HYPERBOLA

5.3.1 DEFINITION

A hyperbola is the locus of a point in a plane which moves in the plane in such a way that the ratio of its distance from a fixed point in the same plane to its distance from a fixed line is always constant which is always greater than unity.

A hyperbola is the particular case of the conic

$$ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$$

When, $abc+2fgh-af^2-bg^2-ch^2\neq 0$ i.e., $\Delta\neq 0$ and $h^2>ab$.

Let S(h,k) is the focus, directrix is the line ax + by + c = 0 and the eccentricity is e. Let $P(x_1, y_1)$ be a point which moves such that **SP**= **e.PM**

$$\Rightarrow \sqrt{(x_1 - h)^2 + (y_1 - k)^2} = e \cdot \frac{ax_1 + by_1 + c}{\sqrt{a^2 + b^2}}$$

$$\Rightarrow (a^2 + b^2)[(x_1 - h)^2 + (y_1 - h)^2] = e^2(ax_1 + by_1 + c)^2$$

Hence, locus of (x_1, y_1) is given by $(a^2 + b^2)[(x - h)^2 + (y - k)^2] = e^2(ax + by + c)^2$

Which is a second degree equation to represent a hyperbola (e > 1).

Example: 1 The equation of the conic with focus at (1, -1), directrix along x-y+1=0 and with eccentricity $\sqrt{2}$ is

(a)
$$x^2 - v^2 = 1$$

(b)
$$xv=1$$

(C)
$$2xy-4x+4y+1=0$$

(c)
$$2xy-4x+4y+1=0$$
 (d) $2xy+4x-4y-1=0$

Solution: (c) Here, focus (S) = (1, -1), eccentricity $(e) = \sqrt{2}$

From definition, SP = ePM

$$\sqrt{(x-1)^2+(y+1)^2}=\frac{\sqrt{2.(x-y+1)}}{\sqrt{1^2+1^2}}$$

 $\Rightarrow (x-1)^2 + (v+1)^2 = (x-v+1)^2 \Rightarrow 2xy-4x+4y+1=0$, which is the required equation of conic (Rectangular hyperbola)

Example: 2 The centre of the hyperbola $9x^2 - 36x - 16y^2 + 96y - 252 = 0$ is

(b)
$$(-2, -3)$$
 (c) $(-2, 3)$

(c)
$$(-2, 3)$$

$$(d)(2,-3)$$

Solution: (a) Here a=9, b=-16, h=0, g=-18, f=48, c=-252

Centre of hyperbola =
$$\left(\frac{hf - bg}{ab - h^2}, \frac{gh - af}{ab - h^2}\right) = \left(\frac{(0)(48) - (-16)(-18)}{(9)(-16) - 0}, \frac{(-18)(0) - (9)(48)}{(9)(-16) - 0}\right) = (2, 3)$$

5.3.2 STANDARD EQUATION OF THE HYPERBOLA

Let S be the focus, ZM be the directrix and e be the eccentricity of the hyperbola, then by definition.

$$\Rightarrow \frac{SP}{PM} = e \Rightarrow (SP)^2 = e^2 (PM)^2$$

$$\Rightarrow (x - ae)^2 + (y - 0)^2 = e^2 \left(x - \frac{a}{e}\right)^2$$

$$\Rightarrow \frac{x^2}{a^2} - \frac{y^2}{a^2(e^2 - 1)} = 1 \Rightarrow \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1, \text{ where } b^2 = a^2(e^2 - 1)$$

This is the standard equation of the hyperbola.

Some terms related to hyperbola: Let the equation of hyperbola is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

- (1) **Centre:** All chords passing through C are bisected at C. Here C(0,0)
- (2) **Vertex:** The point A and A' where the curve meets the line joining the foci S and S' are called vertices of hyperbola. The co-ordinates of A and A' are (a, 0) and (-a, 0) respectively.
- (3) **Transverse and conjugate axes:** The straight line joining the vertices A and A' is called transverse axis of the hyperbola. The straight line perpendicular to the transverse axis and passing through the centre is called conjugate axis.

Here, transverse axis =
$$AA' = 2a$$

Conjugate axis = $BB = 2b$

(4) **Eccentricity**: For the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

We have
$$b^2 = a^2(e^2 - 1)$$
, $e = \sqrt{1 + \left(\frac{2b}{2a}\right)^2} = \sqrt{1 + \left(\frac{\text{Conjugateaxis}}{\text{Transversexis}}\right)^2}$

(5) **Double ordinates:** If Q be a point on the hyperbola, QN perpendicular to the axis of the hyperbola and produced to meet the curve again at Q. Then QQ is called a double ordinate at Q.

If abscissa of Q is h, then co-ordinates of Q and Q are $\left(h, \frac{b}{a}\sqrt{h^2 - a^2}\right)$ and $\left(h, \frac{b}{a}\sqrt{h^2 - a^2}\right)$ respectively.

(6) **Latus-rectum**: The chord of the hyperbola which passes through the focus and is perpendicular to its transverse axis is called latus-rectum.

Length of latus-rectum $LL' = L_1L_1' = \frac{2b^2}{a} = 2a(e^2 - 1)$ and end points of latus-rectum $L\left(ae, \frac{b^2}{a}\right)$; $L\left(ae, \frac{-b^2}{a}\right)$; $L\left(-ae, \frac{b^2}{a}\right)$; $L\left(-ae, \frac{b^2}{a}\right)$ respectively.

(7) Foci and directrices: The points S(ae, 0) and S(-ae, 0) are the foci of the hyperbola and ZM and ZM are two directrices of the hyperbola and their equations are $x = \frac{a}{e}$ and $x = -\frac{a}{e}$ respectively.

Distance between foci SS = 2ae and distance between directrices ZZ = 2a/e.

- (8) **Focal chord**: A chord of the hyperbola passing through its focus is called a focal chord.
- (9) **Focal distance :** The difference of any point on the hyperbola from the focus is called the focal distance of the point.

From the figure,
$$SP = ePM = e\left(x_1 - \frac{a}{e}\right) = ex_1 - a$$
, $SP = ePM = e\left(x_1 + \frac{a}{e}\right) = ex_1 + a$

The difference of the focal distance of a point on the hyperbola is constant and is equal to the length of transverse axis.

$$|SP - SP| = 2a = AA' = Transverse axis$$

Example: 3 The eccentricity of the hyperbola which passes through (3, 0) and $(3\sqrt{2}, 2)$ is

(a)
$$\sqrt{(13)}$$

(b)
$$\frac{\sqrt{13}}{3}$$

(c)
$$\sqrt{\frac{13}{4}}$$

(d) None of these

Solution: (b) Let equation of hyperbola is $x^2/a^2 - y^2/b^2 = 1$. Point (3, 0) lies on hyperbola

So, $\frac{(3)^2}{2^2} - \frac{0}{k^2} = 1$ or $\frac{9}{2^2} = 1$ or $a^2 = 9$ and point $(3\sqrt{2}, 2)$ also lies on hyperbola. So.

$$\frac{3(\sqrt{2})^2}{a^2} - \frac{(2)^2}{b^2} = 1$$

Put
$$a^2 = 9$$
 We get, $\frac{18}{9} - \frac{4}{b^2} = 1$ or $2 - \frac{4}{b^2} = 1$ or $-\frac{4}{b^2} = 1 - 2$ or $\frac{4}{b^2} = 1$ or $b^2 = 4$

We know that $b^2 = a^2(e^2 - 1)$. Putting values of a^2 and b^2

$$4 = 9(e^2 - 1)$$
 Or $e^2 - 1 = \frac{4}{9}$ Or $e^2 = 1 + \frac{4}{9}$ Or $e = \sqrt{(1 + 4/9)}$ or $e = \sqrt{(13)/9} = \frac{\sqrt{13}}{3}$.

