
limestone quarrying operation in Cave-in-Rock, 
IL, and continued development on its fluorspar 
mine in Kentucky. After acquiring a fluorspar mine 
in Utah, a second company continued a drilling 
program to further define the mineral resource and 
facilitate development of a mine plan. An estimated 
29,000 tons of fluorosilicic acid (FSA), equivalent 
to about 47,000 tons of fluorspar grading 100%, 
was recovered from five phosphoric acid plants 
processing phosphate rock, which was primarily used 
in water fluoridation.  
The U.S. Department of Energy continued to produce 
aqueous hydrofluoric acid (HF) as a byproduct of 
the conversion of depleted uranium hexafluoride to 
depleted uranium oxide at plants in Paducah, KY, and 
Portsmouth, OH.

U.S. fluorspar consumption was satisfied primarily 
by imports. Domestically, production of HF in 
Louisiana and Texas was by far the leading use 
for acid-grade fluorspar. Hydrofluoric acid is the 
primary feedstock for the manufacture of virtually all 
fluorine-bearing chemicals, particularly refrigerants 
and fluoropolymers, and is also a key ingredient in 
the processing of aluminum and uranium. Fluorspar 
was also used in cement production, in enamels, as a 

flux in steelmaking, in glass manufacture, in iron and 
steel casting, and in welding rod coatings.

World Resources: Large quantities of fluorine are 
present in phosphate rock. Current U.S. reserves of 
phosphate rock are estimated to be 1 billion tons, 
containing about 72 million tons of 100% fluorspar 
equivalent assuming an average fluorine content 
of 3.5% in the phosphate rock. World reserves of 
phosphate rock are estimated to be 71 billion tons, 
equivalent to about 5 billion tons of 100% fluorspar 
equivalent.

Mode of Occurrence
Fluorspar is the commercial name for the mineral 

fluorite, CaF2, the only major geologic source of fluorine. 
Fluorspar deposits form in many different mineral systems 
and deposit types, most commonly in hydrothermal deposits 
associated with alkaline igneous rocks, highly evolved 
granites, NYF-type pegmatites, and carbonatites (Hayes 
and others, 2017). Fluorspar deposits are also associated 
with Mississippi Valley-type deposits and spatially related 
residual deposits where host carbonate rocks dissolved away. 
Fluorine is a byproduct from phosphate deposits that contain 
about 3 percent fluorine concentrated in the phosphate mineral 
apatite (Brobst and Pratt, 1973).

Mineral Systems for Fluorspar
Fluorspar deposits can be related to alkaline igneous 

rocks in several mineral systems. For example, fluorite is a 
primary commodity in fluorspar deposits in alkalic porphyry, 
Climax-type, and magmatic REE systems (fig. 7). Examples 
of fluorspar focus areas for six mineral systems are listed 
in table 8.

Table 7. Examples of mineral systems, deposit types, and focus areas for potential 
chromium resources in the conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of chromite. See 
Hofstra and Kreiner (2020) for detailed descriptions of mineral systems and deposit types]

Mineral system Deposit type Focus area State

Mafic magmatic* Chromite Stillwater Complex Montana
Red Lodge chromite Montana

Sierra Nevada Foothills chromite California
State Line district-Baltimore 

Mafic Complex
Maryland, 

Pennsylvania
Placer Chromite Coos Bay placers Oregon
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Alkalic Porphyry and Climax-Type Mineral Systems
Alkalic porphyry systems in the Western United States 

include historical fluorspar producing areas in Idaho, Montana, 
and Colorado. Tertiary-age fluorite deposits occur in a belt in 
south-central Idaho that includes the Bayhorse, Meyers Cove, 
Yankee Fork, and Stanley districts. In the 1950s, the Bayhorse 
mine and Meyers Cove area (fig. 7) produced about 650 t 
and 33,900 t of fluorite, respectively (Anderson and Van 
Alstine, 1964). Measured reserves of 3.2 million short tons 
of ore (averaging 36 percent CaF2) were reported for 
the Bayhorse deposit in the Challis fluorspar area in 
Idaho (Snyder, 1978). Fluorspar occurs in low-sulfidation 
epithermal deposits associated with the Zortman syenite in 
Montana and the Jamestown and St. Peter’s Dome mining 
districts in Colorado.

In Climax-type systems, fluorite is a primary commodity 
in fluorspar deposits, greisens, and NYF-type pegmatites, 
commonly occurring with beryllium-bearing minerals. 
Examples include a relatively large fluorite deposit at the 
Daisy mine in Nevada containing more than 80 Mt of ore 
at an average grade of 10 percent CaF2 and the Northgate 
district in Colorado (fig. 7). In the Northgate district, veins 
and faults in breccia zones associated with Precambrian 
quartz monzonite produced $25 million worth of fluorspar 
between 1952 and 1973 (Shawe, 1976; Schwochow and 
Hornbaker, 1985). The Spor Mountain area of Utah produced 

more than 350,000 t of fluorspar from 29 deposits starting 
in 1943 (Hughes, 2019). The deposits are fault-controlled 
breccias, pipes, and replacements associated with Paleozoic 
dolomites and Tertiary topaz- and beryllium-bearing rhyolite 
and rhyolitic tuff.

The Lost Sheep mine, the largest fluorspar producer 
in the area, was the subject of a 2019 technical report 
summarizing the historical mining, exploration, and sampling 
results indicating high-grade (70–89 percent CaF2) fluorspar 
deposits, but no recent drilling results or resources have been 
reported (Hughes, 2019). In 2021, Ares Strategic Mining 
Inc. announced the results of a geophysical (IP) survey over 
the permitted mine area and plans for the construction of 
a plant that would produce metallurgical- and acid-grade 
fluorspar (Ares Strategic Mining Inc., 2021a, b).

Basin Brine Path
Historically, fluorspar deposits associated with zinc-lead 

deposits represented the major source of domestic fluorspar 
production. The Illinois-Kentucky fluorspar district, for 
example, produced more than 8 Mt of fluorspar from the 
1880s until the 1970s (Pinckney, 1976). A large vein at 
the Klondike II property in the Illinois-Kentucky fluorspar 
district (fig. 7) contains at least 1.6 Mt at a grade of 60 percent 
CaF2 (Feytis, 2009). In the past, fluorspar was also produced 
in New Hampshire and northern New York.

Table 8. Examples of mineral systems, deposit types, and focus areas for potential fluorspar resources in the 
conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of fluorspar. See Hofstra and Kreiner (2020) for detailed 
descriptions of mineral systems and deposit types. REE, rare earth element]

Mineral system Deposit type Focus area State

Alkalic porphyry Fluorspar Challis fluorspar Idaho
Daisy Mine Nevada

Low sulfidation Jamestown district Colorado
Basin brine path* Zinc-lead (Mississippi Valley 

type and sedex)*
Illinois-Kentucky Fluorspar district Illinois, Kentucky

Barite (replacement and bedded) Sweetwater Barite district Tennessee
Climax-type* Fluorspar* Meyers Cove fluorspar Idaho

Eagle Mountains fluorite Texas
Spor Mountain Utah

Magmatic REE Carbonatite Mountain Pass California
Hybrid magmatic REE/

basin brine path
Fluorspar Zuni Mountains fluorspar New Mexico

Big Bend alkaline rocks Texas
Hicks Dome Illinois

Marine chemocline Phosphate Miocene-Pliocene phosphate strata Florida, Georgia, 
Maryland, North 
Carolina, South 
Carolina, Virginia
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Hybrid Magmatic REE/Basin Brine Path
Fluorspar deposits representing a hybrid of magmatic 

REE and basin brine systems occur at the Hicks Dome 
in Illinois (fig. 7). These types of fluorspar deposits were 
identified in New Mexico, where mines in the fluorite district 
along the western rim of the Mogollon Mountains provided 
production in the past.

Magmatic REE
In magmatic REE systems, the rare-earth mineral 

bastnaesite—found in carbonatite at Mountain Pass, 
California—contains about 7 percent fluorine and constitutes 
5–15 percent of the rock. Based on an estimated 100 Mt of 
potential ore at Mountain Pass (Olson and others, 1954), 
about 1 Mt of fluorine is estimated as a potential byproduct of 
REE extraction.

Marine Chemocline
Marine phosphate rock in Florida, North Carolina, 

Tennessee, Utah, Wyoming, Idaho, and Montana (fig. 7) 
was estimated to represent a potential fluorine resource of 
about 2 billion tons (Gt) or about 4 Gt of fluorspar (Worl 
and others, 1973). More than 75 percent of domestic mining 
of phosphate rock in 2020 came from Florida and North 
Carolina (U.S. Geological Survey, 2021a).

Helium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of helium to the Nation’s economy 
are quoted from the “Mineral Commodity Summaries 2021” 
(U.S. Geological Survey, 2021a, p. 76–77).

Domestic Production and Use: The estimated 
value of Grade-A helium (99.997% or greater) 
extracted during 2020 by private industry was 
about $322 million. Fourteen plants (one in Arizona, 
two in Colorado, five in Kansas, one in Oklahoma, 
four in Texas, and one in Utah) extracted helium 
from natural gas and produced crude helium, which 
range from 50 to 99% helium. One plant in Colorado 
and another in Wyoming extracted helium from 
natural gas and produced Grade-A helium. Three 
plants in Kansas and one in Oklahoma accepted 
crude helium from other producers and the Bureau 
of Land Management (BLM) pipeline and purified 
it to Grade-A helium. In 2020, estimated domestic 
apparent consumption of Grade-A helium was 
40 million cubic meters (1.4 billion cubic feet), and 
it was used for magnetic resonance imaging, lifting 
gas, analytical and laboratory applications, welding, 
engineering and scientific applications, leak detection 
and semiconductor manufacturing, and various other 
minor applications.

