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 NUMBER SYSTEM 
  

 Natural Numbers : 

 The simplest numbers are 1, 2, 3, 4....... the 
numbers being used in counting. These are called 
natural numbers. 

 Whole numbers :  

 The natural numbers along with the zero form the 
set of whole numbers i.e. numbers 0, 1, 2, 3, 4 are 
whole numbers. W = {0, 1, 2, 3, 4....} 

 Integers : 

 The natural numbers, their negatives and zero 
make up the integers. 

  Z = {....–4, –3, –2, –1, 0, 1, 2, 3, 4,....} 

 The set of integers contains positive numbers, 
negative numbers and zero.         

 Rational Number : 

 (i) A rational number is a number which can be 

put in the form 
q

p
, where p and q are both 

integers and  q  0. 

 (ii) A rational number is either a terminating or 
non-terminating and recurring (repeating) 
decimal. 

 (iii) A rational number may be positive, negative 
or zero. 

 Complex numbers : 

 Complex numbers are imaginary numbers of the 
form a + ib, where a and b are real numbers and  

i = 1– ,  which is an imaginary number. 

 Factors : 

 A number is a factor of another, if the former 
exactly divides the latter without leaving a 
remainder (remainder is zero) 3 and 5 are factors 
of 12 and 25 respectively. 

 Multiples : 

 A multiple is a number which is exactly divisible 
by another, 36 is a multiple of 2, 3, 4, 9 and 12. 

 Even Numbers :  

 Integers which are multiples of 2 are even number 
(i.e.) 2,4, 6, 8............... are even numbers. 

 Odd numbers :  

 Integers which are not multiples of 2 are odd 
numbers. 

 Prime and composite Numbers : 

 All natural number which cannot be divided by 
any number other than 1 and itself is called a 
prime number. By convention, 1 is not a prime 
number. 2, 3, 5, 7, 11, 13, 17 ............. are prime 
numbers. Numbers which are not prime are called 
composite numbers. 

 The Absolute Value (or modulus) of a real 
Number : 

 If a is a real number, modulus a is written as |a| ; 
|a| is always positive or zero.It means positive 
value of ‘a’ whether a is positive or negative 

 |3| = 3 and |0| = 0, Hence |a| = a ; if a = 0 or  a > 0 
(i.e.) a  0 

 |–3| = 3 = – (–3) . Hence |a| = – a when a < 0 

 Hence, |a| = a, if a > 0 ;  |a| = – a, if a < 0 

 Irrational number :  



 

 

 (i)  A number is irrational if and only if its 
decimal representation is non-terminating and 

non-repeating. e.g. 2 , 3 , ................ etc.  

 (ii) Rational number and irrational number taken 
together form the set of real numbers. 

 (iii) If a and b are two real numbers, then either  
(i) a > b or (ii) a =  b or (iii)  a < b 

 (iv) Negative of an irrational number is an 
irrational number. 

 (v) The sum of a rational number with an 
irrational number is always irrational. 

 (vi) The product of a non-zero rational number 
with an irrational number is always an 
irrational number. 

 (vii) The sum of two irrational numbers is not 
always an irrational number. 

 (viii) The product of two irrational numbers is not 
always an irrational number. 

 In division for all rationals of the form  

q

p
(q  0), p & q are integers, two things can 

happen either the remainder becomes zero or 
never becomes zero. 

 Type (1) :  Eg : 
8

7
 = 0.875   

     70 
64 
  60 
  56 
    40 
    40 
     × 

8 0.875  

 This decimal expansion 0.875 is called 
terminating.   

 If remainder is zero then decimal expansion 
ends (terminates) after finite number of steps. 
These decimal expansion of such numbers 
terminating.  

 Type (2) : 

 Eg : 
3

1
 = 0.333………. 

        = 3.0   

   10 
  9 
  10 
    9  
    1……

3 0.33……

   

 

or 
7

1
 = 0.142857142857…..  

          = 142857.0  

      

 10 
  7 
  30 
  28  
    20 
    14 
      60 
      56 
        40 
        35 
          50 
          49 
            1…. 

7 0.14285…. 

  

 In both examples remainder is never becomes 
zero so the decimal expansion is never ends after 
some or infinite steps of division. These type of 
decimal expansions are called non terminating.  

 In above examples, after Ist step & 6 steps of 
division (respectively) we get remainder equal to 
dividend so decimal expansion is repeating 
(recurring). 

 So these are called non terminating recurring 
decimal expansions.  

 Both the above types (1 & 2) are rational 
numbers. 

 Types (3) :   

 Eg :The decimal expansion 0.327172398……is 
not ends any where, also there is no arrangement 
of digits (not repeating) so these are called non 
terminating not recurring.   

 These numbers are called irrational numbers. 

 Eg. :    

 0.1279312793         rational          terminating  

 0.1279312793….    rational           non terminating  

 or 12793.0                               & recurring 

 0.32777    rational   terminating 

 732.0  or    rational   non terminating 

 0.32777…….      & recurring  



 

 

 0.5361279   rational   terminating  

 0.3712854043…. irrational   non terminating  

         non recurring 

 0.10100100010000 rational  terminating 

 0.10100100010000….   irrational  non terminating 

         non recurring. 