Example: 4 The foci of the hyperbola $9x^2 - 16y^2 = 144$ are

(a)
$$(\pm 4,0)$$

(b)
$$(0.+4)$$

(c)
$$(\pm 5,0)$$

(d)
$$(0, \pm 5)$$

Solution: (c) The equation of hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$.

Now,
$$b^2 = a^2(e^2 - 1) \implies 9 = 16(e^2 - 1) \implies e = \frac{5}{4}$$
. Hence foci are $(\pm ae, 0) = (\pm 4.\frac{5}{4}, 0)$ i.e., $(\pm 5, 0)$

Example: 5 If the foci of the ellipse $\frac{x^2}{16} + \frac{y^2}{h^2} = 1$ and the hyperbola $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$ coincide, then the value of b^2 is

(a) 1 (b) 5 **Solution:** (c) For hyperbola, $\frac{x^2}{144} - \frac{y^2}{81} = \frac{1}{25}$

$$A = \sqrt{\frac{144}{25}}, B = \sqrt{\frac{81}{25}}, e_1 = \sqrt{1 + \frac{B^2}{A^2}} = \sqrt{1 + \frac{81}{144}} = \sqrt{\frac{225}{144}} = \frac{5}{4}$$

Therefore foci = $(\pm ae_1, 0) = (\pm \frac{12}{5}, \frac{5}{4}, 0) = (\pm 3, 0)$. Therefore foci of ellipse *i.e.*, $(\pm 4e, 0) = (\pm 3, 0)$

(For ellipse a=4)

$$\Rightarrow e = \frac{3}{4}$$
, Hence $b^2 = 16\left(1 - \frac{9}{16}\right) = 7$.

Example: 6 If PQ is a double ordinate of hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ such that CPQ is an equilateral triangle, C being the centre of the hyperbola. Then the eccentricity e of the hyperbola satisfies

(a)
$$1 < e < 2/\sqrt{3}$$

(b)
$$e = 2/\sqrt{3}$$

(c)
$$e = \sqrt{3}/2$$

(d)
$$e > 2/\sqrt{3}$$

Solution: (d) Let P(asec\theta, btan\theta); Qasec\theta, - btan\theta) be end points of double ordinates and Q0,0) is the centre of the hyperbola

Now
$$PQ = 2b \tan \theta$$
; $CQ = CP = \sqrt{a^2 \sec^2 \theta + b^2 \tan^2 \theta}$

Since
$$CQ = CP = PQ$$
, $\therefore 4b^2 \tan^2 \theta = a^2 \sec^2 \theta + b^2 \tan^2 \theta$

$$\Rightarrow$$
 3 b^2 tan² $\theta = a^2 \sec^2 \theta \implies 3b^2 \sin^2 \theta = a^2$

$$\Rightarrow$$
 $3a^2(e^2-1)\sin^2\theta=a^2$ \Rightarrow $3(e^2-1)\sin^2\theta=1$

$$\Rightarrow \frac{1}{3(e^2 - 1)} = \sin^2 \theta < 1 \qquad (\Theta \sin^2 \theta < 1)$$
$$\Rightarrow \frac{1}{e^2 - 1} < 3 \Rightarrow e^2 - 1 > \frac{1}{3} \Rightarrow e^2 > \frac{4}{3} \Rightarrow e > \frac{2}{\sqrt{3}}$$

5.3.3 CONJUGATE HYPERBOLA

The hyperbola whose transverse and conjugate axis are respectively the conjugate and transverse axis of a given hyperbola is called conjugate hyperbola of the given hyperbola.

Hyperbola Fundamentals	$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$	$-\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \text{ Or } \frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$
Centre	(0, 0)	(0,0)
Length of transverse	2 <i>a</i>	2b
axis		
Length of conjugate	2b	2a
axis		
Foci	(± ae , 0)	(0 , ± <i>be</i>)
Equation of	$x = \pm a/e$	$y = \pm b/e$
directrices		
Eccentricity	$e = \sqrt{\left(\frac{a^2 + b^2}{a^2}\right)}$	$e = \sqrt{\frac{a^2 + b^2}{b^2}}$
Length of latus	$2b^2$	$2a^2$
rectum	a	<u></u>
Parametric co-	$(a \sec \phi, b \tan \phi), \ 0 \le \phi < 2\pi$	($b\sec\phi$, $a\tan\phi$), $0\le\phi<2\pi$
ordinates		
Focal radii	$SP = ex_1 - a \&$	$SP = ey_1 - b \& SP = ey_1 + b$
	$SP = ex_1 + a$	
Difference of focal	2a	2b
radii		
(SP-SP)		
Tangents at the	X = -a, $X = a$	y=-b, y=b
vertices		
Equation of the	y = 0	x = 0
transverse axis		
Equation of the	x = 0	y = 0
conjugate axis		

Note: \square If e and e' are the eccentricities of a hyperbola and its conjugate, then $\frac{1}{e^2} + \frac{1}{e'^2} = 1$.

☐ The foci of a hyperbola and its conjugate are concyclic.

Example: 7 The eccentricity of the conjugate hyperbola of the hyperbola $x^2 - 3y^2 = 1$, is

(b)
$$\frac{2}{\sqrt{3}}$$

(d)
$$\frac{4}{2}$$

Solution: (a) The given hyperbola is $\frac{x^2}{1} - \frac{y^2}{1/3} = 1$. Here $a^2 = 1$ and $b^2 = \frac{1}{3}$

Since
$$b^2 = a^2(e^2 - 1) \implies \frac{1}{3} = 1(e^2 - 1) \implies e^2 = \frac{4}{3} \implies e = \frac{2}{\sqrt{3}}$$

If e' is the eccentricity of the conjugate hyperbola, then $\frac{1}{e^2} + \frac{1}{e'^2} = 1$

$$\Rightarrow \frac{1}{e'^2} = 1 - \frac{1}{e^2} = 1 - \frac{3}{4} = \frac{1}{4} \Rightarrow e' = 2.$$

5.3.4 SPECIAL FORM OF HYPERBOLA

If the centre of hyperbola is (h, k) and axes are parallel to the co-ordinate axes, then its equation is $\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$. By shifting the origin at (h, k) without rotating the co-ordinate axes, the above equation reduces to $\frac{X^2}{a^2} - \frac{Y^2}{k^2} = 1$, where x = X + h, y = Y + k.