World Resources: Section 16 of Public Law 113–40 
requires the U.S. Geological Survey (USGS) 
to complete a national helium gas assessment. 
The USGS and the BLM coordinated efforts to 
complete this assessment, which is expected to be 
published in 2021. The BLM plans to publish an 
update to its report of the Helium Resources of 
the United States by midyear 2021. Until then, the 
following estimates are still the best available. As of 
December 31, 2006, the total helium reserves and 
resources of the United States were estimated to be 
20.6 billion cubic meters (744 billion cubic feet). 
This includes 4.25 billion cubic meters (153 billion 
cubic feet) of measured reserves, 5.33 billion 
cubic meters (192 billion cubic feet) of probable 
resources, 5.93 billion cubic meters (214 billion 
cubic feet) of possible resources, and 5.11 billion 
cubic meters (184 billion cubic feet) of speculative 
resources. Measured reserves include 670 million 
cubic meters (24.2 billion cubic feet) of helium 
stored in the Cliffside Field Government Reserve 
and 65 million cubic meters (2.3 billion cubic 
feet) of helium contained in Cliffside Field native 
gas. The Cliffside (Texas), Hugoton (Kansas, 
Oklahoma, and Texas), Panhandle West (Texas), 
Panoma (Kansas), and Riley Ridge (Wyoming) 
Fields are the depleting fields from which 
most U.S. produced helium is extracted. These 
fields contained an estimated 3.9 billion cubic 
meters (140 billion cubic feet) of helium. Helium 
resources of the world, exclusive of the United States, 
were estimated to be about 31.3 billion cubic 
meters (1.13 trillion cubic feet). The locations 
and volumes of the major deposits, in billion 
cubic meters, are Qatar, 10.1; Algeria, 8.2; 
Russia, 6.8; Canada, 2.0; and China, 1.1. As 
of December 31, 2020, the BLM had analyzed 
about 22,700 gas samples from 26 countries and the 
United States, in a program to identify world helium 
resources.

Mode of Occurrence
Helium is a naturally occurring gas with critical 

applications for military, homeland security, medical, science, 
and research needs (National Research Council, 2010). Helium 
is found trapped in subsurface geologic reservoirs as a trace 
constituent in hydrocarbon and inert gas accumulations. The 
dominant isotope of naturally occurring helium is helium-4, 
which is formed by the decay of uranium-235, uranium-238, 
and thorium-232, and, therefore, typically referred to as 
“radiogenic” helium (Ballentine and Burnard, 2002). Helium 
concentrations in gas reservoirs are typically below the 
1 mole percent level but, in some reservoirs, can be upwards 
of 8–10 mole percent (Katz, 1969; Brennan and others, 2021).



Phase 3 Critical Mineral Commodities and Associated Mineral Systems  25

Helium is typically found in gas reservoirs associated 
with elevated or dominant nitrogen gas concentrations (Katz, 
1969; Ballentine and Sherwood Lollar, 2002; Brown, 2010). 
The prevailing thought about this relationship is that nitrogen 
might form in the same rocks as the helium and then act 
as a carrier gas, liberating helium from source rocks and 
traveling with helium dissolved in connate waters (Ballentine 
and Sherwood Lollar, 2002; Brown, 2010). The geologic 
model for the migration of the gases from source to trap is 
that as helium- and nitrogen-bearing waters reach shallow 
depths, lower pressures lead to exsolution of the gases, 
which are then trapped in porous strata beneath relatively 
impermeable sealing formations (Ballentine and Sherwood 
Lollar, 2002; Brown, 2010). Most high-helium gas reservoirs 
in the United States are found in the Central Plains and 
Rocky Mountain States (Kansas, Oklahoma, Texas, 
New Mexico, Colorado, Utah, and Wyoming) (Hamak, 2020).

Mineral Systems for Helium Resources
Petroleum systems are the only source of helium. Helium 

occurs with oil or natural gas in the central and western 
United States (fig. 8, table 9). 

Petroleum
Helium occurs in oil and natural gas deposits in the 

Central United States (fig. 8). Focus areas represent basins 
with current and potential helium production and basins with 
historical helium production (table 9). The U.S. Government 
operates the helium production, refining, and distribution 
system. Since 1962, the Bureau of Land Management has 
maintained a long-term, large-scale storage facility within 
the Hugoton-Panhandle gas field complex spanning from 
southwest Kansas into northwest Oklahoma and the panhandle 
of Texas. However, this system is being sold off due to 
declining helium production. New data could revive this 
critical mineral production system.

Helium-bearing oil and natural gas deposits occur 
throughout Colorado (fig. 8), including the Piceance Basin, 
Sand Wash Basin (part of the Greater Green River Basin), 
Hugoton Embayment, Paradox Basin, San Juan Basin, 
San Juan Mountains (Sag), San Luis Basin, and Raton Basins. 
There is some current production at McElmo Dome in the 
Paradox Basin, and current exploration in Baca County 
identified 173 million cubic feet (MMcf) of marginal helium 
reserves (Gage and Driskill, 2001). Marginal reserves of 
368 MMcf of helium are reported for the Douglas Creek Arch. 
Subeconomic and inferred resources are reported for other 
focus areas in Colorado.

In Wyoming, helium is recovered along with natural 
gas and carbon dioxide from wells in the northern part of 
the Moxa Arch (fig. 8) and processed and sold through 
ExxonMobil's LaBarge-Shute Creek Treating Facility. 
Production is primarily from the Mississippian Madison 
Limestone. The Moxa Arch focus area outlines a broad, 

general region around fields with known production 
on the northern Moxa Arch (Clark, 1981). Helium was 
measured in natural gas elsewhere in the State (Clark, 1981; 
De Bruin, 2004).

In New Mexico, helium has been extracted from 
produced gases since 1943. Permian Basin reservoirs in 
New Mexico have elevated helium concentrations associated 
with regional northeast-trending strike-slip faults that 
provide migration pathways for helium produced in the 
underlying Precambrian basement. The Redbed sandstone 
of the Abo Formation represents the trap with the overlying 
Yeso Formation acting as a seal (Broadhead, 2005).

Most domestic helium is extracted from the 
Hugoton-Panhandle (Kansas, Oklahoma, and Texas) and 
fields along the Moxa Arch in Wyoming (fig. 8). Most 
helium in Kansas is thought to come from the Precambrian 
basement, which is brought closer to the surface by the Central 
Kansas Uplift. Numerous “hot shales” that thicken into the 
Cherokee-Forest City Basin in eastern Kansas may contribute 
to shallower production. The two large focus areas in central 
and eastern Kansas (Kansas and High Plains) outline areas of 
potential helium resources in the Precambrian basement and 
shales (fig. 8).

Magnesium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of magnesium compounds to the 
Nation’s economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, 
p. 100–101).

Domestic Production and Use: Seawater and natural 
brines accounted for about 70% of U.S. magnesium 
compound production in 2020. The value of 
shipments of all types of magnesium compounds was 
estimated to be $360 million, essentially unchanged 
from the revised value in 2019. Magnesium 
oxide and other compounds were recovered from 
seawater by one company in California and another 
company in Delaware, from well brines by one 
company in Michigan, and from lake brines by two 
companies in Utah. Magnesite was mined by one 
company in Nevada. One company in Washington 
processed olivine that was mined previously for 
use as foundry sand. About 67% of the magnesium 
compounds consumed in the United States was used 
in agricultural, chemical, construction, deicing, 
environmental, and industrial applications in the form 
of caustic-calcined magnesia, magnesium chloride, 
magnesium hydroxide, and magnesium sulfates. 
The remaining 33% was used for refractories in the 
form of dead-burned magnesia, fused magnesia, 
and olivine.
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World Resources: Resources from which magnesium 
compounds can be recovered range from large to 
virtually unlimited and are globally widespread. 
Identified world magnesite and brucite resources total 
12 billion tons and several million tons, respectively. 
Resources of dolomite, forsterite, magnesium-bearing 
evaporite minerals, and magnesia-bearing brines are 
estimated to constitute a resource of billions of tons. 
Magnesium hydroxide can be recovered from 
seawater. Serpentine could be used as a source of 
magnesia but global resources, including in tailings 
of asbestos mines, have not been quantified but are 
thought to be very large.

Mode of Occurrence
Magnesium is produced from both minerals and 

brines. Magnesite (MgCO3) occurs as crystalline lenses or 
disseminations in ultramafic rocks, typically mixed with 
talc replacing dunite or serpentinized dunite (Bodenlos and 
Thayer, 1973). Forsterite, the magnesium-rich end member 
of olivine [(Mg,Fe)2SiO4], is the main constituent of dunite 
and serpentinite. Olivine easily weathers in the presence of 
CO2 producing secondary carbonates, including magnesite. 
Thus, carbonation of peridotite and other ultramafic rocks 
during metamorphism results in the formation of magnesite. 
A cryptocrystalline form of magnesite, also known as bone 
magnesite, occurs in serpentinized ultramafic rocks and 
generally forms smaller deposits than crystalline magnesite.

Magnesite also precipitates along with dolomite in both 
marine and lacustrine evaporites. Magnesium occurs in salts 
associated with potash deposits primarily as the minerals 
carnallite (KMgCl3•6H2O), kainite (MgSO4•KCl•3H2O), 
langbeinite [K2Mg2(SO4)3], and polyhalite 
[(K2Ca2Mg(SO4)4•2H2O)]. Magnesium is the third most 
common cation in brines after sodium and calcium (Blondes 
and others, 2018). However, brine geochemistry is a complex 
function of dissolution of evaporites, water-rock interactions, 
mixing, and other factors (Kharaka and Hanor, 2014).

Mineral Systems for Magnesium Resources
Magnesium occurs in several different mineral systems, 

including both lacustrine and marine evaporites as well as  
magnesite deposits mainly associated with altered untramafic 
rocks (fig. 9, table 10). Some skarn deposits associated with 
porphyry Cu-Mo-Au systems also host magnesite deposits.

Lacustrine Evaporite
Magnesium has been commercially produced from 

brines in the Great Salt Lake within the Bonneville Basin 
of Utah since 1972 (fig. 9). Naturally occurring magnesium 
chloride in the lake is concentrated by solar evaporation. 
The magnesium concentration in the lake is variable but 
averages 0.45 weight percent magnesium (Tripp, 2009).

Marine Evaporite
Intracratonic marine basins contain magnesium salts 

associated with potash deposits (fig. 9). In the intracratonic 
Paradox Basin, the Paradox Member of the Middle 
Pennsylvanian Hermosa Formation contains halokinetic 
potash-bearing salt comprised of sylvite and carnallite along 
with halite, dolomite, and anhydrite. Carnallite and langbeinite 
occur as potash minerals in other marine basins, such as 
the Permian, High Plains, and Williston basins (Orris and 
others, 2014).