 

Rational no. Irrational no. 

If remainder = 0 If remainder  0 

Terminating 
& 

Non repeating 

Non terminating 
& 

repeating (recurring) 

& rem. = devidend 
If remainder  0 

& rem.  any devidend 

Non terminating 
non repeating 

Real Numbers 

  

Eg : 6.3
5

18
         Eg : ....33.0

3

1
 ..        Eg : 0.671234….. 

                                            = 3.0            Eg : 1.343634003908…... 
 

EXAMPLES 
 

Ex.1 Insert a rational and an irrational number 
between 2 and 3. 

Sol.  If a and b are two positive rational numbers 
such that ab is not a perfect square of a 

rational number, then ab  is an irrational 
number lying between a and b. Also, if a,b are 

rational numbers, then 
2

ba 
 is a rational 

number between them. 

   A rational number between 2 and 3 is  

   
2

32
 = 2.5    

  An irrational number between 2 and 3 is  

  32  = 6   

Ex.2 Find two irrational numbers between 2 and 
2.5. 

Sol.  If a and b are two distinct positive rational 
numbers such that ab is not a perfect square 

of a rational number, then ab  is an 
irrational number lying between a and b. 

   Irrational number between 2 and 2.5 is  

   5.22  = 5  

  Similarly, irrational number between 2 and 

5  is 52  

  So, required numbers are 5  and 52 . 

Ex.3 Find two irrational numbers lying between  

2  and 3 . 

Sol.  We know that, if a and b are two distinct 

positive irrational numbers, then ab  is an 
irrational number lying between a and b. 

   Irrational number between 2  and 3  is 

32   = 6  = 61/4  

  Irrational number between 2  and 61/4 is 
4/162   = 21/4 × 61/8. 

  Hence required irrational number are 61/4 and  

  21/4 × 61/8.       

Ex.4 Find two irrational numbers between 0.12 and 
0.13.  

Sol.  Let a = 0.12 and b = 0.13. Clearly, a and b are 
rational numbers such that a < b.  

  We observe that the number a and b have a 1 
in the first place of decimal. But in the second 
place of decimal a has a 2 and b has 3. So, we 
consider the numbers  

     c = 0.1201001000100001 ...... 

  and,     d = 0.12101001000100001....... 

  Clearly, c and d are irrational numbers such 
that a < c < d < b.   

  Theorem : Let p be a prime number. If p 
divides a2, then p divides a, where a is a 
positive integer.  

  Proof : Let the prime factorisation of a be as 
follows : 

  a = p1p2…..pn, where p1,p2,…..pn are primes, 
not necessarily distinct. 

  Therefore,  

  a2 = (p1p2…..pn) (p1p2 ….. pn) = 2
2

2
1 pp ….. 2

np . 

  Now, we are given that p divides a2. 
Therefore, from the Fundamental Theorem of 
Arithmetic, it follows that p is one of the 
prime factors of a2. However, using the 



 

 

uniqueness part of the Fundamental Theorem 
of Arithmetic, we realise that the only prime 
factors of a2 are p1, p2,…, pn. So p is one of 
p1, p2,……, pn. 

  Now, since a = p1 p2 …… pn, p divides a.  

  We are now ready to give a proof that 2  is 
irrational. 

  The proof is based on a technique called 
‘proof by contradiction’.  

Ex.5 Prove that 

  (i) 2  is irrational number  

  (ii) 3  is irrational number 

  Similarly 11,7,5 …... are irrational 
numbers. 

Sol.  (i) Let us assume, to the contrary, that 2  is 
rational. 

  So, we can find integers r and s ( 0) such 

that .
s

r
2   

  Suppose r and s not having a common factor 
other than 1. Then, we divide by the common 

factor to get ,
b

a
2   where a and b are 

coprime. 

  So, 2b  = a. 

  Squaring on both sides and rearranging, we 
get 2b2 = a2. Therefore, 2 divides a2. Now, by 
Theorem  it following that 2 divides a. 

  So, we can write a = 2c for some integer c. 

  Substituting for a, we get 2b2 = 4c2, that is,  
b2 = 2c2. 

  This means that 2 divides b2, and so 2 divides 
b (again using Theorem  with p = 2). 

  Therefore, a and b have at least 2 as a 
common factor. 

  But this contradicts the fact that a and b have 
no common factors other than 1. 

  This contradiction has arisen because of our 

incorrect assumption that 2  is rational. 

  So, we conclude that 2  is irrational. 

 (ii) Let us assume, to contrary, that 3  is 
rational. That is, we can find integers a and b 

( 0) such that 
b

a
3  .  

  Suppose a and b not having a common factor 
other than 1, then we can divide by the 
common factor, and assume that a and b are 
coprime.  

  So, a3b  . 

  Squaring on both sides, and rearranging, we 
get 3b2 = a2. 

  Therefore, a2 is divisible by 3, and by Theorem, 
it follows that a is also divisible by 3. 

  So, we can write a = 3c for some integer c. 

  Substituting for a, we get 3b2 = 9c2, that is,  
b2 = 3c2. 

  This means that b2 is divisible by 3, and so b is 
also divisible by 3 (using Theorem with p = 3). 