Example: 8 The equation of the hyperbola whose foci are (6, 4) and (-4, 4) and eccentricity 2 is given by

(a)
$$12x^2 - 4y^2 - 24x + 32y - 127 = 0$$

(b)
$$12x^2 + 4v^2 + 24x - 32v - 127 = 0$$

(c)
$$12x^2 - 4y^2 - 24x - 32y + 127 = 0$$

(d)
$$12x^2 - 4y^2 + 24x + 32y + 127 = 0$$

Solution: (a) Foci are (6, 4) and (-4, 4) and e=2.

$$\therefore$$
 Centre is $\left(\frac{6-4}{2}, \frac{4+4}{2}\right) = (1,4)$

So,
$$ae+1=6 \implies ae=5 \implies a=\frac{5}{2}$$
 and $b=\frac{5}{2}\sqrt{3}$

Hence, the required equation is $\frac{(x-1)^2}{25/4} - \frac{(y-4)^2}{(75/4)} = 1$ or $12x^2 - 4y^2 - 24x + 32y - 127 = 0$

Example: 9 The equations of the directrices of the conic $x^2 + 2x - y^2 + 5 = 0$ are

(a)
$$x = \pm 1$$

(b)
$$y = \pm 2$$

(c)
$$y=\pm\sqrt{2}$$

(d)
$$x = \pm \sqrt{3}$$

Solution: (c) $(x+1)^2 - y^2 - 1 + 5 = 0 \implies -\frac{(x+1)^2}{4} + \frac{y^2}{4} = 1$

Equation of directrices of $\frac{y^2}{b^2} - \frac{x^2}{a^2} = 1$ are $y = \pm \frac{b}{e}$

Here **b**=2, **e**= $\sqrt{1+1}$ = $\sqrt{2}$. Hence, $y=\pm \frac{2}{\sqrt{2}} \implies y=\pm \sqrt{2}$.

5.3.5 AUXILIARY CIRCLE OF HYPERBOLA

Let $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ be the hyperbola with centre C and transverse axis

AA. Therefore circle drawn with centre C and segment **AA** as a diameter is called auxiliary circle of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

Let $\angle QCN = \phi$

Here P and Q are the corresponding points on the hyperbola and the auxiliary circle $(0 \le \phi < 2\pi)$

(1) Parametric equations of hyperbola: The equations $\mathbf{x} = \mathbf{asec}\phi$ and $\mathbf{y} = \mathbf{btan}\phi$ are known as the parametric equations of the hyperbola $\frac{\mathbf{x}^2}{\mathbf{a}^2} - \frac{\mathbf{y}^2}{\mathbf{b}^2} = \mathbf{1}$. This $(\mathbf{asec}\phi, \mathbf{btan}\phi)$ lies on the hyperbola for all values of ϕ .

Position of points Q on auxiliary circle and the corresponding point P which describes the hyperbola				
and $0 \le \phi < 2\pi$ $\phi \text{ varies from } Q(a \cos \varphi, a \sin \varphi) \qquad P(a \sec \varphi, b \tan \varphi)$				
0 to $\frac{\pi}{2}$	I	I		
$\frac{\pi}{2}$ to π	II	III		
π to $\frac{3\pi}{2}$	III	II		
$\frac{3\pi}{2}$ to 2π	IV	IV		

Note: \square The equations $\mathbf{x} = \mathbf{a}\mathbf{cosh}\theta$ and $\mathbf{y} = \mathbf{b}\mathbf{sinh}\theta$ are also known as the parametric equations of the hyperbola and the co-ordinates of any point on the hyperbola $\frac{\mathbf{x}^2}{\mathbf{a}^2} - \frac{\mathbf{y}^2}{\mathbf{b}^2} = \mathbf{1}$ are expressible as $(\mathbf{a}\mathbf{cosh}\theta, \mathbf{b}\mathbf{sinh}\theta)$, where $\mathbf{cosh}\theta = \frac{\mathbf{e}^\theta + \mathbf{e}^{-\theta}}{\mathbf{2}}$ and $\mathbf{sinh}\theta = \frac{\mathbf{e}^\theta - \mathbf{e}^{-\theta}}{\mathbf{2}}$.

Example: 10 The distance between the directrices of the hyperbola $x = 8 \sec \theta$, $y = 8 \tan \theta$ is

(b)
$$\sqrt{2}$$

(c)
$$8\sqrt{2}$$

(d)
$$4,\sqrt{2}$$

Solution: (c) Equation of hyperbola is $x = 8\sec\theta, y = 8\tan\theta \implies \frac{x}{8} = \sec\theta, \frac{y}{8} = \tan\theta$

$$\therefore \sec^2 \theta - \tan^2 \theta = 1 \implies \frac{x^2}{8^2} - \frac{y^2}{8^2} = 1$$

Here
$$a=8, b=8$$
. Now $e=\sqrt{1+\frac{b^2}{a^2}}=\sqrt{1+\frac{8^2}{8^2}}=\sqrt{2}$

.. Distance between directrices
$$=\frac{2a}{e}=\frac{2\times8}{\sqrt{2}}=8\sqrt{2}$$
.

5.3.6 Position of a point with respect to a Hyperbola

Let the hyperbola be $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$.

Then $P(x_1, y_1)$ will lie inside, on or outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ according as $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$ is positive, zero or negative.

Example: 11 The number of tangents to the hyperbola $\frac{x^2}{4} - \frac{y^2}{3} = 1$

through (4, 1) is

[AMU 1998]

(a)

(b) 2

(c) 0

(d)3

Solution: (c) Since the point (4, 1) lies inside the hyperbola $\left[\Theta \frac{16}{4} - \frac{1}{3} - 1 > 0\right]$; ... Number of tangents through (4, 1) is 0.

5.3.7 Intersection of a Line and a Hyperbola

The straight line y = mx + c will cut the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in two points may be real, coincident or imaginary according as $c^2 > 0$, c = 0.

Condition of tangency: If straight line y = mx + c touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $c^2 = a^2 m^2 - b^2$.

5.3.8 EQUATIONS OF TANGENT IN DIFFERENT FORMS

- (1) **Point form :** The equation of the tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $\frac{xx_1}{a^2} \frac{yy_1}{b^2} = 1$.
 - (2) Parametric form: The equation of tangent to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at $(a\sec\phi, b\tan\phi)$ is

$$\frac{x}{a}\sec\phi - \frac{y}{b}\tan\phi = 1$$

(3) Slope form: The equations of tangents of slope m to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $y = mx \pm \sqrt{a^2 m^2 - b^2}$ and the co-ordinates of points of contacts are $\left(\pm \frac{a^2 m}{\sqrt{a^2 m^2 - b^2}}, \pm \frac{b^2}{\sqrt{a^2 m^2 - b^2}}\right)$.

Note: \Box If the straight line lx + my + n = 0 touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $a^2l^2 - b^2m^2 = n^2$.

- ☐ If the straight line $x\cos\alpha + y\sin\alpha = p$ touches the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, then $a^2\cos^2\alpha b^2\sin^2\alpha = p^2$
- ☐ Two tangents can be drawn from an outside point to a hyperbola.