Sabkha dolomite deposits such as the high-Mg dolomite 
in the Florida Mountains of New Mexico represent another 
potential source of magnesium (McLemore and Austin, 2017). 
American Magnesium LLC is developing plans to quarry 
dolomite at the Foothills Dolomite deposit near Deming, 
New Mexico, and process it into magnesium metal at a local 
mill (Keeven and Torrez, 2020).

Meteoric Recharge
In a meteoric recharge system, dissolved carbon 

dioxide in meteoric groundwater can alter magnesium 
silicate minerals, such as olivine in ultramafic rocks, to 
form cryptocrystalline magnesite deposits. Focus areas for 
magnesite can thus be coincident with focus areas for mafic 
magmatic deposit types that host chromite because of their 
similar host rocks. Examples include the peridotite and 

Table 9. Examples of mineral systems, deposit types, and focus areas for helium resources in the 
conterminous United States.

Mineral system Deposit type Focus area State

Petroleum Oil and natural gas Ladder Creek Colorado
Douglas Creek Arch Colorado

Natural gas, helium Helium in Kansas and the High Plains Kansas, Oklahoma, Texas
Permian Basin New Mexico
Moxa Arch Wyoming
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serpentinite belts in California and the State Line district 
associated with the Baltimore Mafic Complex in Maryland 
and Pennsylvania (fig. 9). These types of deposits were mined 
for magnesite in the past but are much less important now 
that the technology is available for magnesium production 
from brines and seawater. In addition to the exposed deposits 
in the State Line district and Blue Ridge belts, geophysical 
anomalies indicate buried mafic rocks in Triassic basins in the 
southeastern United States (fig. 9) that could host ultramafic 
and mafic magmatic deposits, which could subsequently alter 
to magnesite.

Porphyry Cu-Mo-Au
The Premier mine at Gabbs, Nevada, is the only (2021) 

active magnesite mine in the United States. This area was 
explored and drilled in the 1940s for magnesia production 

during the Second World War (fig. 9). Both magnesite 
and brucite were produced in the 1940s. The deposit is 
in Mesozoic carbonate rocks in the Walker Lane terrain 
in western Nevada that surround a granodiorite intrusion. 
Skarn magnesite deposits formed at intrusion contacts with 
dolomite of the Triassic Luning Formation. Magnesite 
currently produced from the Premier mine is mainly used for 
animal feed supplements and acid neutralizers. As of 2018, 
Premier Magnesia, Inc., estimated a mine life of 70 years, 
with additional reserves and resources and the potential for 
re-mining waste piles (Harding, 2018).

Other skarn magnesite deposits that produced magnesium 
in the past include the Currant Creek mining district in Nevada 
and a 30-mile-long belt in Stevens County, Washington, that 
produced about 5 million short tons of magnesite between 
1916 and 1954 (Campbell and Loofbourow, 1962).

Table 10. Examples of mineral systems, deposit types, and focus areas for magnesium resources in the conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of magnesium. See Hofstra and Kreiner (2020) for detailed descriptions of 
mineral systems and deposit types. Au, gold; Cr, chromium; Cu, copper; Fm, formation; Mg, magnesium; Mo, molybdenum]

Mineral system Deposit type Focus area State

Basin brine path Reflux and hydrothermal 
dolomite

Utah Paleozoic Dolomite Utah

Meteoric recharge Cryptocrystalline magnesite California serpentinite magnesite belt 
California peridotite magnesite belt

California 

Southeast Ultramafic Cr-Mg–Blue Ridge Belt Georgia, North Carolina, South 
Carolina

State Line district-Baltimore Mafic Complex Maryland, Pennsylvania
Marine evaporite Sedimentary magnesite 

Potash
Southern California magnesite 

Permian Basin Salado Fm.
California 

New Mexico, Texas
Lacustrine evaporite* Potash Bonneville Basin Utah

Salton Trough lithium and potash California
Porphyry Cu-Mo-Au* Skarn magnesite Gabbs magnesite 

Steven County magnesite
Nevada 

Washington
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Manganese

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of manganese to the Nation’s 
economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, 
p. 104–105).

Domestic Production and Use: Manganese ore 
containing 20% or more manganese has not been 
produced domestically since 1970. Manganese 
ore was consumed mainly by six firms with plants 
principally in the East and Midwest. Most ore 
consumption was related to steel production, 
either directly in pig iron manufacture or indirectly 
through upgrading the ore to ferroalloys. Manganese 
ferroalloys were produced at two plants. Additional 
quantities of ore were used for such nonmetallurgical 
purposes as production of dry cell batteries, in 
fertilizers and animal feed, and as a brick colorant.

World Resources: Land-based manganese resources 
are large but irregularly distributed; those in the 
United States are very low grade and have potentially 
high extraction costs. South Africa accounts for 
about 40% of the world’s manganese reserves, and 
Brazil accounts for about 20%.

Mode of Occurrence
Manganese occurs in land-based deposits of ancient 

marine sedimentary rocks, banded iron formations, supergene 
manganese deposits, and seabed deposits of ferromanganese 
nodules and crusts (Cannon and others, 2017). Major 
manganese ore minerals include rhodochrosite (MnCO3), 
cryptomelane (K(Mn4+, Mn2+)8O16), manganite (MnO(OH)), 
and pyrolusite (MnO2). Supergene manganese deposits 
represent an important global source of manganese. These 
deposits form where groundwater chemically reacts with 
manganese-enriched rocks to leach out other components, 
leaving residual and small but relatively high-grade 
manganese ore bodies. Manganese oxide deposits 
associated with volcanogenic seafloor systems occur in 
modern seafloor settings and on land where rocks formed 
by ancient seafloor hydrothermal activity are preserved. 
An extensive manganese resource lies within the United States 
Exclusive Economic Zone offshore of the Atlantic and Pacific 
Coasts, including Alaska and Hawaii, where ferromanganese 
crusts and lesser volumes of nodules are known. However, 
these offshore areas are not quantified as manganese resources, 
and the technological challenges and economics of seabed 
mining have not yet been demonstrated. Thus, these areas are 
not included in this study.

Mineral Systems for Manganese Resources
Manganese occurs in various mineral systems as 

principal commodities in some deposit types and as potential 
byproducts in others. Focus areas for the major mineral 
systems that include manganese are shown in figure 10. See 
table 11 for examples of focus areas for the different deposit 
types within these systems.

Chemical Weathering
Potential areas of interest for supergene manganese 

deposits in the Eastern United States are along the Valley and 
Ridge area of the southern Appalachian Mountains (fig. 10). 
Manganese mining peaked in the United States 
in the early 1900s in the Blue Ridge and central 
Shenandoah Valley (Stose and others, 1919). A recent 
study on the origin of manganese oxide deposits in the 
Appalachian Valley and Ridge of northeastern Tennessee 
and northern Virginia noted the proximity of all deposits to 
faults or deformation zones. The conclusion was that local 
supergene or biological processes remobilized manganese 
from a deep-seated primary source (Carmichael and 
others, 2017). The Valley and Ridge focus area includes 
these areas and an area in eastern West Virginia previously 
outlined as permissive for undiscovered supergene 
manganese deposits (Cannon and others, 1994).

In the Southwestern United States, focus areas for 
manganese in chemical weathering systems largely coincide 
with porphyry Cu-Au-Mo systems. Hundreds of manganese 
occurrences, including small past-producing mines, represent 
both primary replacement and vein manganese deposits 
associated with porphyry systems as well as supergene 
deposits and gossans that formed as those deposits were 
exposed and weathered.

In Nevada, the Golconda manganese-iron hot-spring 
deposit was mined for manganese in 1918 and tungsten in 
the 1940s (Kerr, 1940). The deposits occur above the former 
Pleistocene Lake Lahontan shoreline and probably formed 
where the lake and groundwater levels were high. The deposit 
is young (<50,000 years), <5 meters thick, and characterized 
by manganese oxides (Hollister and others, 1992). Though 
not a significant manganese resource, Golconda (fig. 10) is an 
example of an unusual type of manganese deposit that may 
occur elsewhere. The ore is anomalous in containing other 
critical minerals such as cobalt, beryllium, tungsten, and 
germanium (University of Nevada, Reno, and Nevada Bureau 
of Mines and Geology, 2012).
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Marine Chemocline
Iron-manganese deposits also form where chemical 

gradients along ocean chemoclines result in the precipitation 
of manganese and iron oxides along with carbonates and 
silicates. A 50-kilometer (km)-long discontinuous belt of 
manganese deposits in Aroostook County, Maine, is an 
example of this type of deposit (fig. 10). The Maine deposits 
are large, with about 300 Mt of ore. However, an economic 
analysis showed that these low-grade ores (about 9 percent 
manganese) were not economically viable in the 
1980s owing to the costs of mining, beneficiation, and 
transportation (Kilgore and Thomas, 1982). No further work 
has been done on these resources.

Other examples of marine chemocline iron-manganese 
deposits include Precambrian iron formations in the Lake 
Superior region, such as the Cuyuna Range in Minnesota that 
produced manganiferous iron ore until 1984 (Cannon and 
others, 2017).

Volcanogenic Seafloor
Manganese oxide (layers, crusts, and nodules) deposits 

in the Sierra Nevada foothills, the Klamath Mountains 
of northern California and Oregon, the Blue Mountains 
island arc of western Idaho, and the Artillery Mountains 
of Arizona represent remnant seafloor deposits. Before 
1957, approximately 175 locations in California produced 
263,000 short tons of manganese (Davis, 1957). No recent 
mining or exploration activity for manganese, however, has 
occurred in these areas.

Other
Manganese is a potential byproduct in polymetallic 

sulfide skarn, vein, replacement, and epithermal deposits 
in porphyry Cu-Mo-Au, Climax-type, and alkalic porphyry 
systems. The Emma manganese mine (fig. 10) near Butte, 
Montana, is an example of a relatively small (1 Mt) but 
high-grade (18 percent manganese) deposit associated with 
a porphyry system (Kilgore and Thomas, 1982). Active 
exploration and project development at the Hermosa project in 
Arizona (fig. 10) is currently being advanced by the South32 
company with a combined measured, indicated, and inferred 
mineral resource of 65.3 Mt at an average grade of 2.2 percent 
zinc, 2.3 ounces per ton silver, and 9.5 percent manganese 
for an oxidized carbonate replacement deposit that overlies 
a zinc-lead-silver deposit (Methven and others, 2018). Some 
sandstone uranium deposits in meteoric recharge systems 
contain manganese, in addition to uranium and vanadium.