  Therefore, a and b have at least 3 as a 
common factor. 

  But this contradicts the fact that a and b are 
coprime. 

  This contradicts the fact that a and b are 
coprime. 

  This contradiction has arisen because of our 

incorrect assumption that 3  is rational. 

  So, we conclude that 3  is irrational.     

Ex.6 Prove that 37   is irrational 

Sol.  Method I : 

  Let 37   is rational number 

  
q

p
37    (p, q are integers, q  0) 

   3
q

p
7   

  
q

pq7
3


  

  Here p, q are integers 

  
q

pq7 
 is also integer 



 

 

  LHS = 3  is also integer but this is 

contradiction that 3  is irrational so our 

assumption is wrong that )37(   is rational  

   37   is irrational   proved.  

  Method II : 

  Let 37   is rational  

  we know sum or difference of two rationals is 
also rational  

   )37(7   

  = 3  = rational  

  but this is contradiction that 3  is irrational  

   )37(   is irrational     proved. 

Ex.7 Prove that :   

  (i) 
3

5
   (ii) 72  are irrationals 

Sol. (i)  Let 
3

5
 is rational  

   










3

5
3  = 5  is rational  

  ( product of two rationals is also rational) 

  but this is contradiction that 5  is irrational 

  
3

5
 is irrational proved. 

 (ii) Let 72  is rational  

    7
2

1
)72(    

  ( division of two rational no. is also 
rational) 

    7  is rational  

   but this is contradiction that 7  is  

   irrational 

    72  is irrational      

       proved 

  Theorem 1 :  

  Let x be a rational number whose decimal 
expansion terminates. Then x can be 

expressed in the form 
q

p
, where p and q are 

coprime and the prime factorization of q is of 
the form 2n5m, where n, m are non-negative 
integers. 

  (A) Numbers are terminating (remainder = zero) 

  Eg : 256.0
10

256

)52(

2

5

2

125

32
33

8

3

5




  

  Eg : 
2222

2

)10(

36

)52(

36

25

29

25

9








 36.0  

  So we can convert a rational number of the 

form 
q

p
, where q is of the form 2n5m to an 

equivalent rational number of the form 
b

a
 

where b is a power of 10. These are 
terminates. 

OR  

  Theorem 2 :  

  Let x = 
q

p
 be a rational number, such that the 

prime factorization of q is of the form 2n 5m, 
where n, m are non-negative integers. Then x 
has a decimal expansion which terminates.  

  (B) Non terminating & recurring  

     Eg : 142857.0
7

1
 = 0.142857142857..... 

   Since denominator 7 is not of the form  
2n 5m so we zero (0) will not show up as a 
remainder. 

  Theorem 3 : 

  Let x = 
q

p
 be a rational number, such that the 

prime factorization of q is not of the form 
2n5m, where n, m are non-negative integers. 
Then, x has a decimal expansion which is 
non-terminating repeating (recurring). 

  From the discussion above, we can conclude 
that the decimal expansion of every rational 
number is either terminating or non-
terminating repeating. 



 

 

  Eg : From given rational numbers check 
terminating or non terminating  

  (1) 
555

5

5 )10(

)3213(

52

213

)5(

13

3125

13 





   

   = terminating   

  (2) 
33

3

3 )10(

12517

)52(

517

2

17

8

17 





   

   = terminating 

  (3) 
1375

2

455

64 6


  ( we can not remove 7 

& 13 from dinominator) non-terminating 
repeating ( no. is rational it is always 
repeating or recurring)     

  (4) 
6

5

24

5

24 10

53

10)52(

53

102

53

1600

15 









  

   = terminating  

  (5) 
3)7(

29

343

29
  = non terminating   

  (6) 
3323 )10(

523

)52(

523

52

23 





   

   = terminating  

  (7) 
575 752

129


 = 

57

2

7)52(

2433




  

   = non terminating ( 7 cannot remove 
from denominator)  

  (8) 
10

22

5

2

35

32

15

6 





   

   = terminating  

  (9) 
100

235

50

35 
  = terminating  

  (10) 
3527

117

307

117

210

77








  

   = non terminating      

 EUCLID’S DIVISION LEMMA OR 
EUCLID’S DIVISION ALGORITHM 


  

 For any two positive integers a and b, there exist 
unique integers q and r satisfying a = bq + r, 
where 0  r < b.  

 For Example  

 (i) Consider number 23 and 5, then: 

  23 = 5 × 4 + 3 

  Comparing with a = bq + r; we get: 

  a = 23, b = 5, q = 4, r = 3  

  and 0  r < b (as 0  3 < 5). 

 (ii) Consider positive integers 18 and 4. 

  18 = 4 × 4 + 2 

   For 18 (= a) and 4(= b) we have q = 4,  

   r = 2 and  0  r < b. 

  In the relation a = bq + r, where 0  r < b is 
nothing but a statement of the long division of 
number a by number b in which q is the 
quotient obtained and r is the remainder.  

  Thus, dividend = divisor × quotient + 
remainder  a = bq + r 

 H.C.F. (Highest Common Factor)  

 The H.C.F. of two or more positive integers is the 
largest positive integer that divides each given 
positive number completely. 

 i.e., if positive integer d divides two positive 
integers a and b then the H.C.F. of a and b is d. 