Important Tips

- For hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} \frac{x^2}{b^2} = 1$, the equation of common tangent is $y = \pm x \pm \sqrt{a^2 b^2}$, points of contacts are $\left(\pm \frac{a^2}{\sqrt{a^2 b^2}}; \pm \frac{b^2}{\sqrt{a^2 b^2}}\right)$ and length of common tangent is $\sqrt{2} \cdot \frac{(a^2 + b^2)}{\sqrt{a^2 b^2}}$.
- If the line $y = mx \pm \sqrt{a^2 m^2 b^2}$ touches the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at the point $(a \sec \theta, b \tan \theta)$, then $\theta = \sin^{-1} \left(\frac{b}{am}\right)$.

Example: 12 The value of <i>m</i>	for which $y = mx + 6$ is a	a tangent to the hyp	erbola $\frac{x^2}{100} - \frac{y^2}{49} = 1$, is
	(b) $\sqrt{\frac{20}{17}}$		
Solution: (a) For condition of	of tangency, $c^2 = a^2 m^2 - b$	b^2 . Here $c=6$, $a=10$	0, b =7
Then, $(6)^2 = (10)^2$	$m^2 - (7)^2$		
	4 =	·	

 $36=100n^2-49 \implies 100n^2=85 \implies m^2=\frac{17}{20} \implies m=\sqrt{\frac{17}{20}}$

Example: 13 If m_1 and m_2 are the slopes of the tangents to the hyperbola $\frac{x^2}{25} - \frac{y^2}{16} = 1$ which pass through the point (6, 2), then (a) $m_1 + m_2 = \frac{24}{11}$ (b) $m_1 m_2 = \frac{20}{11}$ (c) $m_1 + m_2 = \frac{48}{11}$ (d) $m_1 m_2 = \frac{11}{20}$

(a)
$$m_1 + m_2 = \frac{24}{11}$$

(b)
$$m_1 m_2 = \frac{20}{11}$$

(c)
$$m_1 + m_2 = \frac{48}{11}$$

(d)
$$m_1 m_2 = \frac{11}{20}$$

Solution: (a, b) The line through (6, 2) is $y-2=m(x-6) \Rightarrow y=mx+2-6m$

Now, from condition of tangency $(2-6m)^2 = 25m^2 - 16$

$$\Rightarrow$$
 36 $m^2 + 4 - 24m - 25m^2 + 16 = 0 \Rightarrow 11 $m^2 - 24m + 20 = 0$$

Obviously, its roots are m_1 and m_2 , therefore $m_1 + m_2 = \frac{24}{11}$ and $m_1 m_2 = \frac{20}{11}$

Example: 14 The points of contact of the line y = x - 1 with $3x^2 - 4y^2 = 12$ is

(c)
$$(4, -3)$$

(d) None of these

Solution: (a) The equation of line and hyperbola are y = x - 1(i) and $3x^2 - 4y^2 = 12$ (ii)

From (i) and (ii), we get $3x^2 - 4(x-1)^2 = 12$

$$\Rightarrow$$
 3x² - 4(x² - 2x + 1) = 12 Or x² - 8x + 16 = 0 \Rightarrow x = 4

From (i), v=3 so points of contact is (4, 3)

Trick: Points of contact are $\left(\pm \frac{a^2m}{\sqrt{a^2m^2-b^2}}, \pm \frac{b^2}{\sqrt{a^2m^2-b^2}}\right)$.

Here $a^2 = 4$, $b^2 = 3$ and m = 1. So the required points of contact is (4, 3).

Example: 15 P is a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, N is the foot of the perpendicular from P on the transverse axis. The tangent to the hyperbola at P meets the transverse axis at T. If O is the centre of the hyperbola, then OT.ON is equal to

(d)
$$\frac{b^2}{a^2}$$

Solution: (b) Let $P(x_1, y_1)$ be a point on the hyperbola. Then the co-ordinates of N are $(x_1, 0)$.

The equation of the tangent at (x_1, y_1) is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$

This meets x-axis at $T\left(\frac{a^2}{x_1},0\right)$; ...

$$OT.ON = \frac{a^2}{x_1} \times x_1 = a^2$$

Example: 16 If the tangent at the point $(2\sec\phi, 3\tan\phi)$ on the hyperbola $\frac{x^2}{4} - \frac{y^2}{9} = 1$ is parallel to

3x-y+4=0, then the value of ϕ is

Solution: (c) Here $x = 2\sec\phi$ and $y = 3\tan\phi$

Differentiating w.r.t. ϕ

$$\frac{dx}{d\phi} = 2\sec\phi \tan\phi$$
 and $\frac{dy}{d\phi} = 3\sec^2\phi$

$$\therefore \text{ Gradient of tangent } \frac{dy}{dx} = \frac{dy/d\phi}{dx/d\phi} = \frac{3\sec^2\phi}{2\sec\phi\tan\phi}; \quad \therefore \frac{dy}{dx} = \frac{3}{2}\csc\phi \qquad \dots (i)$$

But tangent is parallel to 3x-y+4=0; .: Gradient m=3

From (i) and (ii),
$$\frac{3}{2} \cos \varphi = 3 \implies$$

$$\mathbf{cose} \phi = \mathbf{2}, : \phi = \mathbf{30}^o$$

Example: 17 The slopes of the common tangents to the hyperbola $\frac{x^2}{9} - \frac{y^2}{16} = 1$ and $\frac{y^2}{9} - \frac{x^2}{16} = 1$ are

$$(a) - 2, 2$$

$$(b) - 1, 1$$

(a)
$$-2$$
, 2 (b) -1 , 1 (c) 1, 2
Solution: (b) Given hyperbola are $\frac{x^2}{9} - \frac{y^2}{16} = 1$ (i) and $\frac{y^2}{9} - \frac{x^2}{16} = 1$

....(i) and
$$\frac{y^2}{9} - \frac{x^2}{16} = 1$$

Any tangent to (i) having slope m is $y = mx \pm \sqrt{9m^2 - 16}$

Putting in (ii), we get, $16mx \pm \sqrt{9m^2 - 16}i^2 - 9x^2 = 144$

$$\Rightarrow$$
 $(16m^2 - 9)x^2 \pm 32m(\sqrt{9m^2 - 16})x + 144m^2 - 256 - 144 = 0$

$$\Rightarrow$$
 $(16m^2 - 9)x^2 \pm 32m(\sqrt{9m^2 - 16})x + (144m^2 - 400 = 0)$

If (iii) is a tangent to (ii), then the roots of (iv) are real and equal.

$$\therefore \text{ Discriminant} = 0; \quad \mathbf{32} \times \mathbf{32} m^2 (9m^2 - 16) = 4(16m^2 - 9)(144m^2 - 400) = 64(16m^2 - 9)(9m^2 - 25)$$

$$\Rightarrow$$
 16m²(9m² - 16) = (16m² - 9)(9m² - 25) \Rightarrow 144m⁴ - 256m² = 144m⁴ - 481m² + 225

$$\Rightarrow$$
 225 $m^2 = 225 \Rightarrow m^2 = 1 \Rightarrow m = \pm 1$

5.3.9 EQUATION OF PAIR OF TANGENTS

If $P(x_1, y_1)$ be any point outside the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then a pair of tangents PQ, PR can be drawn to it from P.