Potash

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of potash to the Nation’s economy 
are quoted from the “Mineral Commodity Summaries 2021” 
(U.S. Geological Survey, 2021a, p. 126–127).

Domestic Production and Use: In 2020, the 
estimated sales value of marketable potash, free 
on board (f.o.b.) mine, was $430 million, which 
was 10% higher than that in 2019. Potash denotes 
a variety of mined and manufactured salts that 
contain the element potassium in water-soluble form. 
In agriculture, the term potash refers to potassic 

Table 11. Examples of mineral systems, deposit types, and focus areas for potential manganese resources in the 
conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of manganese. See Hofstra and Kreiner (2020) for detailed 
descriptions of mineral systems and deposit types]

Mineral system Deposit type Focus area State

Chemical weathering Supergene manganese Borderlands carbonate replacement 
deposits

Arizona

Valley and Ridge manganese Alabama, Georgia,  
North Carolina, Pennsylvania, 
Tennessee, Virginia,  
West Virginia

Ouachita manganese-cobalt district Arkansas
Lacustrine manganese Golconda Nevada

Marine chemocline* Iron-manganese Aroostook County manganese Maine
Manganese in iron formations Michigan, Minnesota, Wisconsin

Volcanogenic seafloor Manganese oxide 
(layers, crusts, 
nodules)

Sierra Nevada foothills manganese California
Artillery Mountains manganese Arizona
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fertilizers, which are potassium chloride (KCl), 
potassium sulfate or sulfate of potash (SOP), and 
potassium magnesium sulfate (SOPM) or langbeinite. 
Muriate of potash (MOP) is an agriculturally 
acceptable mix of KCl (95% pure or greater) and 
sodium chloride for fertilizer use. The majority of 
U.S. production was from southeastern New Mexico, 
where two companies operated two underground 
mines and one deep-well solution mine. Sylvinite and 
langbeinite ores in New Mexico were beneficiated by 
flotation, dissolution-recrystallization, heavy-media 
separation, solar evaporation, and (or) combinations 
of these processes, and accounted for about 50% of 
total U.S. producer sales. In Utah, two companies 
operated three facilities. One company extracted 
underground sylvinite ore by deep-well solution 
mining. Solar evaporation crystallized the sylvinite 
ore from the brine solution, and a flotation process 
separated the MOP from byproduct sodium chloride. 
The firm also processed subsurface brines by solar 
evaporation and flotation to produce MOP at its other 
facility. Another company processed brine from the 
Great Salt Lake by solar evaporation to produce SOP 
and other byproducts.

The fertilizer industry used about 85% of U.S. potash 
sales, and the remainder was used for chemical 
and industrial applications. About 65% of the 
potash produced was SOPM and SOP, which are 
required to fertilize certain chloride sensitive crops. 
The remaining 35% of production was MOP and was 
used for agricultural and chemical applications.

World Resources: Estimated domestic potash 
resources total about 7 billion tons. Most lie 
at depths between 1,800 and 3,100 meters in a 
3,110-square-kilometer area of Montana and North 
Dakota as an extension of the Williston Basin 
deposits in Manitoba and Saskatchewan, Canada. 
The Paradox Basin in Utah contains resources 
of about 2 billion tons, mostly at depths of more 
than 1,200 meters. The Holbrook Basin of Arizona 
contains resources of about 0.7 to 2.5 billion tons. 
A large potash resource lies about 2,100 meters 
under central Michigan and contains more 
than 75 Mt. Estimated world resources total 
about 250 billion tons.

Mode of Occurrence
Potash is the term applied to a variety of water-soluble 

potassium-rich minerals and rocks. Potash includes various 
chloride and sulfate minerals, but the most common potash 
minerals are sylvite (KCl) and carnallite (KMgCl3•6H2O). 
Primary potash ore materials are mixtures of halite (NaCl) 

and potassium minerals. Sylvinite is the term for mixtures of 
halite and sylvite; carnallitite is the term for mixtures of halite 
and carnallite.

Potash occurs in evaporite sequences in pre-Quaternary 
sedimentary basins and brines (Orris and others, 2014). 
Stratabound potash-bearing salt deposits are preserved in 
flat-lying, undeformed salt and evaporite rocks. Potash also 
occurs where such salt beds were deformed by halokinesis, 
creating salt domes or other salt structures, and in basins with 
mixtures of undeformed and deformed salt. Potash-bearing 
brines in Pliocene to Quaternary closed continental basins 
are another major source of potash. Lithocap alunite 
[KAl3(SO4)2(OH)6] deposits that form in porphyry and 
Climax-type systems commonly contain potassium sulfate 
minerals. These deposit types are not major sources of 
potash, but some alunite deposits produced byproduct 
potassium sulfate.

Potash can be mined using underground or 
solution-mining methods. Underground mining in salt is 
unsafe below depths of 3,600 feet (ft). Therefore, deep 
deposits are typically mined using solution mining (Halabura 
and Hardy, 2007).

Mineral Systems for Potash Resources
Potash deposits can occur in several mineral 

systems (table 12). Focus areas for the major potash-bearing 
basins in the United States are shown in figure 11, along 
with point locations for sites with active or recent potash 
production or exploration.

Lacustrine Evaporite
Lacustrine evaporite systems operate in closed drainage 

basins in arid to hyperarid climates where elements in 
meteoric surface, ground, and geothermal recharge waters are 
concentrated by evaporation. As salinity increases, evaporite 
minerals typically precipitate in the following sequence: 
gypsum or anhydrite, halite, sylvite, carnallite, borate. 
Residual brines enriched in lithium and other elements often 
accumulate in aquifers below dry lake beds (Hofstra and 
Kreiner, 2020). In these systems, potash can occur in evaporite 
minerals and residual brines.

Potash and magnesium are currently produced at the 
Great Salt Lake and the Bonneville Salt Flats in the Bonneville 
Basin of Utah (fig. 11). The Great Salt Lake Minerals 
Corporation uses solar evaporation ponds to produce more 
than 360,000 t of potassium sulfate annually from surface 
brines (Rupke, 2012). The Bonneville Salt Flats deposit is 
estimated to have a 30-year mine life (Mills and Rupke, 2020). 
The Sevier Lake playa has an estimated in-place resource 
of 36 Mt of potassium sulfate in shallow brine (Brebner and 
others, 2018). Evaporation ponds are used to precipitate potash 
minerals at all of Utah’s processing facilities.
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Potash was produced in the early 1900s from the 
Searles Lake area in the California lithium and potash focus 
area (fig. 11). Resources at Searles Lake are estimated at 
32 Mt of K2O (British Sulphur Corporation Limited, 1984). 
The Salton Sea geothermal brines in the southernmost part 
of the California lithium and potash area have an average 
potassium concentration of 14,000 milligrams per liter (mg/L); 
however, no estimates of potassium resources have been made.

Marine Evaporite
Marine evaporite systems operate in shallow, restricted, 

epicontinental basins in arid to hyperarid climatic zones where 
elements present in seawater are concentrated by evaporation. 
As salinity increases, evaporite minerals typically precipitate 
in the following sequence: gypsum or anhydrite, halite, 
sylvite. Potash deposits in marine evaporite basins represent 
significant identified and potential domestic resources. 
Examples include the Michigan Basin (fig. 11), which 
produced potash from brine from 1952 to 1970; solution 
mining at the Hersey mine produced up to 160,000 short tons 
of potash annually until the mine was decommissioned in 
2014. As of 2020, plans were underway to operate additional 
solution mines in the basin. The southern part of the areally 
extensive Williston Basin extends from Canada southward 
into northern North Dakota (fig. 11). The currently productive 
part of the basin is in Canada; however, the Devonian Prairie 
Formation in North Dakota is estimated to contain 50 Gt of 
potash (Anderson and Swinehart, 1979). Potash occurs in 
six stratigraphic horizons of the Prairie Formation in North 
Dakota. Maps were made showing the distribution, thickness, 
and potassium contents estimated from gamma-ray intensities 
for these formations in northwestern North Dakota (Kruger, 
2014; S. Box, USGS, written commun., 2020). Circa 2010, 
several companies were exploring for sylvinite and carnallite 
in North Dakota (Wetzel, 2012), but no development has 
occurred. The North Dakota potash deposits occur at depths 
that exceed 5,600 ft; therefore, solution mining rather than 
conventional underground mining is required (Kruger, 2014).

In the Paradox Basin in southeastern Utah and 
southwestern Colorado (fig. 11), sylvinite ore is mined 
using solution mining from deeply buried evaporite deposits 
having proven and probable reserves estimated to last 
100 years (Mills and Rupke, 2020). The western part of 
the Permian Basin in southeastern New Mexico (fig. 11) 
produces most of the potash in the United States—
from sylvinite and langbeinite—from the Permian 
Salado Formation (U.S. Geological Survey 2021a; Orris and 
others, 2014).

Other marine basins that host salt deposits are permissive 
for the occurrence of potash but have not produced 
potash (Orris and others, 2014). These include Silurian Salina 
Group strata in the High Plains area of Kansas (fig. 11), 
where several Permian formations host extensive salt beds 
containing minor amounts of K2O; however, no potash 
production has occurred.

Climax-Type
Climax-type systems occur in continental rifts with 

hydrous bimodal magmatism. Aqueous supercritical fluids 
exsolved from anorogenic topaz rhyolite plutons, and the 
apices of subvolcanic stocks, form a variety of deposit types 
as the supercritical fluids move upward and outward, split 
into liquid and vapor phases, react with country rocks, and 
mix with groundwater. Lithocap alunite deposits form in the 
advanced argillic alteration stages of epithermal activity in 
the uppermost parts of the system, typically above, or offset 
from, the causative intrusion. Blawn Mountain, Utah (fig. 11), 
is a Climax-type porphyry molybdenum system with a 
well-developed alunite lithocap and represents the largest 
known alunite resource in the United States. In addition to 
alunite resources, the deposit has an identified resource of 
32 Mt of K2SO4 (Kerr and others, 2017; SOPerior Fertilizer 
Corp., 2019).