 For Example 

 (i) 14 is the largest positive integer that divides 
28 and 70 completely; therefore H.C.F. of 28 
and 70 is 14. 

 (ii) H.C.F. of 75, 125 and 200 is 25 as 25 divides 
each of 75, 125 and 200 completely and so 
on. 

 Using Euclid’s Division Lemma For Finding 
H.C.F. 

 Consider positive integers 418 and 33. 

 Step-1  

  Taking bigger number (418) as a and smaller 
number (33) as b  

  express the numbers as a = bq + r 

   418 = 33 × 12 + 22 

 Step-2  

  Now taking the divisor 33 and remainder 22; 
apply the Euclid’s division algorithm to get: 

  33 = 22 × 1 + 11   [Expressing as a = bq + r] 

 Step-3  



 

 

  Again with new divisor 22 and new 
remainder 11; apply the Euclid’s division 
algorithm to get: 

  22 = 11 × 2 + 0  

 Step-4  

  Since, the remainder = 0 so we cannot 
proceed further. 

 Step-5  

  The last divisor is 11 and we say H.C.F. of 
418 and 33 = 11 

Verification : 

(i) Using factor method:  

  Factors of 418 = 1, 2, 11, 19, 22, 38, 209 and 
418 and,  

 Factor of 33 = 1, 3, 11 and 33.  

 Common factors = 1 and 11 

  Highest common factor = 11 i.e., H.C.F. = 11  

(ii) Using prime factor method:  

 Prime factors of 418 = 2, 11 and 19. 

 Prime factors of 33 = 3 and 11.  

   H.C.F. = Product of all common prime 
factors  = 11. For any two positive integers a 
and b which can be expressed as a = bq + r, where 
0  r < b, the, H.C.F. of (a, b) = H.C.F. of (q, r) 
and so on. For number 418 and 33 

   418 = 33 × 12 + 22 

   33 = 22 × 1 + 11 

 and   22 = 11 × 2 + 0 

  H.C.F. of (418, 33) = H.C.F. of (33, 22) 

          = H.C.F. of (22, 11) = 11. 

 EXAMPLES  

Ex.8 Using Euclid’s division algorithm, find the 
H.C.F. of       [NCERT]  

  (i) 135 and 225  (ii) 196 and 38220 

  (iii) 867 and 255 

Sol.(i)   Starting with the larger number i.e., 225, we get:  

   225 = 135 × 1 + 90 

  Now taking divisor 135 and remainder 90, we 
get   135 = 90 × 1 + 45 

  Further taking divisor 90 and remainder 45, 
we get  90 = 45 × 2 + 0 

   Required H.C.F. = 45   (Ans.) 

 (ii) Starting with larger number 38220, we get: 

     38220 = 196 × 195 + 0 

  Since, the remainder is 0 

     H.C.F. = 196   (Ans.) 

 (iii) Given number are 867 and 255 

    867 = 255 × 3 + 102 (Step-1) 

     255 = 102 × 2 + 51 (Step-2) 

     102 = 51 × 2 + 0  (Step-3)  

     H.C.F. = 51        (Ans.) 

Ex.9 Show that every positive integer is of the 
form 2q and that every positive odd integer is 
of the from 2q + 1, where q is some integer. 

Sol.  According to Euclid’s division lemma, if a 
and b are two positive integers such that a is 
greater than b; then these two integers can be 
expressed as 

   a = bq + r; where 0  r < b 

  Now consider  

   b = 2; then a = bq + r will reduce to  

   a = 2q + r; where 0  r < 2,  

  i.e., r = 0 or r = 1 

  If  r = 0, a = 2q + r  a = 2q  

  i.e., a is even 

  and, if   r = 1, a = 2q + r  a = 2q + 1  

  i.e., a is add; 

  as if the integer is not even; it will be odd. 

  Since, a is taken to be any positive integer so 
it is applicable to the every positive integer 
that when it can be expressed as 

    a = 2q 

   a is even and when it can expressed as  

  a = 2q + 1; a is odd. 

     Hence the required result.  

Ex.10 Show that any positive odd integer is of the 
form 4q + 1 or 4q + 3, where q is some 
integer. 

Sol.  Let a is b be two positive integers in which a is 
greater than b. According to Euclid’s division 
algorithm; a and b can be expressed as 



 

 

  a = bq + r, where q is quotient and r is 
remainder and 0  r < b.  

  Taking b = 4, we get: a = 4q + r,  

  where 0  r < 4 i.e., r = 0, 1, 2 or 3 

  r = 0  a = 4q, which is divisible by 2 and so 
is even.   

  r = 1  a = 4q + 1, which is not divisible by 
2 and so is odd.     

  r = 2  q = 4q + 2, which is divisible by 2 
and so is even.    

     and r = 3  q = 4q + 3, which is not divisible 
by 2 and so is odd. 

     Any positive odd integer is of the form 

  4q + 1 or 4q + 3; where q is an integer.  

      Hence the required result. 

