[10]

* Choose the right answer from the given options. [1 Marks Each]

1. Which of the following is a rational number:

(A)
$$\sqrt{180}$$

(B)
$$\sqrt{31}$$

(C)
$$\sqrt{196}$$

(D) 0.32322322232223

Ans.:

c. $\sqrt{196}$

Solution:

Because it is the square of 14 and can be written in the form of $\frac{p}{a}$.

2. Simplified value of $(25)^{\frac{1}{3}} \times 5^{\frac{1}{3}}$ is:

Ans.:

d. 5

Solution:

$$(25)^{\frac{1}{3}} \times 5^{\frac{1}{3}} = 5^{2 \times \frac{1}{3}} \times 5^{\frac{1}{3}}$$
$$= 5^{\frac{2}{3}} \times 5^{\frac{1}{3}} = 5^{\frac{2}{3} + \frac{1}{3}} = 5^{\frac{3}{3}} = 5$$

3. Which one of the following is a correct statement?

- (A) Decimal expansion of a rational number is terminating.
- (B) Decimal expansion of a rational number is non-terminating.
- (C) Decimal expansion of an irrational number is terminating.
- (D) Decimal expansion of an irrational number is non-terminating and non-repeating.

Ans.:

d. Decimal expansion of an irrational number is non-terminating and non-repeating.

Solution

Decimal Expansion of a Rational number is not only terminating,

It can be either terminating like $\frac{1}{2}=0.5$ or non-terminating Repeating like $\frac{1}{3}=0.3333333...$ So option (a) is not true alone.

Now we know that Non-Terminating numbers are of two types:

One is Non-Terminating Repeating and other is Non-Terminating Non-Repeating.

The Decimal expansion of a Rational number matches one of it's kind i.e Non-Terminating Repeating of Non-Terminating numbers.

So Rational number does not consist both the kinds of Non-Terminating numbers.

Hence, they are not Non-Terminating numbers.

An irrational number is always Non-Terminating in nature, but again not of both of it's kinds.

The decimal Expansion of an irrational number is Non-Terminating Non-Repeating in Nature.

So from all above points and theory we can conclude an Irrational number is Non-Terminating but Non-Repeating in nature

i.e. $\sqrt{2} = 1.4142135623730...$

So, option (d) is correct.

4. The sum of two irrational numbers is.

(A) Always an integer.

(B) Always irrational.

(C) Always rational.

(D) Either irrational or rational.

Ans.:

d. Either irrational or rational.

Solution:

The sum of two irrational numbers, in some cases, will be irrational. However, if the irrational parts of the numbers have a zero sum (cancel each other out), the sum will be rational.

5. The value of $64^{-\frac{1}{3}} \left(64^{\frac{1}{3}} - 64^{\frac{2}{3}} \right)$ is:

(A) 1

(B) 13

(C) -3

(D) -2

Ans.:

c. -3

Solution:

Find the value of $64^{\frac{1}{3}}\left(64^{\frac{1}{3}}-64^{\frac{2}{3}}\right)$

$$\begin{split} &\Rightarrow 64^{\frac{1}{3}}\left(64^{\frac{1}{3}}-64^{\frac{2}{3}}\right) = 2^{6\times\frac{1}{3}}\left(2^{6\times\frac{1}{3}}-2^{6\times\frac{2}{3}}\right) \\ &= 2^{-2}(2^2-2^4) \end{split}$$

$$=2^{2}(4-16)$$

$$\Rightarrow 64^{\frac{1}{3}}\left(64^{\frac{1}{3}}-64^{\frac{2}{3}}
ight)=rac{1}{2^2} imes-12$$

$$= \frac{1}{4} \times -15$$

$$= -3$$

Hence the correct statement is c.