The equation of pair of tangents PQ and PR is $SS = T^2$

where,
$$S = \frac{x^2}{a^2} - \frac{y^2}{h^2} - 1$$
, $S_1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{h^2} - 1$, $T = \frac{xx_1}{a^2} - \frac{yy_1}{h^2} - 1$

Director circle: The director circle is the locus of points from which perpendicular tangents are drawn to the given hyperbola. The equation of the director circle of the hyperbola $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$ is

$$x^2 + y^2 = a^2 - b^2$$

Example: 18 The locus of the point of intersection of tangents to the hyperbola $4x^2 - 9y^2 = 36$ which meet at a constant angle $\pi/4$, is

(a)
$$(x^2 + y^2 - 5)^2 = 4(9y^2 - 4x^2 + 36)$$

(b)
$$(x^2 + y^2 - 5) = 4(9y^2 - 4x^2 + 36)$$

(c)
$$4(x^2+y^2-5)^2=(9y^2-4x^2+36)$$

Solution: (a) Let the point of intersection of tangents be $P(x_1, y_1)$. Then the equation of pair of tangents

from $P(x_1, y_1)$ to the given hyperbola is $(4x^2 - 9y^2 - 36)(4x_1^2 - 9y_1^2 - 36) = [4x_1x - 9y_1y - 36]^2$ (i)

From
$$SS_1 = T^2$$
 or $x^2(y_1^2 + 4) + 2x_1y_1xy + y^2(x_1^2 - 9) + \dots = 0$ (ii)

Since angle between the tangents is $\pi/4$.

$$\therefore \tan(\pi/4) = \frac{2\sqrt{[x_1^2y_1^2 - (y_1^2 + 4)(x_1^2 - 9)]}}{y_1^2 + 4 + x_1^2 - 9}. \text{ Hence locus of } P(x_1, y_1) \text{ is } (x^2 + y^2 - 5)^2 = 4(9y^2 - 4x^2 + 36).$$

5.3.10 EQUATIONS OF NORMAL IN DIFFERENT FORMS

- (1) **Point form**: The equation of normal to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ at (x_1, y_1) is $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$.
- (2) **Parametric form:** The equation of normal at $(asec\theta, btan\theta)$ to the hyperbola $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is

$$ax\cos\theta + by\cot\theta = a^2 + b^2$$

(3) **Slope form:** The equation of the normal to the hyperbola

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \text{ in terms of the slope } m \text{ of the normal is } y = mx\mu \frac{m(a^2 + b^2)}{\sqrt{a^2 - b^2m^2}}$$

(4) Condition for normality: If y = mx + c is the normal of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$

then $c = \mu \frac{m(a^2 + b^2)}{\sqrt{a^2 - m^2b^2}}$ or $c^2 = \frac{m^2(a^2 + b^2)^2}{(a^2 - m^2b^2)}$, which is condition of normality.

(5) **Points of contact :** Co-ordinates of points of contact are
$$\left(\pm \frac{a^2}{\sqrt{a^2 - b^2 m^2}}, \mu \frac{mb^2}{\sqrt{a^2 - b^2 m^2}}\right)$$

Note: \square If the line lx + my + n = 0 will be normal to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then

$$\frac{a^2}{p^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}.$$

Important Tip

- In general, four normals can be drawn to a hyperbola from any point and if $\alpha, \beta, \gamma, \delta$ be the eccentric angles of these four co-normal points, then $\alpha + \beta + \gamma + \delta$ is an odd multiple of π .
- If α, β, γ are the eccentric angles of three points on the hyperbola. $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$, the normals at which are concurrent, then, $\sin(\alpha + \beta) + \sin(\beta + \gamma) + \sin(\gamma + \alpha) = 0$
- If the normal at P meets the transverse axis in G, then $\mathbf{SG} = \mathbf{e}.\mathbf{SP}$. Also the tangent and normal bisect the angle between the focal distances of P.
- The feet of the normals to $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ from (h, k) lie on $a^2y(x-h) + b^2x(y-k) = 0$.

Example: 19 The equation of the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at the point (8,3 $\sqrt{3}$) is

(a)
$$\sqrt{3}x + 2y = 25$$

(b)
$$x+y=25$$

(c)
$$y+2x=25$$

(d)
$$2x + \sqrt{3}y = 25$$

Solution: (d) From $\frac{a^2x}{x_1} + \frac{b^2y}{y_1} = a^2 + b^2$

Here
$$a^2 = 16$$
, $b^2 = 9$ and $(x_1, y_1) = (8, 3\sqrt{3})$

$$\Rightarrow \frac{16x}{8} + \frac{9y}{3\sqrt{3}} = 16 + 9 \quad i.e., \ 2x + \sqrt{3}y = 25.$$

Example: 20 If the normal at ϕ' on the hyperbola $\frac{x^2}{\sigma^2} - \frac{y^2}{F^2} = 1$ meets transverse axis at G, then AGAG = 1(Where A and A are the vertices of the hyperbola)

(a)
$$a^2(e^4 \sec^2 \phi - 1)$$

(b)
$$(a^2e^4\sec^2\phi - 1)$$

(c)
$$a^2(1-e^4\sec^2\phi)$$

(d) None of these

Solution: (a) The equation of normal at $(a\sec\phi, b\tan\phi)$ to the given hyperbola is $ax\cos\phi + by\cot\phi = (a^2 + b^2)$ This meets the transverse axis i.e., x-axis at G. So the co-ordinates of G are $\left(\left(\frac{a^2+b^2}{a}\right)\sec\phi,0\right)$ and the co-ordinates of the vertices A and A' are A(a,0) and A(-a,0)respectively.

$$\therefore AGAG = \left(-a + \left(\frac{a^2 + b^2}{a}\right) \sec \phi\right) \left(a + \left(\frac{a^2 + b^2}{a}\right) \sec \phi\right) = \left(\frac{a^2 + b^2}{a}\right)^2 \sec^2 \phi - a^2 = (ae^2)^2 \sec^2 \phi - a^2 = a^2(e^4 \sec^2 \phi - 1)$$

Example: 21 The normal at P to a hyperbola of eccentricity e, intersects its transverse and conjugate axis at L and M respectively, then the locus of the middle point of LM is a hyperbola whose eccentricity is

(a)
$$\frac{e}{\sqrt{e^2-1}}$$

(b)
$$\frac{e}{\sqrt{e^4-1}}$$

(b)
$$\frac{e}{\sqrt{e^4 - 1}}$$
 (c) $\frac{e}{\sqrt{a^2 e^2 - 1}}$

(d) None of these

Solution: (a) The equation of the normal at $P(a\sec\phi, b\tan\phi)$ to the hyperbola is $ax\cos\phi + by\cot\phi = a^2 + b^2 = a^2e^2$ It meets the transverse and conjugate axes at L and M, then $L(ae^2 \sec \phi, 0)$; $M \left(0, \frac{a^2 e^2 \tan \phi}{b}\right)$