Ex.11 Show that one and only one out of n; n + 2 or  
n + 4 is divisible by 3, where n is any positive 
integer.                                                                         

Sol.  Consider any two positive integers a and b 
such that a is greater than b, then according to 
Euclid’s division algorithm: 

  a = bq + r; where q and r are positive integers 
and 0  r < b 

  Let a = n and b = 3, then 

  a = bq + r  n = 3q + r; where 0  r < 3. 

  r = 0  n = 3q + 0 = 3q 

  r = 1  n = 3q + 1 and r = 2  n = 3q + 2 

  If n = 3q; n is divisible by 3 

  If n = 3q + 1; then n + 2 = 3q + 1 + 2  

    = 3q + 3; which is divisible by 3 

     n + 2 is divisible by 3  

  If n = 3q + 2; then n + 4 = 3q + 2 + 4 

    = 3q + 6; which is divisible by 3  

     n + 4 is divisible by 3   

  Hence, if n is any positive integer, then one 
and only one out of n, n + 2 or n + 4 is 
divisible by 3.   

      Hence the required result. 

Ex.12 Show that any positive integer which is of the 
form 6q + 1 or 6q + 3 or 6q + 5 is odd, where 
q is some integer. 

Sol.  If a and b are two positive integers such that 
a is greater than b; then according to Euclid’s 
division algorithm; we have 

  a = bq + r; where q and r are positive integers 
and 0  r < b. 

  Let b = 6, then 

  a = bq + r  a = 6q + r; where 0  r < 6. 

  When r = 0  a = 6q + 0 = 6q;  

  which is even integer 

  When r = 1  a = 6q + 1   

  which is odd integer  

  When r = 2  a = 6q + 2  which is even. 

  When r = 3  a = 6q + 3  which is odd. 

  When r = 4  a = 6q + 4  which is even. 

  When r = 5  a = 6q + 5  which is odd. 

  This verifies that when r = 1 or 3 or 5; the 
integer obtained is 6q + 1 or 6q + 3 or 6q + 5 
and each of these integers is a positive odd 
number. 

      Hence the required result. 

Ex.13 Use Euclid’s Division Algorithm to show that 
the square of any positive integer is either of 
the form 3m or 3m + 1 for some integer m.  

Sol.  Let a and b are two positive integers such that 
a is greater than b; then: 

  a = bq + r; where q and r are also positive 
integers and 0  r < b 

  Taking b = 3, we get: 

    a = 3q + r; where 0  r < 3 

   The value of positive integer a will be  
3q + 0, 3q + 1 or 3q + 2  

  i.e., 3q, 3q + 1 or 3q + 2. 

  Now we have to show that the squares of 
positive integers 3q, 3q + 1 and 3q + 2 can be 
expressed as 3m, or 3m + 1 for some integer 
m. 

  Square of 3q = (3q)2  

  = 9q2 = 3(3q2) = 3m; 3 where m is some 
integer.  

  Square of 3q + 1 = (3q + 1)2 

  = 9q2 + 6q + 1  



 

 

  = 3(3q2 + 2q) + 1 = 3m + 1 for some integer m. 

  Square of 3q + 2 = (3q + 2)2 

  = 9q2 + 12q + 4  

  = 9q2 + 12q + 3 + 1 

  = 3(3q2 + 4q + 1) + 1 = 3m + 1 for some integer m. 

  The square of any positive integer is either of 
the form 3m or 3m + 1 for some integer m. 

      Hence the required result. 

Ex.14 Use Euclid’s Division Algorithm to show that 
the cube of any positive integer is either of 
the 9m, 9m + 1 or 9m + 8 for some integer  m. 

Sol.  Let a and b be two positive integers such that 
a is greater than b; then: 

  a = bq + r; where q and r are positive integers 
and 0  r < b. 

  Taking b = 3, we get: 

   a = 3q + r; where 0  r < 3 

   Different values of integer a are  

   3q, 3q + 1 or 3q + 2. 

  Cube of 3q = (3q)3 = 27q3 = 9(3q3) = 9m; 
where m is some integer. 

  Cube of 3q + 1 = (3q + 1)3 

   = (3q)3 + 3(3q)2 ×1 + 3(3q) × 12 + 13 

    [Q (q + b)3 = a3 + 3a2b + 3ab2 + 1]  

   = 27q3 + 27q2 + 9q + 1 

   = 9(3q3 + 3q2 + q) + 1 

   = 9m + 1; where m is some integer. 

  Cube of 3q + 2 = (3q + 2)3 

   = (3q)3 + 3(3q)2 × 2 + 3 × 3q × 22 + 23 

   = 27q3 + 54q2 + 36q + 8 

   = 9(3q3 + 6q2 + 4q) + 8 

   = 9m + 8; where m is some integer. 

    Cube of any positive integer is of the 
form 9m or 9m + 1 or 9m + 8. 

      Hence the required result. 

 

 THE FUNDAMENTAL THEOREM OF 
ARITHMETIC 


  

 Statement : Every composite number can be 
decomposed as a product prime numbers in a 
unique way, except for the order in which the 
prime numbers occur.   

 For example :  

 (i)  30 = 2 × 3 × 5, 30 = 3 × 2 × 5, 30 = 2 × 5 × 3 and so on. 