Table 12. Examples of mineral systems, deposit types, and focus areas for potential potash 
resources in the conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of potash. See Hofstra and 
Kreiner (2020) for detailed descriptions of mineral systems and deposit types. Mtn.; mountain; SW, southwest]

Mineral system Deposit type Focus area State

Lacustrine evaporite* Residual brine Bonneville Basin Utah
Marine evaporite* Potash Williston Basin potash 

Michigan Basin potash 
Paradox Basin 
Holbrook Basin

North Dakota 
Michigan 
Utah, Colorado 
New Mexico

Climax-type Lithocap alunite Pine Grove-Blawn Mtn.-
Broken Ridge-Pink Knolls

Utah

SW Laramide porphyry belt Arizona, New Mexico
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Other Systems
Potash-bearing lithocap alunite deposits also 

formed in some porphyry copper systems in the 
Southwestern United States. Drilling at the Patagonia alunite 
property in the Southwest Laramide porphyry belt (fig. 11) in 
Arizona in the 1970s resulted in a preliminary (noncompliant) 
resource estimate of 303 Mt of mineralized material, 
averaging 30 percent alunite, for potential recovery of alumina 
and potassium sulfate (North American Potash Developments, 
Inc., 2012). In Wyoming, the Leucite Hills ultrapotassic 
mafic volcanic rocks (lamproites) were mined during World 
War I for KCl to use in fertilizer (Thoenen, 1932; Hausel, 
2006). These rocks represent an unusual example of deposits 
classified as “peralkaline syenite/granite/rhyolite/alaskite/
pegmatites” in Magmatic REE systems.

Uranium

Importance to the Nation’s Economy
Uranium is used to fuel nuclear reactors, which 

provide about 20 percent of the electricity produced 
in the United States (U.S. Energy Information 
Administration [EIA]), (EIA 2021a). In 2019, 
U.S. requirements to fuel domestic reactors were the 
largest globally, comprising about 26 percent of world 
requirements (International Atomic Energy Agency and 
Nuclear Energy Agency [IAEA–NEA]), (IAEA–NEA, 2020). 
The United States currently imports almost all the uranium 
used in domestic reactors. Identifying domestic uranium 
resources is crucial to ensure the continued production of 
electricity from existing nuclear power plants should there be 
an interruption of the international uranium supply.

Domestic Production and Use
In 2019, 0.17 Mlb of U3O8 concentrate was produced 

from U.S. uranium mines (EIA, 2020a). This quantity 
represents 76 percent less production than the previous 
year (2018) and is the lowest domestic production since 
at least 1950 (EIA, 2021b). In 2019, U.S. civilian nuclear 
power owners-operators purchased 48 Mlb of U3O8 averaging 
$35.59 per pound (EIA, 2020b). Most of this uranium 
was of foreign origin, primarily from Kazakhstan, Russia, 
Uzbekistan, Canada, and Australia. The EIA estimates the 
uranium requirements for civilian operated reactors over the 
next 10 years to be 388 Mlb of U3O8 (EIA, 2020b).

World Resources
Reasonably assured uranium resources in the 

United States are estimated by the EIA as 31 Mlb in the 
forward-cost category2 of <$30 per lb of U3O8; 206 Mlb 

2Forward costs include power and fuel, labor, materials, insurance, sever-
ance and advalorem taxes, and applicable administrative costs. The forward 

of U3O8 in the <$50 per lb of U3O8 forward-cost category; 
and 389 Mlb in the <$100 per lb of U3O8 forward-cost 
category (EIA, 2020a). Total identified, recoverable world 
resources in the reasonably assured and inferred categories, 
as of January 1, 2019, was 5,200 Mlb of U3O8 in the 
<$30 per lb of U3O8 forward-cost category; 15,980 Mlb of 
U3O8 in the <$50 per lb of U3O8 forward-cost category; and 
20,980 Mlb of U3O8 in the <$100 per lb of U3O8 forward-cost 
category (IAEA–NEA, 2020). Those countries with the largest 
percentage of world resources (in the <$50 per lb of U3O8 
forward-cost category) in 2019 were Australia (28 percent), 
Kazakhstan (15 percent), Canada (9 percent), 
Russia (8 percent), and Namibia (7 percent) (IAEA, 2020). 
The United States contains 1 percent of world resources in 
this cost category (IAEA–NEA, 2020). However, this estimate 
is probably low because the assessment methodology used 
by the EIA does not comprehensively capture all identified 
U.S. uranium resources (EIA, 2020a).

Six countries accounted for 88 percent of world 
production in 2018 (IAEA–NEA, 2020). These countries 
produced uranium from sandstone-type deposits in 
Kazakhstan (41 percent), high-grade unconformity-type 
deposits in Canada (13 percent), as a byproduct of copper 
mining the large Olympic Dam IOCG-type deposit and some 
sandstone-type uranium production in Australia (12 percent), 
calcrete and intrusive-type deposits in Namibia (10 percent), 
sandstone-type uranium deposits in Uzbekistan (6 percent), 
and mostly volcanic-related and some sandstone-type deposits 
in Russia (5 percent [1 percent lost to rounding]) (IAEA–
NEA, 2020).

Mode of Occurrence
Uranium is found in many geological environments; 

the IAEA identifies fifteen uranium mineral systems (IAEA, 
2020). As measured by total, reasonably assured 
resources in 2019, the relative importance of deposit types 
include (in descending order) sandstone, polymetallic 
breccia complex, Proterozoic unconformity, metasomatite, 
intrusive, paleo-quartz pebble conglomerate, surficial 
type (such as calcrete-hosted), volcanic, phosphate, 
granite, metamorphite, lignite-coal, collapse breccia and 
black shale type deposits (IAEA, 2020). Rankings change 
slightly when considering uranium mined in the past and 
estimated in situ resources. In this case, the most important 
deposits (in descending order) are phosphate, sandstone, 
polymetallic breccia complexes, metasomatite, quartz-pebble 
conglomerate, unconformity, metamorphite vein, intrusive, 
black shale, volcanogenic, calcrete, breccia-pipe, and lignite 
deposits (IAEA, 2021). Uranium production from lignite, coal, 

costs used to estimate U.S. uranium ore reserves are independent of the price 
at which uranium produced from the estimated reserves might be sold in the 
commercial market. Reserves values in forward-cost categories are cumula-
tive; that is, the quantity at each level of forward cost includes all reserves at 
the lower cost in that category (EIA, 2021a).
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black shale, polymetallic breccia, and phosphate deposits is 
typically a byproduct of mining another commodity.  
The most important deposit types in the United States, 
based on a combination of factors including past production, 
known resources, and estimated (undiscovered) resources, 
are sandstone, phosphate, metasomatite, volcanogenic, 
breccia-pipe, and calcrete deposits. Due to their economics, 
other deposit types that may have significant resources but are 
unlikely to be developed in the immediate future are uranium 
in lignite and black shale.

Mineral Systems for Uranium Resources
Uranium occurs in a variety of different mineral systems. 

Note that for this study, the mineral systems and deposit types 
developed by Hofstra and Kreiner (2020) are correlated with 
the IAEA classification (described above) shown in table 13. 
For example, the IAEA (2020) classification “9.1–Sandstone 
and all the associated subtypes” are included in the meteoric 
recharge mineral system as sandstone uranium deposits. This 
system’s other deposit types are IAEA “12–Lignite-coal” and 
“13–Carbonate (stratabound, cataclastic, and paleokarst).” 
The IAEA “4–Volcanic-related deposits” are included in 
the Climax-type mineral system as volcanogenic uranium 
deposits (IAEA, 2020). See figure 12 and table 14 for selected 
examples of uranium focus areas. Key focus areas mentioned 
in the text are labeled in figure 12.

Basin Brine
Basin brine systems can host unconformity and breccia 

pipe uranium deposits. No unconformity-type uranium 
deposits have been recognized in the United States, although 
they are important in Canada and Australia. These systems can 
form sediment-hosted and replacement copper deposits that 
contain potential byproduct uranium and vanadium.

The focus area for Northwest Arizona uranium breccia 
pipes (fig. 12) outlines an area in the Grand Canyon region 
that includes hundreds of solution-collapse breccia pipes (Van 
Gosen and others, 2016). After six decades of exploration, 
however, only a small percentage that contains significant 
mineralization has been found. Thirteen breccia deposits were 
mined for uranium from the 1950s to the present; most are 
mined out and reclaimed (Alpine, 2010). Development of a 
copper-uranium-bearing breccia pipe at the Canyon Mine, 
including the construction of a mine shaft, was completed 
in 2018; mining is inactive pending higher uranium oxide 
prices (Van Gosen and others, 2020a, 2020b). Geochemical 
and mineralogical analyses of uranium ores from former mines 
confirmed previous data showing that the ores are enriched in 
uranium oxide as well as copper, arsenic, cobalt, lead, nickel, 
and zinc minerals (Wenrich, 1985; Van Gosen and others, 
2020a, 2020b, 2020c). The largest production is from the Hack 
II deposit, which produced 7 Mlb of uranium oxide (Otton 
and Van Gosen, 2010). The mined deposits had production 
numbers that ranged from 428,000 lb of uranium oxide to the 
7 Mlb of the Hack II deposit, with average grades ranging 
from 0.44 to 1.08 percent U3O8.

Chemical Weathering
Chemical weathering systems operate in stable areas 

of low to moderate relief with sufficient rainfall, where the 
downward percolation of surface water in the unsaturated 
zone chemically dissolves and concentrates elements present 
in various rock types and mineral occurrences. Chemical 
gradients cause different elements to be concentrated at 
different positions in a weathering profile and at the water 
table. Dissolved uranium in this setting is reduced on 
carbonaceous material in lakes and swamps (Hofstra and 
Kreiner, 2020).

Uranium occurs in chemical weathering systems 
in surficial and lacustrine deposits and coal. In the 
southwestern part of the Williston Basin, uranium occurs 
in carbonaceous shale and lignite throughout multiple 
horizons of Upper Cretaceous, Paleocene, and Eocene 
rocks more than 2,500 ft thick (Denson and others, 1965). 
In North and South Dakota, uranium was produced 
from lignites in the Paleocene Fort Union Formation. 
In North Dakota, blanket-type mineralization ranges from 
100 to 700 parts per million U, with irregular, higher grade 
pods from <0.1 to 0.29 percent U3O8, and in South Dakota, 
grades range from 0.1 to 0.4 percent U3O8 for mined lignite, 
with maximum values of up to 2.8 percent U3O8 (Dahlkamp, 
2010).