6. The simplest form of $25^{\frac{1}{3}} \times 5^{\frac{1}{3}}$ is:

Ans.:

a. 5

Solution:

$$25^{\frac{1}{3}} \times 5^{\frac{1}{3}}$$
 $= 5^{\frac{2}{3}} \times 5^{\frac{1}{3}}$
 $= (5)^{\frac{2+1}{3}} \Leftrightarrow 5$

7. The $\frac{p}{q}$ form of the number 0.8 is:

(B)
$$\frac{1}{8}$$

(C)
$$\frac{8}{10}$$

(D)
$$\frac{8}{100}$$

Ans.:

c.
$$\frac{8}{10}$$
 Solution:

$$\frac{8}{10}$$
 or $\frac{4}{5}$

8. An irrational number between 5 and 6 is

(A)
$$\frac{1}{2}(5+6)$$

(B)
$$\sqrt{5+6}$$

(C)
$$\sqrt{5 imes 6}$$

(D) none of these

We observe that $\frac{1}{2}(5+6)$ is a rational number between 5 and 6. So, option (a) is in correct.

 $\sqrt{5+6} = \sqrt{11} = 3.3166247...$ is an irrational number not lying between 5 and 6.

 $\sqrt{5 \times 6}$ is an irrational number lying between $\sqrt{5}$ and $\sqrt{6}$.Hence, option (c) is correct.

9. The value of $\sqrt[4]{\sqrt[3]{2^2}}$ is:

$$a 2^{-\frac{1}{6}}$$

b.
$$2^{-6}$$

c.
$$2^{\frac{1}{6}}$$

Ans.:

c. $2^{\frac{1}{6}}$

$$\sqrt[4]{\sqrt[3]{2^2}} = \sqrt[4]{\sqrt[3]{4}} = \sqrt[4]{4^{\frac{1}{3}}} = 4^{\frac{1}{3} \times \frac{1}{4}} = 4^{\frac{1}{12}} = 2^{2 \times \frac{1}{12}} = 2^{\frac{1}{6}}$$

Hence, the correct answer is option (c).

10. The simplest for of $0.\overline{32}$ is:

a.
$$\frac{16}{45}$$

b.
$$\frac{32}{99}$$

c.
$$\frac{29}{90}$$

Ans.:

Solutions:

Let
$$x=0.\overline{32}$$
 Then, $x=0.3222...(i)$ $\therefore 10x=3.222...(ii)$ and $100x=32.222...(iii)$ On subtracting (ii) from (iii), we get $90x=29$ $\Rightarrow x=\frac{29}{90}$

* Answer the following short questions. [2 Marks Each]

Hence, the correct option is (c).

[10]

[6]

11. Rationalise the denominator of the following:

$$\frac{\sqrt{40}}{\sqrt{3}}$$

Ans. : Let
$$E=\frac{\sqrt{40}}{\sqrt{3}}$$

For rationalising the denominator, multiplying numerator and denominator by $\sqrt{3}$

$$E = \frac{\sqrt{40}}{\sqrt{3}} \times \frac{\sqrt{3}}{\sqrt{3}} = \frac{\sqrt{40 \times 3}}{(\sqrt{3})^2} = \frac{\sqrt{120}}{3}$$
$$= \frac{\sqrt{2 \times 2 \times 2 \times 5 \times 3}}{3} = \frac{2}{3} \sqrt{30}$$

12. Find two rational and two irrational number between 0.5 and 0.55.

Ans.: The two rational numbers between 0.5 and 0.55 are: 0.51 and 0.52

The two irrational numbers between 0.5 and 0.55 are: 0.505005000... and 0.5101100111000...

Disclaimer: There are infinite number of rational and irrational numbers between 0.5 and 0.55.

