Total Marks: 30

[30]

* Choose the right answer from the given options. [1 Marks Each]

1. If one zero of the quadratic polynomial $x^2 + 3x + k$ is 2, then the value of k is

(B) -10

(D) -5

2. If α, β are the zeros of the polynomial $f(x) = x^2 + x - 1$, then $\frac{1}{\alpha} + \frac{1}{\beta} = x^2 + x - 1$

(D) none of these

3. If α, β are the zeros of the polynomial $p(x)=5x^2+3x-7$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to

(A) $-\frac{3}{7}$

(D) $-\frac{5}{7}$

4. The number of polynomials having zeros -3 and 5 is

(D) more than 3

5. If α, β are the zeros of the polynomial $f(x) = ax^2 + bx + c$, then $\frac{1}{\alpha^2} + \frac{1}{\beta^2} =$

6. If α, β are the zeros of polynomial $f(x) = x^2 - p(x+1) - c$, then $(\alpha+1)(\beta+1) =$

(D) 1 + c

7. What should be subtracted to the polynomial $x^2 - 16x + 30$, so that 15 is the zero of the resulting polynomial?

(C) 15

8. If x+2 is a factor of $x^2+ax+2b$ and a+b=4, then

(A) a = 1, b = 3

(B) a = 3, b = 1

(C) a = -1, b = 5

(D) a = 5, b = -1

9. If the zeroes of the quadratic polynomial $x^2+(a+1)x+b\;$ are 2 and -3 , then

(A) a = -7, b = -1

(B) a = 5, b = -1

(C) a = 2, b = -6

(D) a = 0, b = -6

10. If α and β are the zeroes of the polynomial $x^2-(k+6)x+2(2k-1)$ such that $\alpha+\beta=\frac{\alpha\beta}{2}$, then the value of k is (D) 7

(B) 2

(C) 14

11. If α and β are the zeroes of the polynomial x^2-1 , then the value of $(\alpha+\beta)$ is

(D) 0

12. Which of the following is a quadratic polynomial having zeroes $-\frac{2}{3}$ and $\frac{2}{3}$?

(A) $4x^2 - 9$

(B) $\frac{4}{9}(9x^2+4)$

(D) $5(9x^2-4)$

13. If α, β are the zeroes of the polynomial $p(x)=4x^2-3x-7$, then $\frac{1}{\alpha}+\frac{1}{\beta}$ is equal to

(B) $-\frac{7}{2}$

(D) $-\frac{3}{7}$

14. If a polynomial p(x) is given by $p(x) = x^2 - 5x + 6$, then the value of p(1) + p(4) is

(A) 0

(C) 2

(D) -4

15. The graph of a polynomial f(x) is shown in Fig. The number of zeroes of f(x) is

(A) 3

(B) 2

(C) 1

(D) 4

16.	If the sum of the zeroes of the potantial (A) $\sqrt{2}$	olynomial $p(x)=2x^2-k\sqrt{2}x+1$ is (B) 2	s $\sqrt{2}$, then the value of k is (C) $2\sqrt{2}$	(D) 1/2
17.	If one zero of the polynomial $6x^2$ (A) -4	$x^2+37x-(k-2)$ is reciprocal of the (B) -6	ne other, then what is the value of (C)6	k?
18.	The zeroes of the polynomial $p(x)$ (A) 1,3	$x(x)=x^2+4x+3$ are given by (B) $-1,3$	(C) 1,-3	(D) $-1, -3$
19.	The zeroes of a polynomial x^2+y (A) $-\frac{5}{2}$	$px+q$ are twice the zeroes of the (B) $rac{5}{2}$	polynomial $4x^2-5x-6$. The valu (C) -5	e of p is (D) 10
20.	If α and β are the zeroes of the α	quadratic polynomial $p(x)=x^2-a$ (B) a^2+2b	$(x-b)$, then the value of $lpha^2+eta^2$ is	(D) b^2+2a
21.	If $(a-2)x^2+3x-5$ is a quadrati (A) a can take any real value (C) $a eq 2$	c polynomial, then	(B) a can take any non-zero value (D) $a=2$	
22.	If zeroes of the quadratic polyn (are) (A) 1	omial $f(x)=\left(k^2+4\right)x^2+7x+4k$	are reciprocal of each other, the (C) 2	n the value (s) of k is (D) -2
23.	The zeroes of the polynomial x^2 (A) $-3,4$		(C) $-\frac{4}{3}, \frac{3}{2}$	(D) $-\frac{4}{3}, -\frac{3}{2}$
24.	If the product of two zeros of th (A) $\frac{3}{2}$	e polynomial $f(x)=2x^3+6x^2-4x$	$x+9$ is 3, then its third zero is (C) $\frac{9}{2}$	(D) $-\frac{9}{2}$
25.	If two zeros of the polynomial $f(A)$ 1	$y(x)=x^3+x^2-5x-5$ are $\sqrt{5}$ and $y(x)=x^3+x^2-5x-5$	$-\sqrt{5}$, then its third zero is (C) 2	(D) -2
26.	If α,β,γ are the zeroes of the polarisation (A) $\frac{b^2-ac}{a^2}$	ynomial $f(x)=ax^3+bx^2+cx+d$ (B) $rac{b^2-2ac}{a}$, then $lpha^2+eta^2+\gamma^2=$ (C) $rac{b^2+2ac}{b^2}$	(D) $\frac{b^2-2ac}{a^2}$
27.	If α, β, γ are the zeroes of the pole (A) $\frac{r}{p}$	ynomial $f(x)=x^3-px^2+qx-r$, (B) $rac{p}{x}$	then $\frac{1}{\alpha\beta} + \frac{1}{\beta\gamma} + \frac{1}{\gamma\alpha}$ is equal to (C) $-\frac{p}{\pi}$	(D) $-\frac{r}{p}$
28.	If α, β are the zeros of the polyno (A) 1	omial $f(x)=x^2-p(x+1)-c$ such (B) 0	that $(\alpha+1)(\beta+1)=0$, then $c=$ (C) -1	(D) 2
29.	9. The zeros of the quadratic polynomial $f(x)=x^2+99x+127$ are (A) both positive (C) one positive and one negative		(B) both negative (D) both equal	
30.	What should be added to the po (A) 1	lynomial x^2-5x+4 , so that 3 is t (B) 2	he zero of the resulting polynomi (C) 4	al? (D) 5

Page 2