Let the middle point of LM is (α, β) ; then $\alpha = \frac{ae^2 \sec \phi}{2} \implies \sec \phi = \frac{2\alpha}{ac^2}$ (i)

and
$$\beta = \frac{a^2 e^2 \tan \phi}{2b} \implies \tan \phi = \frac{2b\beta}{a^2 e^2}$$
(i

$$\Theta \quad \mathbf{1} = \sec^2 \phi - \tan^2 \phi \; ; \quad \mathbf{1} = \frac{4\alpha^2}{\mathbf{a}^2 e^4} - \frac{4b^2 \beta^2}{\mathbf{a}^4 e^4} \; , \quad \triangle \text{ Locus of } (\alpha, \beta) \text{ is } \frac{\mathbf{x}^2}{\left(\frac{\mathbf{a}^2 e^4}{4}\right)} - \frac{\mathbf{y}^2}{\left(\frac{\mathbf{a}^4 e^4}{4b^2}\right)} = \mathbf{1}$$

It is a hyperbola, let its eccentricity $e_1 = \frac{\sqrt{\left(\frac{a^2e^4}{4} + \frac{a^4e^4}{4b^2}\right)}}{\left(\frac{a^2e^4}{4}\right)} = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{\frac{a^2+b^2}{b^2}} = \sqrt{\frac{a^2e^2}{a^2(e^2-1)}}; ...$

$$\boldsymbol{e_1} = \frac{\boldsymbol{e}}{\sqrt{\boldsymbol{e^2} - 1}} \ .$$

5.3.11 EQUATION OF CHORD OF CONTACT OF TANGENTS DRAWN FROM A POINT TO A HYPERBOLA

Let PQ and PR be tangents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ drawn from any external point $P(x_1, y_1)$.

Then equation of chord of contact QR is

or
$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

or
$$T=0$$
 (At x_1, y_1)

5.3.12 EQUATION OF THE CHORD OF THE HYPERBOLA WHOSE MID POINT (X_1, Y_1) IS GIVEN

Equation of the chord of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, bisected at the given point (x_1, y_1) is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} - 1 = \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} - 1$

i.e.,
$$T = S_1$$

Note: \Box The length of chord cut off by hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ from the line y = mx + c is

$$\frac{2ab\sqrt{[c^2-(a^2m^2-b^2)](1+m^2)}}{(b^2-a^2m^2)}$$

5.3.13 EQUATION OF THE CHORD JOINING TWO POINTS ON THE HYPERBOLA

The equation of the chord joining the points $P(a\sec\phi_1, b\tan\phi_1)$ and $Q(a\sec\phi_2, b\tan\phi_2)$ is

$$y - b \tan \phi_1 = \frac{b \tan \phi_2 - b \tan \phi_1}{a \sec \phi_2 - a \sec \phi_1} (x - a \sec \phi_1)$$

$$\frac{x}{a}\cos\left(\frac{\phi_1-\phi_2}{2}\right) - \frac{y}{b}\sin\left(\frac{\phi_1+\phi_2}{2}\right) = \cos\left(\frac{\phi_1+\phi_2}{2}\right)$$

Note: \square If the chord joining two points $(\mathbf{asec}\theta_1, \mathbf{btan}\theta_1)$ and $(\mathbf{asec}\theta_2, \mathbf{btan}\theta_2)$ passes through the

focus of the hyperbola
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
, then $\tan \frac{\theta_1}{2} \tan \frac{\theta_2}{2} = \frac{1-e}{1+e}$.

Example: 22 The equation of the chord of contact of tangents drawn from a point (2, -1) to the hyperbola $16x^2 - 9y^2 = 144$ is

(a)
$$32x + 9y = 144$$

(b)
$$32x+9y=55$$

(c)
$$32x+9y+144=0$$

(d)
$$32x+9y+55=0$$

Solution: (a) From T = 0 *i.e.*, $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$. Here, $16x^2 - 9y^2 = 144$ *i.e.*, $\frac{x^2}{9} - \frac{y^2}{16} = 1$

So, the equation of chord of contact of tangents drawn from a point (2, -1) to the hyperbola is $\frac{2x}{9} - \frac{(-1)y}{16} = 1$

$$i.e.$$
, $32x+9y=144$

Example: 23 The point of intersection of tangents drawn to the hyperbola $\frac{x^2}{r^2} - \frac{y^2}{t^2} = 1$ at the points where it is intersected by the line lx+my+n=0 is

(a)
$$\left(\frac{-a^2I}{n}, \frac{b^2m}{n}\right)$$

(b)
$$\left(\frac{a^2I}{n}, \frac{-b^2m}{n}\right)$$

$$(c)\left(-\frac{a^2n}{l},\frac{b^2n}{m}\right)$$

(a)
$$\left(\frac{-a^2I}{n}, \frac{b^2m}{n}\right)$$
 (b) $\left(\frac{a^2I}{n}, \frac{-b^2m}{n}\right)$ (c) $\left(-\frac{a^2n}{I}, \frac{b^2n}{m}\right)$ (d) $\left(\frac{a^2n}{I}, \frac{-b^2n}{m}\right)$

Solution: (a) Let (x_i, y_i) be the required point. Then the equation of the chord of contact of tangents drawn from (x_1, y_1) to the given hyperbola is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$(i)

The given line is lx+my+n=0

....(ii)

Equation (i) and (ii) represent the same line

$$\therefore \quad \frac{x_1}{a^2I} = -\frac{y_1}{b^2m} = \frac{1}{-h} \implies x_1 = \frac{-a^2I}{n}, y_1 = \frac{b^2m}{n}; \text{ Hence the required point is } \left(-\frac{a^2I}{n}, \frac{b^2m}{n}\right).$$

What will be equation of that chord of hyperbola $25x^2 - 16y^2 = 400$, whose mid point is Example: 24 (5, 3)[UPSEAT 1999]

(a)
$$115x - 117y = 17$$

(b)
$$125x - 48y = 481$$

(c)
$$127x + 33y = 341$$

(d) 15x + 121y = 105

Solution: (b) According to question, $S = 25x^2 - 16y^2 - 400 = 0$

Equation of required chord is $\mathbf{s}_i = \mathbf{T}$

Here $S_1 = 25(5)^2 - 16(3)^2 - 400 = 625 - 144 - 400 = 81$ and $T = 25xx_1 - 16yy_1 - 400$, where $x_1 = 5$, $y_1 = 3$

$$\implies$$
 25x(5) - 16y(3) - 400= 125x - 48y - 400

So, from (i) required chord is $125x - 48y - 400 = 81 \implies 125x - 48y = 481$.