13. Simplify:

$$3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$$

Ans.:
$$3\sqrt{45} - \sqrt{125} + \sqrt{200} - \sqrt{50}$$

 $3\sqrt{9 \times 5} - \sqrt{25 \times 5} + \sqrt{100 \times 2} - \sqrt{25 \times 2}$
 $= 3 \times 3\sqrt{5} - 5\sqrt{5} + 10\sqrt{2} - 5\sqrt{2}$
 $= 9\sqrt{5} - 5\sqrt{5} + 10\sqrt{2} - 5\sqrt{2}$

$$=4\sqrt{5}+5\sqrt{2}$$

14. Solve for
$$x\left(\frac{2}{5}\right)^{2x-2} = \frac{32}{3125}$$
.

Ans.:
$$x\left(\frac{2}{5}\right)^{2x-2} = \frac{32}{3125}$$

$$\Rightarrow \left(\frac{2}{5}\right)^{2x-2} = \frac{2^5}{5^5}$$

$$\Rightarrow \left(\frac{2}{5}\right)^{2x-2} = \left(\frac{2}{5}\right)^5$$

$$\Rightarrow 2x-2=5$$

$$\Rightarrow 2x = 7$$

$$\Rightarrow x = \frac{7}{2}$$

15. Examine whether the following numbers are rational or irrational.

$$\sqrt[3]{5} imes \sqrt[3]{25}$$

Ans. :
$$\sqrt[3]{5} \times \sqrt[3]{25}$$

$$=\sqrt[3]{5\times25}$$

$$=\sqrt[3]{125}$$

= 5, which is an integer

Hence, $\sqrt[3]{5} \times \sqrt[3]{25}$ is rational.

* Answer the following questions. [3 Marks Each]

16. Find the values of a and b in the following:

$$\frac{\sqrt{2}+\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = 2 - b\sqrt{6}$$

Ans.: LHS =
$$\frac{\sqrt{2}+\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = \frac{\sqrt{2}+\sqrt{3}}{3\sqrt{2}-2\sqrt{3}} = \frac{3\sqrt{2}+2\sqrt{3}}{3\sqrt{2}+2\sqrt{3}}$$

$$= \frac{(\sqrt{2}+\sqrt{3})(3\sqrt{2}+2\sqrt{3})}{(3\sqrt{2})^2-(2\sqrt{3})^2}$$

$$= \frac{6+2\sqrt{6}+3\sqrt{6}+6}{18-12}$$

$$=\frac{\frac{12+5\sqrt{6}}{6}}{6}=2\frac{\frac{5\sqrt{6}}{6}}{6}$$
 Now, $2-b\sqrt{6}=2+\frac{5}{6}\sqrt{6}\Rightarrow b=-\frac{5}{6}$

17. Find two irrational numbers between 0.5 and 0.55.

Ans. : Let a = 0.5 = 0.50 and b = 0.55

We observe that in the second decimal place a has digit 0 and b has digit

5, therefore a < 0 so, if we consider irrational numbers

x = 0.51051005100051...

y = 0.530535305353530...

We find that a < x < y < b

Hence x and y are required irrational numbers.

* Questions with calculation. [4 Marks Each]

18. If $x = 9 - 4\sqrt{5}$, find the value of $x^2 - \frac{1}{x^2}$.

Ans.:
$$x = 9 - 4\sqrt{5}$$

$$\Rightarrow \frac{1}{x} = \frac{1}{9 - 4\sqrt{5}} = \frac{1}{9 - 4\sqrt{5}} \times \frac{9 + 4\sqrt{5}}{9 + 4\sqrt{5}}$$

$$= \frac{9 + 4\sqrt{5}}{9^2 - (4\sqrt{5})^2} = \frac{9 + 4\sqrt{5}}{81 - 80} = 9 + 4\sqrt{5}$$

$$\Rightarrow x + \frac{1}{x} = 9 - 4\sqrt{5} + 9 + 4\sqrt{5} = 18$$

$$\Rightarrow \left(x + \frac{1}{x}\right)^2 = 18^2 = 324$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right)^2 + 2 \times x \times \frac{1}{x} = 324$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right) + 2 = 324$$

$$\Rightarrow \left(x^2 + \frac{1}{x^2}\right) = 322$$

[4]