Table 13. Correlation of the Earth Mapping Resources Initiative 
mineral system and deposit-type framework with the International 
Atomic Energy Agency (IAEA) classification (IAEA, 2020).

[See Hofstra and Kreiner (2020) for detailed descriptions of mineral systems 
and deposit types. IAEA, International Atomic Energy Agency; IOA, iron 
oxide-apatite; IOCG, iron oxide-copper-gold; REE, rare earth element]

Mineral system Deposit type IAEA Deposit type

Basin brine path Uranium 
(unconformity and 
breccia pipe)

8–Collapse breccia 
pipe

Chemical 
weathering

Coal uranium 12–Lignite coal
Surficial uranium 11–Surficial

Climax-type Volcanogenic uranium 4–Volcanic-related
IOA–IOCG Albitite uranium 5–Metasomatite
Magmatic REE Carbonatites 1–Intrusive
Marine chemocline Phosphate 14–Phosphate

Black shale 15–Black shale
Metamorphic Gneiss uranium 6–Metamorphite
Meteoric recharge Sandstone uranium 9–Sandstone

Carbonate uranium 13–Carbonate
Calcrete uranium 11–Surficial

Placer Uraninite, 
autunite-group 
minerals

11–Surficial
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The Fort Union Formation extends into eastern 
Montana, where Paleocene and late Cretaceous lignite 
and coal beds are widespread, but uranium resources are 
low-grade based on reconnaissance studies (Boberg, 1975). 
Uranium-bearing lignite beds 1.5–8 ft thick occur in the Fort 
Union Formation of the southern part of the Ekalaka Hills, 
where surface outcrops indicated about 16.5 Mt of subsurface 
uranium-bearing lignite. The uranium content of the lignite 
beds ranges from 0.001 to 0.034 percent uranium, the average 
being about 0.005 percent (Gill, 1959).

Climax-Type
Volcanogenic uranium deposits in the 

Western United States produced uranium in the 1950s 
and in areas of Colorado until the 1980s. Orebodies at 

the Los Ochos mine in the Cochetopa areas in Colorado 
are in brecciated and silicified sandstones and mudstones 
of the Junction Creek and Morrison Formations and in 
Precambrian schist. The genesis of the deposits is unclear, but 
based on work by Olson (1988), who identified Oligocene 
volcanic rocks as the possible source of uranium, a tentative 
assignment of volcanogenic uranium (IAEA volcanic-related 
structure-bound deposit type) is assigned to this area. The Los 
Ochos mine produced about 1.25 Mlb of U3O8 between 1976 
and 1981 (T.C. Pool, USGS volunteer with Central Energy 
Resources Science Center in Denver, written commun., 
2017). Before 1971, the Los Ochos Group produced 448,685 t 
of ore at 0.14 percent U3O8, producing 1,253,513 lb of 
U3O8 (Nelson-Moore and others, 1978).

Table 14. Examples of mineral systems, deposit types, and focus areas for uranium resources in the conterminous 
United States.

[*, mineral systems and deposit types most likely to represent significant sources of uranium. See Hofstra and Kreiner (2020) for detailed 
descriptions of mineral systems and deposit types. IOA, iron oxide-apatite; IOCG, iron oxide-copper-gold; REE, rare earth elements; 
SE, southeast]

Mineral system Deposit type Focus area State

Basin brine path Uranium (unconformity 
and breccia pipe)

Northwest Arizona uranium 
breccia pipes

Arizona, Utah

Chemical weathering Coal uranium Fort Union lignite North Dakota, South Dakota
Montana-Wyoming Coals, 

underclays, and interbeds
Montana, Wyoming

Climax-type* Volcanogenic uranium* Date Creek basin Arizona
Cochetopa Colorado
McDermitt Caldera Nevada
Lakeview Oregon

IOA-IOCG* Albitite uranium* SE Piedmont Rift Zones 
uranium, REEs

North Carolina, Virginia

Marine chemocline* Phosphate* Middle-Late Miocene 
Phosphate

California

Miocene-Pliocene 
Phosphate Strata

Florida, Georgia, Maryland, 
North Carolina, South Carolina, 
Virginia

Black shale Pennsylvanian Phosphate and 
Black Shale

Illinois, Indiana, Iowa, Kansas, 
Kentucky, Missouri, Nebraska, 
Oklahoma

Meteoric recharge* Calcrete uranium Southern High Plains Calcrete New Mexico, Texas
Carbonate uranium Prior Mountains-Little 

Mountain
Montana, Wyoming

Grants-Todilto New Mexico
Sandstone uranium* Shiprock Arizona, New Mexico

Monument Valley Arizona, Utah
Uravan district Colorado, Utah
Texas Coastal Plain Texas
Crow Butte Nebraska
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Arizona’s Date Creek focus area includes prospective 
lake deposits of the Artillery Peak-Date Creek Basin and 
encompasses the Artillery Peak and Anderson deposits.  
The Anderson deposit, hosted in Miocene tuffaceous lakebed 
sediments, had minor historical production (Lindblom and 
Young, 1958); recent exploration identified an NI 43–101 
compliant indicated resource of 15.5 Mlb of U3O8 and an 
inferred resource of 2.5 Mlb of U3O8 (Davis and Sim, 2012).

Other examples of volcanogenic uranium deposits 
include structurally controlled deposits associated with 
Miocene volcanic rocks in the Lakeview focus area in Oregon 
and veins and tabular uranium orebodies associated with the 
McDermitt caldera in Nevada (fig. 12).

Iron Oxide-Apatite and Iron 
Oxide-Copper-Gold (IOA-IOCG)

The Southeast Piedmont Rift Zones focus area (fig. 12) 
is delineated for an unusual type of uranium deposit, 
classified for this study as albitite uranium. The deposit 
type is based on a genetic model for the Coles Hill deposit 
in the Piedmont physiographic province of Virginia (Hall 
and others, 2022). The Coles Hill uranium deposit model 
indicates favorable areas for concealed mineralization along 
structural zones adjacent to Triassic basins in the Eastern 
United States. The type-deposit is the undeveloped Coles 
Hill deposit with an NI 43–101 compliant indicated resource 
of 132 Mlb of U3O8 (119 Mt at 0.056 percent eU3O8 using 
a 0.25 percent eU3O8 cutoff) and an inferred resource of 
30 Mlb of U3O8 (36 Mt at 0.042 percent eU3O8 using a 
0.025 percent eU3O8 cutoff) (Kyle and Beahm, 2013), making 
it the largest unmined uranium deposit in the United States.

Meteoric Recharge
Calcrete uranium deposits formed by regional 

groundwater evaporation occur in Pliocene to Pleistocene 
sediments in the Southern High Plains physiographic 
province (Hall and others, 2019). The Southern High Plains 
focus area (fig. 12) comprises the prospective and favorable 
assessment tracts of an undiscovered resource assessment of 
this region and includes 15 known occurrences, 2 of which 
have estimated historical in-place resources (Van Gosen 
and Hall, 2017). Two calcrete uranium deposits discovered 
within the focus area in Texas (Sulphur Springs Draw and 
Buzzard Draw) represent the first identified occurrences of 
this deposit type in the United States (Van Gosen and Hall, 
2017). The deposits have historic non-NI 43–101 compliant 
drill-delineated resources of about 2.1 Mt of ore with an 
average grade of 0.037 percent U3O8 (Sulphur Springs 
Draw) and another deposit of about 0.93 Mt of ore averaging 
0.047 percent U3O8 (Buzzard Draw) (Van Gosen and 
Hall, 2017).

Carbonate uranium occurrences and mines in 
the Todilto Limestone in the Grants uranium district, 
New Mexico (fig. 12), produced 6.6 Mlb of U3O8 between 
1950 and 1981; many deposits remain undeveloped in the 
area (McLemore, 2011).

The most important uranium deposit type in the 
United States is the sandstone-hosted deposit. Forty-eight 
focus areas are delineated for sandstone uranium deposits, 
mostly in areas with historical uranium production of Utah, 
Colorado, Wyoming, and Texas. A few focus areas include 
currently (2021) productive uranium mines or have modern 
identified resources. Triassic, Jurassic, Cretaceous, and 
Tertiary clastic sediments in basins in Wyoming, Colorado, 
Nebraska, New Mexico, Utah, and Texas host significant 
roll-front and tabular sandstone deposits. More than 240 
mines in the Uravan district in Colorado and Utah produced 
significant amounts of uranium and vanadium prior to the late 
1940s (Chenoweth, 1981).

Currently (2021) the only active uranium mining is 
from in situ recovery mines in Wyoming. There is only one 
active, conventional uranium mill (2021)—the White Mesa 
mill in Blanding, Utah—which is in the central portion of the 
Colorado Plateau uranium region (Boberg, 2010). The most 
important regions, based on past production and potential 
resources, are: (1) the Colorado Plateau (fig. 12), in which 
mineralization is mostly as tabular sandstone deposits in the 
Jurassic Morrison Formation and Triassic Chinle Formation, 
(2) Wyoming Basins including portions of Nebraska and 
South Dakota where roll-front type mineralization is hosted 
mostly in Paleocene Fort Union and Eocene Wasatch, Wind 
River, and Battle Spring Formations and the Cretaceous Inyan 
Kara Group, (3) the Texas Coastal Plain, throughout which 
roll-front type uranium deposits form in Eocene to Pliocene 
sediments (the Claiborne and Jackson groups, Catahoula 
Formation, Oakville and Goliad Sands, and Beaumont, Lissie, 
and Willis Formations), (4) the Denver Basin, in which 
roll-front deposits have been identified in the Cretaceous 
Fox Hill and Laramie Formations, but remain unmined, and 
(5) the Tallahassee Creek district, in which mixed sandstone 
and volcanic type deposits are hosted in a Tertiary graben 
that developed in the Rocky Mountains (Boberg, 2010, 
Chenoweth, 1981, Dahlkamp, 2010, Hall and others, 2017).

Other Systems
Phosphate and black shale deposits in marine chemocline 

systems represent another important system for uranium. 
Focus areas for these deposits include the Miocene-Pliocene 
phosphates along the eastern coast of the United States 
and broad areas of Pennsylvanian phosphate and black 
shale extending from Texas to New York (fig. 12). See the 
discussion of these deposits in the vanadium section of this 
report.
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Vanadium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of vanadium to the Nation’s 
economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, 
p. 180–181).