Example: 25 The locus of the mid-points of the chords of the circle $x^2 + y^2 = 16$ which are tangent to the hyperbola $9x^2 - 16v^2 = 144$ is

(a)
$$(x^2 + y^2)^2 = 16x^2 - 9y^2$$

(b)
$$(x^2 + y^2)^2 = 9x^2 - 16y^2$$

(c)
$$(x^2 - y^2)^2 = 16x^2 - 9y^2$$

(d) None of these

Solution: (a) The given hyperbola is $\frac{x^2}{16} - \frac{y^2}{9} = 1$

.....(i)

Any tangent to (i) is $y = mx + \sqrt{16m^2 - 9}$

.....(ii)

Let (x_1, y_1) be the mid point of the chord of the circle $x^2 + y^2 = 16$

Then equation of the chord is $T = S_1 i.e.$, $xx_1 + yy_1 - (x_1^2 + y_1^2) = 0$

Since (ii) and (iii) represent the same line.

$$\therefore \frac{m}{x_1} = \frac{-1}{y_1} = \frac{\sqrt{16m^2 - 9}}{-(x_1^2 + y_1^2)}$$

$$\Rightarrow m = -\frac{x_1}{y_1} \text{ and } (x_1^2 + y_1^2)^2 = y_1^2 (16m^2 - 9) \Rightarrow (x_1^2 + y_1^2)^2 = 16 \cdot \frac{x_1^2}{y_1^2} y_1^2 - 9y_1^2 = 16x_1^2 - 9y_1^2$$

.. Locus of
$$(x_1, y_1)$$
 is $(x^2 + y^2)^2 = 16x^2 - 9y^2$.

5.3.14 POLE AND POLAR

Let P be any point inside or outside the hyperbola. If any straight line drawn through P interesects the hyperbola at A and B. Then the locus of the point of intersection of the tangents to the hyperbola at A and B is called the polar of the given point P with respect to the hyperbola and the point **P** is called the pole of the polar.

The equation of the required polar with (x_1, y_1) as its pole is

$$\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 1$$

Note : \square Polar of the focus is the directrix.

☐ Any tangent is the polar of its point of contact.

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 is $(x_1, y_1) = \left(-\frac{a^2 I}{n}, \frac{b^2 m}{n}\right)$

- (2) Properties of pole and polar
- (i) If the polar of $P(x_1, y_1)$ passes through $Q(x_2, y_2)$, then the polar of $Q(x_2, y_2)$ goes through $P(x_1, y_1)$ and such points are said to be conjugate points.
- (ii) If the pole of a line lx + my + n = 0 lies on the another line lx + m'y + n' = 0 then the pole of the second line will lie on the first and such lines are said to be conjugate lines.
 - (iii) Pole of a given line is same as point of intersection of tangents as its extremities.

Important Tips

If the polars of (x_1, y_1) and (x_2, y_2) with respect to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are at right angles, then $\frac{x_1x_2}{y_1y_2} + \frac{a^4}{b^4} = 0$

Example: 26 If the polar of a point w.r.t. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ touches the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then the locus of the point is

(a) Given hyperbola

(b) Ellipse

(c) Circle

(d) None of these

Solution: (a) Let (x_1, y_1) be the given point.

Its polar w.r.t. $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is $\frac{xx_1}{a^2} + \frac{yy_1}{b^2} = 1$ i.e., $y = \frac{b^2}{y_1} \left(1 - \frac{xx_1}{a^2} \right) = -\frac{b^2x_1}{a^2y_1} x + \frac{b^2}{y_1}$ This touches $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ if $\left(\frac{b^2}{y_1} \right)^2 = a^2 \cdot \left(\frac{b^2x_1}{a^2y_1} \right) - b^2 \implies \frac{b^4}{y_1^2} = \frac{a^2b^4x_1^2}{a^4y_1^2} - b^2 \implies \frac{b^2}{y_1^2} = \frac{b^2x_1^2}{a^2y_1^2} - 1$ $\implies \frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$

 \therefore Locus of (x_1, y_1) is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. Which is the same hyperbola.

Example: 27 The locus of the poles of the chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, which subtend a right angle at the centre is

(a)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$$

(a)
$$\frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$$
 (b) $\frac{x^2}{a^2} - \frac{y^2}{b^2} = \frac{1}{a^2} - \frac{1}{b^2}$ (c) $\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{1}{a^2} + \frac{1}{b^2}$ (d) $\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$

(d)
$$\frac{x^2}{a^4} - \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$$

Solution: (a) Let (x_1, y_1) be the pole w.r.t. $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$

Then equation of polar is
$$\frac{hx}{a^2} - \frac{ky}{b^2} = 1$$
(i

The equation of lines joining the origin to the points of intersection of (i) and (ii) is obtained by making homogeneous (i) with the help of (ii), then $\left(\frac{x^2}{a^2} - \frac{y^2}{k^2}\right) = \left(\frac{hx}{k^2} - \frac{ky}{k^2}\right)^2 \implies$

$$x^{2}\left(\frac{1}{a^{2}}-\frac{h^{2}}{a^{4}}\right)-y^{2}\left(\frac{1}{b^{2}}+\frac{k^{2}}{b^{4}}\right)+\frac{2hk}{a^{2}b^{2}}xy=0$$

Since the lines are perpendicular, then coefficient of x^2 + coefficient of y^2 = 0

$$\frac{1}{a^2} - \frac{h^2}{a^4} - \frac{1}{b^2} - \frac{k^2}{b^4} = 0 \text{ or } \frac{h^2}{a^4} + \frac{k^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2} \text{. Hence required locus is } \frac{x^2}{a^4} + \frac{y^2}{b^4} = \frac{1}{a^2} - \frac{1}{b^2}$$

5.3.15 DIAMETER OF THE HYPERBOLA

The locus of the middle points of a system of parallel chords of a hyperbola is called a diameter and the point where the diameter intersects the hyperbola is called the vertex of the diameter.

Let y = mx + c a system of parallel chords to $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ for different chords then the equation of diameter of the hyperbola is $y = \frac{b^2 x}{a^2 m}$, which is passing through (0, 0)

Conjugate diameter: Two diameters are said to be conjugate when each bisects all chords parallel to the others.

If $y = m_1 x$, $y = m_2 x$ be conjugate diameters, then $m_1 m_2 = \frac{b^2}{a^2}$.

Note: \square If a pair of diameters be conjugate with respect to a hyperbola, they are conjugate with respect to its conjugate hyperbola also.

- ☐ In a pair of conjugate diameters of a hyperbola. Only one meets the curve in real points.
- \Box The condition for the lines $AX^2 + 2HXY + BY^2 = 0$ to be conjugate diameters of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $a^2 A = b^2 B$.

Important Tips

If *cp* is the conjugate diameter of a diameter CP of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, where P is (asec ϕ , btan ϕ) then coordinates of D is (atan ϕ , bsec ϕ), where C is (0, 0).

Example: 28 If a pair of conjugate diameters meet the hyperbola and its conjugate in P and D respectively, then CP - CD =

(a)
$$a^2 + b^2$$

(b)
$$a^2 - b^2$$

(c)
$$\frac{a^2}{b^2}$$

(d) None of these

Solution: (b) Coordinates of P and D are (asec ϕ , btan ϕ) and (atan ϕ , bsec ϕ) respectively.

Then
$$(CP)^2 - (CD)^2 = a^2 \sec^2 \phi + b^2 \tan^2 \phi - a^2 \tan^2 \phi - b^2 \sec^2 \phi$$

= $a^2 (\sec^2 \phi - \tan^2 \phi) - b^2 (\sec^2 \phi - \tan^2 \phi) = a^2 (1) - b^2 (1) = a^2 - b^2$.

