Total Marks: 120

[120]

* Given section consists of questions of 3 marks each.

- ¹. If α and β are the zeros of the quadratic polynomial f(x) = 6x² + x 2, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$
- 2. If α and β are the zeroes of the quadratic polynomial $f(x) = ax^2 + bx + c$, find evaluate: $a\left(\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}\right) + b\left(\frac{\alpha}{\beta} + \frac{\beta}{\alpha}\right)$
- ³· If α and β are the zeroes of the quadratic polynomial $f(x) = x^2 + px + q$, find a quadratic polynomial whose zeroes are:
 - i. $\alpha+2,\beta+2$
 - ii. $\frac{\alpha-1}{\alpha+1}, \frac{\beta-1}{\beta+1}$.
- 4. If α and β are the zeroes of the quadratic polynomial such that $\alpha+\beta=24$ and $\alpha-\beta=8$, find a quadratic polynomial have α and β as its zeroes.
- 5. If α and β are the zeroes of the quadratic polynomial f(x) = x^2 x 2, find the value of $\frac{1}{\alpha} \frac{1}{\beta}$
- ^{6.} If one zero of the quadratic polynomial $f(x) = 4x^2 8kx 9$ is negative of the other, find the value of k.
- 7. Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and their coefficients:

$$p(x) = x^2 + 2\sqrt{2x} - 6$$

- 8. If α and β are the zeros of the quadratic polynomial f(t) = t^2 4t + 3, find the value of $\alpha^4 \beta^3 + \alpha^3 \beta^4$.
- 9. If α and β are the zeroes of the quadratic polynomial p(s) = 3s² 6s + 4, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha} + 2\left(\frac{1}{\alpha} + \frac{1}{\beta}\right) + 3\alpha\beta$.
- 10. For what value of k, is -2 a zero of the polynomial $3x^2 + 4x + 2k$?
- ¹¹. If α and β are the zeros of the quadratic polynomial $f(x) = x^2 p(x+1) c$, show that $(\alpha+1)(\beta+1) = 1-c$
- ^{12.} If α and β are the zeroes of the quadratic polynomial f(x) = ax² + bx + c, then evaluate: $\frac{1}{a\alpha+b} + \frac{1}{a\beta+b}$
- 13. For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given.

 Also, find the zeroes of these polynomials by factorization.
- 14. For what value of k, is -3 a zero of the polynomial $x^2 + 11x + k$?
- 15. If 1 is a zero of the polynomial $p(x) = ax^2 3(a 1) x 1$, then find the value of a.
- 16. If α and β are the zeros of the quadratic polynomial p(x) = 4x² 5x 1, find the value of $\alpha^2\beta + \alpha\beta^2$.
- ¹⁷· If α and β are the zeros of the quadratic polynomial f(x) = x² 1, find a quadratic polynomial whose zeroes are $\frac{2\alpha}{\beta}$ and $\frac{2\beta}{\alpha}$.
- 18. If α and β are the zeroes of the quadratic polynomial f(x) = x^2 x 4, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} \alpha\beta$
- ^{19.} If the sum of the zeros of the quadratic polynomial $f(t) = kt^2 + 2t + 3k$ is equal to their product, find the value of k.
- 20. Given that $\sqrt{2}$ is a zero of the cubic polynomial $6x^3 + \sqrt{2}x^2 10x 4\sqrt{2}$, find its other two zeroes.
- 21. Write the coefficient of the polynomial $p(z) = z^5 2z^2 + 4$.
- ²²· If α and β are the zeroes of the quadratic polynomial f(x) = x^2 5x + 4, find the value of $\frac{1}{\alpha} + \frac{1}{\beta} 2\alpha\beta$.
- 23. Apply division algorithm to find the quotient q(x) and remainder r(x) in dividing f(x) by g(x) in the following: $f(x) = 4x^3 + 8x + 8x^2 + 7$, $q(x) = 2x^2 x + 1$
- ²⁴. For what value of k, is 3 a zero of the polynomial $2x^2 + x + k$?
- 25. Write the zeros of the polynomial $x^2 x 6$.

26. For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

$$\frac{-3}{2\sqrt{5}}, -\frac{1}{2}$$

27. For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

$$-2\sqrt{3}, -9$$

- ^{28.} If the squared difference of the zeroes of the quadratic polynomial $f(x) = x^2 + px + 45$ is equal to 144, find the value of p.
- 29. Find the cubic polynomial with the sum, sum of the product of its zeros taken two at a time, and product of its zeros as 3, -1 and -3 respectively.
- 30. If α and β are the zeroes of the quadratic polynomial p(y) = 5y² 7y + 1, find the value of $\frac{1}{\alpha} + \frac{1}{\beta}$
- 31. What must be added to the polynomial $f(x) = x^4 + 2x^3 2x^2 + x 1$ so that the resulting polynomial is exactly divisible by $x^2 + 2x 3$?
- 32. If a b, a and b are zeros of the polynomial $f(x) = 2x^3 6x^2 + 5x 7$, write the value of a.
- 33. For the following, find a quadratic polynomial whose sum and product respectively of the zeroes are as given. Also, find the zeroes of these polynomials by factorization.

$$\frac{21}{8}, \frac{5}{16}$$

- 34. If α and β are the zeroes of the quadratic polynomial $f(x) = ax^2 + bx + c$, then evaluate:
- 35. Give an example of polynomials f(x), g(x), q(x) and r(x) satisfying f(x) = g(x), q(x) + r(x), where degree r(x) = 0.
- 36. If α , β are the zeros of the polynomial $f(x) = x^2 5x + k$ such that $\alpha \beta = 1$, find the value of k.
- 37. Very-Short-Answer Question:

If the product of the zeros of the quadratic polynomial x^2 - 4x + k is 3 then write the value of k.

- 38. Using remainder theorem, find the remainder when $p(x) = x^3 + 3x^2 5x + 4$ is divided by (x 2).
- 39. Very-Short-Answer Question:

If (x + a) is a factor of $(2x^2 + 2ax + 5x + 10)$, find the value of a.

40. Find the zeros of the following quadratic polynomial and verify the relationship between the zeros and the coefficients:

$$2\sqrt{3}x^2 - 5x + \sqrt{3}$$