Domestic Production and Use: Byproduct vanadium 
production in Utah from the mining of uraniferous 
sandstones on the Colorado Plateau ceased in the 
first quarter of 2020 owing to decreasing vanadium 
prices. An estimated 170 tons of contained vanadium 
with an estimated value of $1.4 million was produced 
in 2020. Secondary vanadium production continued 
primarily in Arkansas, Delaware, Ohio, Pennsylvania, 
and Texas, where processed waste materials (petro-
leum residues, spent catalysts, utility ash, and 
vanadium-bearing pig iron slag) were used to pro-
duce ferrovanadium, vanadium-bearing chemicals 
or specialty alloys, vanadium metal, and vanadium 
pentoxide. Metallurgical use, primarily as an alloying 
agent for iron and steel, accounted for about 94% of 
domestic reported vanadium consumption in 2020. 
Of the other uses for vanadium, the major nonmet-
allurgical use was in catalysts to produce maleic 
anhydride and sulfuric acid.

World Resources: World resources of vanadium 
exceed 63 million tons. Vanadium occurs in deposits 
of phosphate rock, titaniferous magnetite, and uranif-
erous sandstone and siltstone, in which it constitutes 

less than 2% of the host rock. Significant quantities 
are also present in bauxite and carboniferous materi-
als, such as coal, crude oil, oil shale, and tar sands. 
Because vanadium is typically recovered as a byprod-
uct or coproduct, demonstrated world resources of the 
element are not fully indicative of available supplies. 
Although domestic resources and secondary recovery 
are adequate to supply a large portion of domestic 
needs, almost all of U.S. demand is currently met by 
foreign sources.

Mode of Occurrence
Vanadium occurs in four main types of mineral 

deposits: (1) vanadiferous titanomagnetite (iron titanium 
oxide) deposits that form in mafic magmatic systems, 
(2) sandstone-hosted uranium-vanadium deposits in meteoric 
recharge systems, (3) black shales and phosphorites in marine 
chemocline systems, and (4) supergene base-metal vanadate 
deposits that form in oxidized zones of lead, zinc, and 
copper deposits in chemical weathering systems (Kelley and 
others, 2017).

Mineral Systems for Vanadium Resources
Vanadium can occur in several different minerals 

systems (table 15, fig. 13). However, most vanadium is 
recovered as a byproduct or coproduct of uranium production, 
such as the uraniferous sandstones of the Colorado Plateau.

Table 15. Examples of mineral systems, deposit types, and focus areas for potential vanadium resources in the conterminous 
United States.

[*, mineral systems and deposit types most likely to represent significant sources of vanadium. See Hofstra and Kreiner (2020) for detailed descriptions of 
mineral systems and deposit types]

Mineral system Deposit type Focus area State

Mafic magmatic Iron-titanium oxide Sanford Lake district 
San Gabriel Mountains 
Iron Mountain 
McClure Mountain

New York 
California 
Wyoming 
Colorado

Marine chemocline* Black shale* Penobscot Formation Maine
Gibellini and Carlin Vanadium Nevada
Devonian black shales Alabama, Kentucky, New York, 

Ohio, Pennsylvania, Tennessee, 
Virginia, West Virginia

Meteoric recharge* Calcrete uranium Southern High Plains Calcrete New Mexico, Texas
Carbonate uranium Prior Mountains-Little Mountain Montana, Wyoming
Sandstone uranium* Uravan 

Entrada
Colorado, Utah 
Colorado

Circle Cliffs Utah
Shiprock New Mexico
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Mafic Magmatic
Iron-titanium oxide deposits associated with mafic and 

ultramafic igneous rocks can host significant amounts of 
vanadium in vanadiferous titanomagnetite. Although these 
deposit types represent the largest global source of vanadium, 
few deposits in the United States have proven economic. The 
Sanford Lake district in New York produced titanium, iron, 
and vanadium from deposits hosted in anorthosite and gabbro 
from 1834 until 1982 (Tahawus, fig. 13). The Ossining mine 
in southeastern New York is another example. Before 1950, 
vanadium was produced as a byproduct of titanium mining in 
the San Gabriel Mountains anorthosite in California. Scattered 
occurrences of mafic and ultramafic rocks in the North-Central 
States are permissive for occurrences of these deposit types.

Marine Chemocline
Vanadium is enriched in black shales in many marine 

chemocline systems, primarily in Proterozoic and Phanerozoic 
marine settings associated with phosphorite deposits and 
marine oil shales (Kelley and others, 2017). The Gibellini 
and Carlin vanadium focus area includes two deposits 
with identified vanadium resources (fig. 13). The Gibellini 
vanadium project in Fish Creek, Eureka County, Nevada, 
targets thin-bedded shales of the Devonian Woodruff 
Formation in an allochthonous fault wedge along a 21-km 
northeast-trending vanadium belt. The project is designed as 
an open-pit heap leach operation. The deposit has NI 43–101 
compliant measured and indicated resources of 22.95 Mt of 
ore at an average grade of 0.286 percent V2O5, with additional 
inferred resources at Gibellini and Louie Hill (Hanson and 
others, 2018). Production decisions are waiting on a 2021 
environmental impact statement “record of decision” for the 
project (Silver Elephant Mining Corp., 2021). First Vanadium 
Corporation’s Carlin vanadium project in north-central Nevada 
also targets shales in the Woodruff Formation. The deposit 
is partly exposed, although most of the mineralization 
lies at shallow depths (60 m). An NI 43–101 compliant 
measured (24.64 Mt at 0.615 percent V2O5) and 
indicated resource (7.19 Mt at 0.520 percent V2O5) has 
been defined for the Carlin project at a cutoff grade of 
0.3 percent V2O5 (Stryhas and others, 2019).

Vanadium-enriched black shales occur in other areas 
of the country, such as a broad belt of Devonian and 
Pennsylvanian black shales (for example, Mecca Quarry, 
fig. 13) in the Eastern and Central United States, but no 
resources have been identified. Phosphorite deposits, such 
as the regionally extensive Phosphoria Formation in the 
Western United States, also contain vanadium-enriched 
black shales.

Meteoric Recharge
Carbonate uranium deposits occur as collapse 

breccia pipes within the Little Mountains district in 
Wyoming (Gregory, 2019) and deposits with a similar geology 
occur in the Pryor Mountains of Montana (fig. 13). In these 
deposits, uranium minerals with accompanying silica fill open 
space in solution collapse features in paleokarst developed 
in the Mississippian Madison Limestone (Van Gosen and 
others, 1996; Dahlkamp, 2010). The principal ore minerals 
of the Pryor Mountains deposits are the uranium-vanadium 
minerals tyuyamunite [Ca(UO2)2(VO4)2• 5-8H2O] and 
metatyuyamunite [Ca(UO2)2(VO4)2• 3H2O]. A quantitative 
mineral resource assessment by Van Gosen and others (1996) 
estimated that undiscovered carbonate uranium deposits in the 
Pryor Mountains area in Montana might contain a mean of 
170 t of undiscovered uranium resources (U3O8) and 140 t of 
vanadium (V2O5). These amounts of potential undiscovered 
resources are comparable to the tonnages of uranium and 
vanadium produced in this area in the past. These deposits 
are small relative to many other uranium deposit types (Van 
Gosen and others, 1996).

Calcrete uranium deposits in the Southern High 
Plains physiographic province are permissive for the 
occurrence of vanadium (Hall and others, 2019). Although 
no vanadium resources are available for the known deposits, 
mineralogy indicates that vanadium occurs in the form 
of the minerals carnotite and finchite, a newly identified 
strontium-uranium-vanadium mineral (Spano and others, 
2017; Van Gosen and Hall, 2017).

Many sandstone uranium deposits in the United States 
also produced vanadium in the past. The Shiprock area in 
northeastern New Mexico (Carrizo deposit, fig. 13) produced 
about 3.9 Mlb of U3O8 and 6,603 short tons of vanadium 
between 1948 and 1967 (McLemore, 2020). Thirty-two 
mines in the AEC Circle Cliffs ore-reserve area produced 
about 70,000 lb of U3O8 and 4 short tons of vanadium between 
1951 and 1978 (T.C. Pool, USGS volunteer with Central 
Energy Resources Science Center in Denver, written commun., 
2017). The Uravan district in Colorado and Utah includes 
more than 240 mines with significant historical production 
of both uranium and vanadium. Before 1947, about 1,700 t 
of U3O8 and 12,000 t of V2O5 were mined from the Uravan 
district (Chenoweth, 1981). Exploration activity continues in 
the Uravan focus area at the Wray Mesa uranium-vanadium 
project in southwestern Colorado (Hartman, 2019).
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Zirconium and Hafnium

Importance to the Nation’s Economy
The following two subsections describing factors 

indicating the importance of zirconium and hafnium to the 
Nation’s economy are quoted from the “Mineral Commodity 
Summaries 2021” (U.S. Geological Survey, 2021a, 
p. 192–193).

Domestic Production and Use: In 2020, one firm 
recovered zircon (zirconium silicate) from surface-
mining operations in Florida and Georgia as a 
coproduct from the mining of heavy-mineral sands 
and the processing of titanium and zirconium mineral 
concentrates, and a second company processed exist-
ing mineral sands tailings in Florida. Zirconium metal 
and hafnium metal were produced from zirconium 
chemical intermediates by one producer in Oregon 
and one in Utah. Zirconium and hafnium are typi-
cally contained in zircon at a ratio of about 36 to 1. 
Zirconium chemicals were produced by the metal 
producer in Oregon and by at least 10 other com-
panies. Ceramics, foundry sand, opacifiers, and 
refractories are the leading end uses for zircon. Other 
end uses of zircon include abrasives, chemicals (pre-
dominantly, zirconium basic sulfate and zirconium 
oxychloride octohydrate as intermediate chemicals), 
metal alloys, and welding rod coatings. The leading 
consumers of zirconium metal are the chemical pro-
cess and nuclear energy industries. The leading use of 
hafnium metal is in superalloys.

World Resources: Resources of zircon in the 
United States included about 14 million tons asso-
ciated with titanium resources in heavy-mineral-
sand deposits. Phosphate rock and sand and gravel 
deposits could potentially yield substantial amounts 
of zircon as a byproduct. World resources of hafnium 
are associated with those of zircon and baddeleyite. 
Quantitative estimates of hafnium resources are not 
available.

