[10]

# \* Choose the right answer from the given options. [1 Marks Each]

- 1. π is:
  - (A) A whole number.
- (B) An integer.
- (C) An irrational number.
- (D) A rational number.

Ans.:

c. An irrational number.

Solution:

 $\pi$  = 3.14159265359..., which is non-terminating non-recurring.

Hence, it is an irrational number.

- <sup>2.</sup> The value of  $\sqrt[4]{\sqrt[3]{2^2}}$  is:
  - (A)  $2^{\frac{1}{6}}$

(B)  $2^6$ 

(C)  $2^{-6}$ 

(D)  $2^{\frac{-1}{6}}$ 

Ans.:

a.  $2^{\frac{1}{6}}$ 

Solution:

$$\sqrt[4]{\sqrt[3]{2^2}} \\
= \sqrt[4]{\sqrt{2^{\frac{2}{3}}}} \\
= 2^{\frac{2}{3\times 4}} = 2^{\frac{1}{6}}$$

- 3.  $(1296)^{\frac{-1}{4}}$ 
  - (A)  $-\frac{1}{6}$

(B) -6

(C) 6

(D)  $\frac{1}{6}$ 

Ans.:

d.  $\frac{1}{6}$ 

Solution:

$$(1296)^{\frac{-1}{4}} = (6^4)^{\frac{-1}{4}}$$
  
=  $(6)^{-1} = \frac{1}{6}$ 

- 4. If  $x = (7 + 4\sqrt{3})$  than  $\left(x + \frac{1}{x}\right) = ?$ 
  - (A) 49

(B) 14

(C) 48

(D)  $8\sqrt{3}$ 

**Ans.:** b. 14

Solution:

$$\begin{aligned} x &= (7 + 4\sqrt{3}) \\ \frac{1}{x} &= \frac{1}{7 + 4\sqrt{3}} = (7 - 4\sqrt{3}) \\ x &+ \frac{1}{x} = (7 + 4\sqrt{3}) + (7 - 4\sqrt{3}) \\ &= 14 \end{aligned}$$

- 5. The value of  $\sqrt{20} \times \sqrt{5}$  is :
  - (A) 10

(B)  $4\sqrt{5}$ 

(C)  $2\sqrt{5}$ 

(D)  $20\sqrt{5}$ 

Ans.:

- a. 10
  - Solution:

$$\sqrt{20} \times \sqrt{5}$$

$$= 2\sqrt{5} \times \sqrt{5}$$

$$= 2 \times 5$$

$$= 10$$

- 6. On simplification  $(3+\sqrt{3})(3-\sqrt{3})$  gives:
  - (A)  $-2\sqrt{3}$

(B) 0

(C) 16

(D) 6

Ans.:



### Solution:

We know that,

$$(a + b)(a - b) = a^2 - b^2$$
  
So, here  
 $(4 + \sqrt{3})(3 - \sqrt{3}) = 3^2 - (\sqrt{3})$ 

$$(4 + \sqrt{3})(3 - \sqrt{3}) = 3^2 - (\sqrt{3})^2$$
  
 $\Rightarrow 9 - 3 - 6$ 

7. The simplest from of  $0.\overline{36}$  is:

(A) 
$$\frac{36}{100}$$

(B) 
$$\frac{4}{11}$$

(C) 
$$\frac{4}{9}$$

(D) None of these.

Ans.:

b. 
$$\frac{4}{11}$$

# Solution:

$$0.\overline{36} = \frac{36}{36} = \frac{4 \times 9}{11 \times 9}$$

8. If 
$$\sqrt{2}=1.4142,$$
 then  $\sqrt{\frac{\sqrt{2}-1}{\sqrt{2}+1}}$  is equal to:

(A) 0.32322322232223

(B) 
$$\sqrt{180}$$

(C) 
$$\sqrt{31}$$

(D)  $\sqrt{196}$ 

Ans.:

d. 
$$\sqrt{196}$$

#### Solution:

Because it is the square of 14 and can be Written in the form of  $\frac{p}{a}$ .