 (ii) 432 = 2 × 2 × 2 × 2 × 3 × 3 × 3 = 24 × 33      

      or 432 = 33 × 24.  

 (iii) 12600 = 2 × 2 × 2 × 3 × 3 × 5 × 5 × 7  

  = 23 × 32 × 52 × 7 

 In general, a composite number is expressed as 
the product of its prime factors written in 
ascending order of their values. 

 e.g., (i) 6615 = 3 × 3 × 3 × 5 × 7 × 7    

    = 33 × 5 × 72   

   (ii) 532400 = 2 × 2 × 2 × 2 × 5 × 5 × 11 × 11 × 11 
  

 EXAMPLES  

Ex.15 Consider the number 6n, where n is a natural 
number. Check whether there is any value of 
n  N for which 6n is divisible by 7.   

Sol.  Since,  6 = 2 × 3; 6n = 2n × 3n 

   The prime factorisation of given number 6n       

   6n is not divisible by 7.    (Ans) 

Ex.16 Consider the number 12n, where n is a natural 
number. Check whether there is any value of 
n  N for which 12n ends with the digit zero. 

Sol.  We know, if any number ends with the digit 
zero it is always divisible by 5. 

   If 12n ends with the digit zero, it must be 
divisible by 5. 

  This is possible only if prime factorisation of 
12n contains the prime number 5. 

  Now, 12 = 2 × 2 × 3 = 22 × 3  

   12n = (22 × 3)n = 22n × 3n  

  i.e., prime factorisation of 12n does not 
contain the prime number 5.  

   There is no value of n  N for which    

      12n ends with the digit zero.    (Ans)  

   USING THE FACTOR TREE 
   

 EXAMPLES  



 

 

Ex.17 Find the prime factors of : 

  (i) 540  (ii) 21252  (iii) 8232  

 (i)    

3 

3 

3 

2 

  540  

  270  

  135  

   45  

   15  

    5  

2 

540 divided by 2 gives 270 

270 divided by 2 gives 135 

135 divided by 3 gives 45 

45 divided by 3 gives 15 

15 divided by 3 gives 5 

   

  5 is   a prime number and so cannot be further 
divided by any prime number  

   540 = 2 × 2 × 3 × 3 × 3 × 5 = 22 × 33 ×5 

 (ii)   

11

7 

3 

2 

 21252 

10626 

  5313 

 1771  

   253  

   23  

2                

   21252 = 2 × 2 × 3 × 7 × 11 × 23  

      = 22 × 3 × 11 × 7 × 23. 

 (iii)       

7 

7 

3 

2 

2 

  8232 

 4116 

  2058 

 1029  

   343  

   49  

2 

    7  

   

   8232 = 2 × 2 × 2 × 3 × 7 × 7 × 7  

   = 23 × 3 × 73. 

Ex.18 Find the missing numbers a, b and c in the 
following factorisation: 

            

2 

2 

2     a  

    b  

    b  

    17  

 

  Can you find the number on top without 
finding the other ? 

Sol.   c = 17 × 2 = 34 

   b = c × 2 = 34 × 2 = 68 and 

   a = b × 2 = 68 × 2 = 136 

     i.e., a = 136, b = 68 and c = 34. (Ans) 

  Yes, we can find the number on top without 
finding the others. 

  Reason: The given numbers 2, 2, 2 and 17 
are the only prime factors of the number on 
top and so the number on top = 2 × 2 × 2 × 17 
= 136 

 USING THE FUNDAMENTAL THEOREM OF 
ARITHMETIC TO FIND H.C.F. AND L.C.M. 


  

   EXAMPLES  

Ex.19 Find the L.C.M. and H.C.F. of the following 
pairs of integers by applying the Fundamental 
theorem of Arithmetic method i.e., using the 
prime factorisation method. 

  (i)   26 and 91 (ii) 1296 and 2520  

  (iii) 17 and 25 

Sol. (i)  Since, 26 = 2 × 13 and, 91 = 7 × 13     

   

 2    26  

  13  

  and 7    91  

  13   

   L.C.M. = Product of each prime factor 
with highest powers. = 2 × 13 × 7 = 182. (Ans) 

  i.e., L.C.M. (26, 91) = 182.      (Ans) 

  H.C.F. = Product of common prime factors 
with lowest powers. = 13.          

  i.e., H.C.F (26, 91) = 13.  

 (ii)  Since, 1296 = 2 × 2 × 2 × 2 × 3 × 3 × 3 × 3 = 24 × 34   

  and,     2520 = 2 × 2 × 2 × 3 × 3 × 5 × 7 

             = 23 × 32 × 5 × 7 



 

 

     

 

3 

3 

3 

2 

2 

    648 

  324 

   162 

   81  

   27  

    9  

2 

    3  

  1296 2

5 

3 

3

2 

2 

  2520 

 1260 

   630 

  315  

   105  

    35  

2 

    7  

 

  L.C.M. = Product of each prime factor with  
       highest powers   

       = 24 × 34 × 5 × 7 = 45,360      

  i.e.,  L.C.M. (1296, 2520) = 45,360       (Ans) 

  H.C.F. = Product of common prime factors 
with lowest powers. 