Mode of Occurrence
Zirconium (Zr) and hafnium (Hf) have similar 

geochemical properties and occur together in the 
mineral zircon (ZrSiO4), typically with a Zr:Hf ratio of 
about 36:1 (Jones and others, 2017). Uranium also substitutes 
for zirconium in zircon. Zircon forms as small, early 
crystallizing minerals in magmas. Owing to its refractory 
and chemically inert properties, zircon persists during 
the weathering and erosion of igneous, sedimentary, and 
metamorphic rocks. Liberated zircon can be transported 
by wind and water and concentrated in heavy-mineral 
placer deposits. Zircon-bearing coastal and alluvial placers 

and paleoplacers represent the major global and domestic 
sources of zirconium and hafnium. These deposits typically 
include titanium (ilmenite, rutile, leucoxene) and REE 
minerals (monazite, xenotime).

Some alkaline igneous rocks and pegmatite deposits can 
be enriched in zircon, but primary igneous zircon deposits 
are rare. The only igneous deposit that produces primary 
zirconium is found in the Kola alkaline province in Russia, 
where the rare mineral baddeleyite (ZrO2) is produced along 
with apatite and magnetite from mining carbonatites and 
phoscorites (Jones and others, 2017).

Mineral Systems for Zirconium and Hafnium 
Resources

Placer
Zircon is a byproduct of mining heavy-mineral sands 

for titanium minerals from placer deposits. In the Atlantic 
Coastal Plain focus area, modern economic deposits that are 
located in Florida, Georgia, and Virginia include Trail Ridge, 
Mission, and Old Hickory (fig. 14, table 16). The Trail Ridge 
mine produces titanium minerals (ilmenite, rutile, leucoxene), 
zircon, and staurolite separated from coastal deposits of 
heavy-mineral sands. Projected potential mineral production 
for a proposed Trail Ridge South project for the period of 
2021–2028 is 532,690 t of titanium minerals, 184,951 t of 
zircon, and 173,018 t of staurolite (Urbanomics, 2019).  
The Mission deposit area in Georgia, explored since the 1970s, 
is a series of ancient beach ridges, some of which are actively 
mined through dredging operations. Titanium minerals 
are the primary ore minerals, with zircon concentrations 
ranging from 9 to 25 percent (O’Driscoll, 2015). The deposit 
area produced 5,000 t of zircon in 2014 with an expected 
production life of 10–15 years. Exploration is ongoing in 
Virginia around the Old Hickory mine, which produced zircon 
through 2017. In North Carolina, the focus area includes 
numerous past-producing mines. The Tennessee Fall Line 
placer focus area delineates the Cretaceous McNairy Sand, 
where paleoplacers were prospected and drilled in the past, but 
no resources are reported.

Some areas in the Western United States produced zircon 
from stream and river placers, such as modern heavy-mineral 
sands in central Idaho, where sediments mainly eroded 
from the Idaho batholith are deposited in valleys (fig. 14). 
Paleoplacers, which represent ancient coastal deposits, 
occur in a belt of Cretaceous black sands extending from 
Colorado into Wyoming, Montana, North Dakota, and South 
Dakota. The belt traces the distribution of ancient shorelines 
marked by the Fox Hills Formation, which is permissive for 
zircon-bearing paleoplacer deposits. Exploration for mostly 
buried paleoplacers in the Fox Hills Sandstone in the Denver 
Basin resulted in an estimated 17.5 million short tons of 
heavy minerals comprised of ilmenite, rutile, zircon, and 
garnet (Wojcik, 2000). Further studies by the Colorado 
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Geological Survey are underway (O’Keeffe and others, 2019). 
The resource potential of the Cretaceous black sands to the 
north of the Denver Basin has not been evaluated.

The Coos Bay placers along the Oregon coast are 
primarily a chromite resource but have reserves and resources 
of 18,217,009 t of ore with average grades of 0.16 percent 
zircon (Industrial Minerals Corp., Ltd., 2011).

Magmatic REE and Porphyry Sn
Peralkaline syenite/granite/rhyolite/alaskite/pegmatite 

deposit types in magmatic REE systems have the potential 
to be enriched in zirconium and hafnium. However, no 

such deposits are known to occur in the conterminous 
United States, and these are unlikely to represent a significant 
source of zirconium. Eight focus areas outline areas broadly 
permissive for zirconium in igneous rocks, such as the 
Central Laramie Range focus area in Wyoming. Historically, 
some LCT-type pegmatites in granite-related porphyry tin 
systems produced zircon on a small scale; however, these 
deposits are of mineralogical interest and do not represent 
significant resources. The Zirconia district of North Carolina 
is an example of pegmatite deposits that produced large (up 
to 1.5 centimeters) zircons during mining in the early 
1900s (Callahan and others, 2007).

Table 16. Examples of mineral systems and focus areas for zirconium and hafnium resources in the conterminous United States.

[*, mineral systems and deposit types most likely to represent significant sources of zirconium and hafnium. See Hofstra and Kreiner (2020) for detailed descrip-
tions of mineral systems and deposit types. LCT, lithium-cesium-tantalum; REE, rare earth element; Sn, tin]

Mineral system Deposit type Focus area State

Placer* Ilmenite/rutile/leucoxene; Zircon*; 
Monazite/xenotime

Atlantic Coastal Plain placer de-
posits

Alabama, Delaware, Florida, 
Georgia, Maryland, New Jersey, 
North Carolina, South Carolina, 
Virginia

Idaho heavy mineral placers Idaho
Fox Hills Sandstone heavy- mineral 

paleoplacers
Colorado

Zircon* Tennessee Fall Line placers Tennessee
Porphyry Sn Pegmatite LCT Zirconia pegmatite district North Carolina
Magmatic REE Peralkaline syenite/granite/rhyolite/

alaskite/pegmatites
Central Laramie Range Wyoming
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Discussion
Currently, the United States produces the phase 3 critical 

minerals barite, beryllium, helium, magnesium, potash, 
uranium, vanadium, and zirconium-hafnium. An antimony 
deposit in Idaho is slated to come into production soon. 
Domestic production for all 13 critical minerals discussed 
in this report occurred in the past, in most cases before 1950 
and with government support for strategic minerals. For some 
critical minerals, there are few active mines. For magnesium, 
examples include the mining of magnesite ore at Gabbs, 
Nevada, and magnesium extraction from brine operations 
at The Great Salt Lake in Utah. Although the volcanogenic 
beryllium deposit at Spor Mountain in Utah is the only 
operating beryllium mine in the country, other large beryllium 
deposits are known at Apache Warm Springs in New Mexico, 
and this study identified some 50 focus areas for Climax-type 
systems that potentially host these types of deposits.

Active mining and exploration for heavy-mineral sands 
along the Atlantic Coastal Plain target zircon, titanium 
minerals, and in some cases the rare-earth mineral monazite, 
which can be recovered as a byproduct. Airborne radiometric 
data and lidar data from Earth MRI projects are useful for 
identifying potential placer deposits within large focus 
areas. The heavy-mineral potential of paleoplacers along the 
former Cretaceous seaway in the Western States has not been 
thoroughly evaluated.

Some large, low-grade domestic manganese deposits 
are known; however, they are inferior to the readily available 
manganese ores mined in other countries (Cannon and 
others, 2017). Manganese resources in seabed deposits of 
ferromanganese nodules and crusts are larger than those on 
land but not quantified. The development of economically 
successful seabed mining could alter the current manganese 
and cobalt supply scenario by providing a large new resource.

The mafic magmatic-system chromite deposit at the 
Stillwater Complex in Montana is the most likely source 
of domestic chromite if there was an incentive to recover 

the chromite (in addition to the PGE resources currently 
mined). Phase 3 of the Earth MRI delineated 444 focus areas 
within the conterminous United States and 1 in Puerto Rico. 
Consideration of these focus areas led to the identification 
of more than 100 areas for new data acquisition across a 
variety of mineral systems and deposit types. A subset of those 
areas was then prioritized for the allocation of funds through 
the Earth MRI to initiate new projects for phase 3 critical 
minerals. For Alaska, 80 focus areas are included in the data 
release by Dicken and others (2021). The Yukon-Tanana 
area in eastern Alaska remains a priority area for new data 
acquisition in phase 3 because of multiple mineral systems 
that may host many critical minerals.

Conclusions
The mineral systems and deposit types considered for 

phase 3 critical minerals are potential sources of domestic 
resources. These locations include areas that currently produce 
critical minerals, areas that produced critical minerals in the 
past, and areas that may, upon further study, prove to host 
critical minerals. Critical minerals currently produced and 
sought in the United States are a function of technology 
and market conditions. As the demand for critical minerals 
increases and recovery methods evolve, some deposit types 
not currently mined but enriched in critical minerals may 
become important. Many deposit types with the potential to 
host critical minerals are not yet thoroughly characterized.  
The geochemical data acquired on samples collected by 
mapping projects will greatly expand our knowledge of critical 
mineral abundances in different deposit types. Reprocessing 
mine tailings and wastes at historical mines represents another 
possible source of domestic critical minerals. Until wastes can 
be processed economically, or along with site cleanup, new 
discoveries and the redevelopment of past producers remain 
the most current, viable sources of critical minerals for the 
United States.
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Appendix 1. Mineral Systems Framework
Appendix 1 includes this explanatory information 

and a link to table 1 of Hofstra and Kreiner (2020), which 
contains the mineral systems framework adopted for the Earth 
Mapping Resources Initiative (Earth MRI). For completeness, 
references cited in that table are listed in the section of this 
appendix titled “References Cited in Table 1 of Hofstra and 
Kreiner (2020).”

See the “Table Structure” section of Hofstra and 
Kreiner (2020, p. 6) for an explanation of the table content. 
In particular, critical minerals produced from the deposit 
type are highlighted in bold type, whereas those that are 
enriched in the deposit type but have not yet been produced 
are listed in italics. The table in Hofstra and Kreiner (2020) 
can be accessed at ht tps://pubs .usgs.gov/ of/ 2020/ 1042/ 
ofr20201042_ table1.pdf. The table is best viewed using high 
magnification (200–400 percent of the original size) of the 
Portable Document Format (PDF) file. Otherwise, the table 
can be plotted out on large format paper or viewed as the 
version of table 1 incorporated into the body of the report by 
Hofstra and Kreiner (2020).
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