9. A number is an irrational if and only if its decimal representation is

(A) non-terminating

(B) non-terminating and repeating

(C) non-terminating and non-repeating

(D) terminating

Ans.: (C) non-terminating and non-repeating

10. The simplest rationalisation factor of  $\sqrt[3]{500}$  is:

a.  $\sqrt{5}$ 

b.  $\sqrt{3}$ 

c.  $\sqrt[3]{5}$ 

d.  $\sqrt[3]{2}$ 

Ans.:

d. 
$$\sqrt[3]{2}$$

$$\sqrt[3]{500} = 500^{\frac{1}{3}} = \left(\frac{500 \times 2}{2}\right)^{\frac{1}{3}} = \left(\frac{1000}{2}\right)^{\frac{1}{3}} = \frac{10^{3 \times \frac{1}{3}}}{\frac{1}{2^{\frac{1}{3}}}} = \frac{10}{\sqrt[3]{2}}$$

Thus, the simplest rationalisation factor of  $\sqrt[3]{500}$  is  $\sqrt[3]{2}$ .

Hence, the correct option is (d).

### \* Answer the following short questions. [2 Marks Each]

11. How many irrational numbers lie between  $\sqrt{2}$  and  $\sqrt{3}$ ? Find any three irrational numbers lying between  $\sqrt{2}$  and  $\sqrt{3}$ .

**Ans.**: There are infinite number of irrational numbers lying between  $\sqrt{2}$  and  $\sqrt{3}$ .

As, 
$$\sqrt{2}=1.414$$
 and  $\sqrt{3}=1.732$ 

So, the three irrational numbers lying between  $\sqrt{2}$  and  $\sqrt{3}$  are:

1.420420042000..., 1.505005000... and 1.616116111...

12. Multiply:

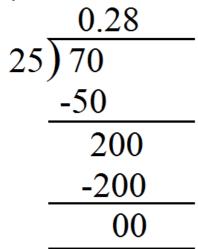
$$6\sqrt{15}$$
 by  $4\sqrt{3}$ 

**Ans.**: 
$$6\sqrt{15}$$
 by  $4\sqrt{3}$ 

$$6\sqrt{15} imes 4\sqrt{3} = 6 imes 4 imes \sqrt{15} imes \sqrt{3}$$

$$=24 imes\sqrt{15 imes3}$$

$$=24 imes\sqrt{3 imes5 imes3}$$


$$=24 imes3\sqrt{5}=72\sqrt{5}$$

13. Write the following in decimal form and say what kind of decimal expansion has.

[6]

**Ans.** : 
$$\frac{7}{25} = 0.28$$

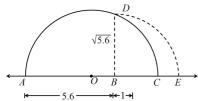
By actual division, we have:



It is a terminating decimal expansion.

# \* Answer the following questions. [3 Marks Each]

14. Represent geometrically the following numbers on the number line:


$$\sqrt{5.6}$$

Ans.: Firstly, we draw a line segment AB = 5.6 units and extend it to C such that BC = 1 unit. Let O be the mid-point of AC. Now, draw a semi-circte with centre O and radius OA. Let us draw BD perpendicular to AC passing through point B and intersecting the semi-circle at point D.

[9]

Hence, the distance BD is  $\sqrt{5.6}$  units. units.

Draw an arc with centre B and radius BD, meeting AC produced at E, then BE = BD =  $\sqrt{5.6}$  units.



15. Find the values of a and b in the following:

$$\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = a - 6\sqrt{3}$$

Ans.: LHS = 
$$\frac{5+2\sqrt{3}}{7+4\sqrt{3}} = \frac{5+2\sqrt{3}}{7+4\sqrt{3}} \times \frac{7-4\sqrt{3}}{7-4\sqrt{3}}$$
=  $\frac{(5+2\sqrt{3})(7-4\sqrt{3})}{(7)^2(4\sqrt{3})^2}$ 
=  $\frac{35+20\sqrt{3}+14\sqrt{3}-24}{49-48}$ 
=  $\frac{11-6\sqrt{3}}{1} = 11-6\sqrt{3}$ 
Now,  $11-6\sqrt{3} = a-6\sqrt{3}$ 
 $\Rightarrow a = 11$ 

16. Represent geometrically the following numbers on the number line:

$$\sqrt{8.1}$$

**Ans. :** Firstly, we draw a line segment AB = 8.1 units and extend it toC such that SC = 1 unit. Let O be the mid-point of AC. Now, draw a semi-circle with centre 0 and radius OA.

Let us draw BD perpendicular to AC passing through point 6 intersecting the semi-circle at point D.

Hence, the distance BD is  $\sqrt{8.1}$  units.

| A | with centre Sand radius BI $ \begin{array}{c} D \\ \hline \sqrt{8.1} \\ \hline O B C E \end{array} $ |  |  |
|---|------------------------------------------------------------------------------------------------------|--|--|
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |
|   |                                                                                                      |  |  |

П