   = 23 × 32 = 8 × 9 = 72 

  i.e., H.C.F. (1296, 2520) = 72.   (Ans) 

 (iii) Since,  17 = 17 

  and,  25 = 5 × 5 = 52  

   L.C.M. = 17 × 52 = 17 × 25 = 425   

  and, H.C.F. = Product of common prime 
factors  with lowest powers 

  = 1, as given numbers do not have any 
common prime factor. 

  In example 19 (i) : 

  Product of given two numbers = 26 × 91  
= 2366 

  and, product of their  

  L.C.M. and H.C.F. = 182 × 13 = 2366   

   Product of L.C.M and H.C.F of two 
given numbers = Product of the given 
numbers 

  In example 19 (ii) : 

  Product of given two numbers  

    = 1296 × 2520 = 3265920 

  and, product of their  

  L.C.M. and H.C.F. = 45360 × 72 = 3265920   

  L.C.M. (1296, 2520) × H.C.F. (1296, 2520)  

  = 1296 × 2520 

  In example 19 (iii) : 

  The given numbers 17 and 25 do not have 
any common prime factor. Such numbers are 
called co-prime numbers and their H.C.F. is 
always equal to 1 (one), whereas their L.C.M. 
is equal to the product of the numbers. 

  But in case of two co-prime numbers also, the 
product of the numbers is always equal to the 
product of their L.C.M. and their H.C.F.  

  As, in case of co-prime numbers 17 and 25; 

  H.C.F. = 1; L.C.M. = 17 × 25 = 425; 

  product of numbers = 17 × 25 = 425 

  and product of their H.C.F. and L.C.M.  

  = 1 × 425 = 425.     

  

 
  For any two positive integers : 
  Their L.C.M. × their H.C.F.  
     = Product of the number  

   (i) L.C.M. = 
.F.C.H

numberstheofoductPr
 

     (ii) H.C.F. = 
.M.C.L

numberstheofoductPr
 

     (iii) One number = 
numberOther

.F.C.H.M.C.L 
 

 
 

Ex.20 Given that H.C.F. (306, 657) = 9,  

  find L.C.M. (306, 657) 

Sol.  H.C.F. (306, 657) = 9 means H.C.F. of  

  306 and 657 = 9 

  Required L.C.M. (306, 657) means required 
L.C.M. of 306 and 657. 

  For any two positive integers; 

  their L.C.M. = 
.F.C.HTheir

numberstheofoductPr
 

  i.e., L.C.M. (306, 657) = 
9

657306
 = 22,338. 

Ex.21 Given that L.C.M. (150, 100) = 300, find 
H.C.F. (150, 100)  

Sol.  L.C.M. (150, 100) = 300 

    L.C.M. of 150 and 100 = 300 

  Since, the product of number 150 and 100  

   = 150 × 100  



 

 

  And, we know :  

  H.C.F. (150, 100) = 
)100,150(.M.C.L

100and150ofoductPr
   

        = 
300

100150
 = 50.  

Ex.22 The H.C.F. and L.C.M. of two numbers are 
12 and 240 respectively. If one of these 
numbers is 48; find the other numbers. 

Sol.  Since, the product of two numbers  

   = Their H.C.F. × Their L.C.M. 

   One no. × other no. = H.C.F. × L.C.M. 

 Other no. = 
48

24012
 = 60.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Ex.23 Explain why 7 × 11 × 13 + 13 and  

  7 × 6 × 5 × 4 × 3 + 5 are composite numbers.  

Sol.  Since,   

  7 × 11 × 13 + 13 = 13 × (7 × 11 + 1) 

   = 13 × 78 = 13 × 13 × 3 × 2;  

  that is, the given number has more than two 
factors and it is a composite number.  

  Similarly, 7 × 6 × 5 × 4 × 3 + 5 

   = 5 × (7 × 6 × 4 × 3 + 1) 

   = 5 × 505 = 5 × 5 × 101 

  The given no. is a composite number.     

       

    

   



 

 

EXERCISE 
 

Q.1  State whether the given statement is true or 
false : 

 (i) The sum of two rationals is always rational 
 (ii) The product of two rationals is always 

rational 
 (iii) The sum of two irrationals is an irrational. 

 (iv) The product of two irrationals is an 
irrational 

 (v) The sum of a rational and an irrational is 
irrational 

 (vi) The product of a rational and an irrational 
is irrational  

 

Q.2  Define (i) rational numbers (ii) irrational  
numbers (iii) real numbers. 

 

Q.3 Classify the following numbers as rational or 
irrational : 

 (i) 
7

22
  (ii) 3.1416  

 (iii)   (iv) 142857.3  
 (v) 5.636363...... (vi) 2.040040004...... 
 (vii) 1.535335333.... (viii) 3.121221222... 

 (ix) 21   (x) 3 3  
 

Q.4 Prove that each of the following numbers is 
irrational : 

 (i) 6   (ii) )32(   

 (iii) )23(   (iv) )52(   

 (v) )235(   (vi) 73  

 (vii) 
5

3
  (viii) )532(   

 (ix) )53(   
 

Q.5 Prove that 
3

1
 is irrational. 

 

Q.6 Without actual division, show that each of the 
following rational numbers is a non-terminating 
repeating decimal : 

 (i) 
)32(

11
3 

  (ii) 
)532(

73
33 

 (iii) 
35

9
 

 (iv) 
147

32
   (v) 

455

64
   (vi) 

210

77
  

 (vii) 
343

29
 (viii) 

)752(

129
572 

 

Q.7 Without actual divison, show that each of the 
following rational numbers is a terminating 
decimal. Express each in decimal form : 

 (i) 
)52(

23
23 

  (ii) 
125

24
  (iii) 

320

17
 

 (iv) 
800

171
 (v) 

1600

15
 (vi) 

3125

19
 

 

Q.8 Express each of the following as a fraction in 
simplest form : 

 (i) 8.0   (ii) 4.2  (iii) 24.0  

 (iv) 21.0  (v) 42.2  (vi) 653.0  
 
 

Q.9 Decide whether the given number is rational or 
not : 

 (i) 53.123456789 (ii) 123456789.31  

 (iii) 0.12012001200012... 
 Give reason to support your answer. 

 
Q.10 What do you mean by Euclid's division 

algorithm. 

 
Q.11 A number when divided by 61 gives 27 as 

quotient and 32 as remainder. Find the number. 

 
Q.12 By what number should 1365 be divided to get 

31 as quotient and 32 as remainder ? 

 
Q.13 Using Euclid's algorithm, find the HCF of 
 (i) 405 and 2520 (ii) 504 and 1188 
 (iii) 960 and 1575 

 
Q.14 Using prime factorisation, find the HCF and 

LCM of 
 (i) 144, 198 (ii) 396, 1080 
 (iii) 1152, 1664 

 
Q.15 Using prime factorisation, find the HCF and 

LCM of 
 (i) 24, 36, 40 
 (ii) 30, 72, 432 
 (iii) 21, 28, 36, 45 

 



 

 

Q.16 The HCF of two numbers is 23 and their LCM 
is 1449. If one of the numbers is 161, find the 
other. 

 
Q.17 The HCF of two numbers is 11 and their LCM 

is 7700. If one of the numbers is 275, find the 
other. 

 

Q.18 Three pieces of timber 42 m, 49 m and 63 m 
long have to be divided into planks of the same 
length. What is the greatest possible length of 
each plank ? 

 

Q.19 Find the greatest possible length which can be 
used to measure exactly the length 7 m, 3 m 85 cm 
and 12 m 95 cm. 

 

Q.20 Find the maximum number of students among 
whom 1001 pens and 910 pencils can be 
distributed in such a way that each student gets 
the same number of pens and the same number 
of pencils. 

 

Q.21 Three sets of English, Mathematics and Science 
books containing 336, 240 and 96 books 
respectively have to be stacked in such a way 
that all the books are stored subject wise and 
the height of each stack is the same. How many 
stacks will be there ? 

Q.22 Find the least number of square tiles required to 
pave the ceiling of a room 15 m 17 cm long and 
9 m 2 cm broad. 

Q.23 Three measuring rods are 64 cm, 80 cm and  
96 cm in length. Find the least length of cloth 
that can be measured an exact number of times, 
using any of the rods. 

 

Q.24 The traffic lights at three different road 
crossings change after every 48 seconds,  
72 seconds and 108 seconds respectively. If 
they all change simultaneously at 8 hours, then 
at what time will they again change 
simultaneously ? 

 

Q.25 An electronic device makes a beep after every 
60 seconds. Another device makes a beep after 
every 62 seconds. They beeped together at  
10 am. At what time will they beep together at 
the earliest ? 

 

Q.26 Six bells commence tolling together and toll at 
intervals of 2, 4, 6, 8, 10, 12 minutes 
respectively. In 30 hours, how many times do 
they toll together ? 

 
 
 
 
 
 



 

 

ANSWER KEY
 

1.  (i) True     (ii) True      (iii) False     (iv) False     (v) True     (vi) True   

3.  (i) Rational     (ii) Rational   (iii) Irrational  (iv) Rational    (v) Rational    (vi) Irrational  

 (vii) Irrational (viii)  Irrational    (ix) Irrational   (x) Irrational 

7. (i) 0.115    (ii) 0.192      (iii) 0.053125  (iv) 0.21375    (v) 0.009375    (vi) 0.00608 

8. (i) 
9

8
    (ii) 

9

22
       (iii) 

33

8
    (iv) 

90

11
     (v) 

45

101
     (vi) 

495

181
 

9.  (i) Rational, since it is a terminating decimal   (ii) Rational, since it is a repeating decimal      

     (iii) Not rational, since it is a non-terminating and non-repeating decimal   

11. 1679   12. 43    13. (i) 45    (ii) 36      (iii) 15 

14. (i) HCF = 18, LCM = 1584   (ii) HCF = 36, LCM = 11880      (iii) HCF = 128, LCM = 14976 

15. (i) HCF = 4, LCM = 360   (ii) HCF = 6, LCM = 2160   (iii) HCF = 1, LCM = 1260 

16. 207    17. 308    18. 7 m    19. 35 cm  20. 91   21. 14 

22. 814    23. 9.6 m    24. 8 : 7 : 12 hrs  25. 10 : 31 hrs 26. 16 times  