Example: 29 If the line lx+my+n=0 passes through the extremities of a pair of conjugate diameters of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ then

(a)
$$a^2 f^2 - b^2 m^2 = 0$$
 (b) $a^2 f^2 + b^2 m^2 = 0$ (c) $a^2 f^2 + b^2 m^2 = n^2$ (d) None of these

(b)
$$a^2 f^2 + b^2 m^2 = 0$$

(c)
$$a^2 f^2 + b^2 m^2 = m^2$$

Solution: (a) The extremities of a pair of conjugate diameters of $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $(a \sec \phi, b \tan \phi)$ and (atanø, bsecø) respectively.

According to the question, since extremities of a pair of conjugate diameters lie on lx+my+n=0

$$\therefore \quad \textit{(asec}\phi) + \textit{m(b} tan \phi) + \textit{n} = 0 \implies \textit{(atan}\phi) + \textit{m(bsec}\phi) + \textit{n} = 0 \qquad \qquad \dots \qquad (i)$$

Then from (i),
$$alsec\phi + bmtan\phi = -n$$
 or $a^2l^2 sec^2\phi + b^2m^2 tan^2\phi + 2ablmsec\phi tan\phi = n^2$ (ii)

And from (ii),
$$altan\phi + bmsec\phi = -n$$
 or $a^2l^2tan^2\phi + b^2m^2sec^2\phi + 2ablmsec\phi tan\phi = n^2$ (iii)

Then subtracting (ii) from (iii)

$$\therefore a^2 f^2 (\sec^2 \phi - \tan^2 \phi) + b^2 m^2 (\tan^2 \phi - \sec^2 \phi) = 0 \text{ Of } a^2 f^2 - b^2 m^2 = 0.$$

5.3. 16 SUBTANGENT AND SUBNORMAL OF THE HYPERBOLA

Let the tangent and normal at $P(x_1, y_1)$ meet the x-axis at A and B respectively.

Length of subtangent $AN = CN - CA = x_1 - \frac{a^2}{v}$

Length of subnormal **BN**= **CB**- **CN**= $\frac{(a^2+b^2)}{a^2} x_1 - x_1 = \frac{b^2}{a^2} x_1 = (e^2-1)x_1$

5.3.17 Reflection property of the Hyperbola

If an incoming light ray passing through one focus (S) strike convex side of the hyperbola then it will get reflected towards other focus (S)

$$/TPS = /LPM = \alpha$$

Example: 30 A ray emanating from the point (5, 0) is incident on the hyperbola $9x^2 - 16y^2 = 144$ at the point P with abscissa 8; then the equation of reflected ray after first reflection is (Point P lies in first quadrant)

(a)
$$3\sqrt{3}x - 13y + 15\sqrt{3} = 0$$
 (b) $3x - 13y + 15 = 0$ (c) $3\sqrt{3}x + 13y - 15\sqrt{3} = 0$ (d) None of these

Solution: (a) Given hyperbola is $9x^2 - 26y^2 = 144$. This equation can be rewritten as $\frac{x^2}{16} - \frac{y^2}{9} = 1$

Since x coordinate of P is 8. Let y-coordinate of P is α

 \therefore (8, α) lies on (i)

$$\therefore \frac{64}{16} - \frac{\alpha^2}{9} = 1; \quad \therefore \quad \alpha = 27$$

$$\alpha = 3\sqrt{3}$$

Hence coordinate of point P is $(8,3\sqrt{3})$

Asymptot

Equation of reflected ray passing through $P(8,3\sqrt{3})$ and S(-5,0); ... Its equation is $y-3\sqrt{3}=\frac{0-3\sqrt{3}}{-5-8}(x-8)$

Or
$$13y - 39\sqrt{3} = 3\sqrt{3}x - 24\sqrt{3}$$
 Or $3\sqrt{3}x - 13y + 15\sqrt{3} = 0$

5.3.18 ASYMPTOTES OF A HYPERBOLA

An asymptote to a curve is a straight line, at a finite distance from the origin, to which the tangent to a curve tends as the point of contact goes to infinity.

The equations of two asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are $y = \pm \frac{b}{a}x$ or $\frac{x}{a} \pm \frac{y}{b} = 0$.

Note: \Box The combined equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ is $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 0$.

- \square When b = a i.e. the asymptotes of rectangular hyperbola $x^2 y^2 = a^2$ are $y = \pm x$, which are at right angles.
- ☐ A hyperbola and its conjugate hyperbola have the same asymptotes.
- ☐ The equation of the pair of asymptotes differ the hyperbola and the conjugate hyperbola by the same constant only *i.e.*Hyperbola Asymptotes = Asymptotes Conjugated hyperbola or,

$$\left(\frac{\textbf{x}^2}{\textbf{a}^2} - \frac{\textbf{y}^2}{\textbf{b}^2} - 1\right) - \left(\frac{\textbf{x}^2}{\textbf{a}^2} - \frac{\textbf{y}^2}{\textbf{b}^2}\right) = \left(\frac{\textbf{x}^2}{\textbf{a}^2} - \frac{\textbf{y}^2}{\textbf{b}^2}\right) - \left(\frac{\textbf{x}^2}{\textbf{a}^2} - \frac{\textbf{y}^2}{\textbf{b}^2} + 1\right).$$

- \Box The asymptotes pass through the centre of the hyperbola.
- \Box The bisectors of the angles between the asymptotes are the coordinate axes.

- ☐ The angle between the asymptotes of the hyperbola S = 0 i.e., $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$ is $2 \tan^{-1} \frac{b}{a}$ or $2 \sec^{-1} e$.
- ☐ Asymptotes are equally inclined to the axes of the hyperbola.

Important Tips

The parallelogram formed by the tangents at the extremities of conjugate diameters of a hyperbola has its vertices lying on the asymptotes and is of constant area.

Area of parallelogram QRQR = 4(Area of parallelogram QDCP) = 4ab = Constant

The product of length of perpendiculars drawn from any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ to the asymptotes is $\frac{a^2b^2}{a^2+b^2}$.

Example: 31 From any point on the hyperbola, $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ tangents are drawn to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$. The area cut-off by the chord of contact on the asymptotes is equal to

(a)
$$\frac{ab}{2}$$

Solution: (d) Let $P(x_1, y_1)$ be a point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, then $\frac{x_1^2}{a^2} - \frac{y_1^2}{b^2} = 1$

The chord of contact of tangent from P to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$ is $\frac{xx_1}{a^2} - \frac{yy_1}{b^2} = 2$

The equation of asymptotes are $\frac{x}{a} - \frac{y}{b} = 0$

And
$$\frac{x}{a} + \frac{y}{b} = 0$$

The point of intersection of the asymptotes and chord are $\left(\frac{2a}{x_1/a-y_1/b},\frac{2b}{x_1/a-y_1/b}\right); \left(\frac{2a}{x_1/a+y_1/b},\frac{-2b}{x_1/a+y_1/b}\right), (0,0)$

$$\therefore \text{ Area of triangle} = \frac{1}{2} |(x_1y_2 - x_2y_1)| = \frac{1}{2} \left| \left(\frac{-8ab}{x_1^2 / a^2 - y_1^2 / b^2} \right) \right| = 4ab.$$

Example: 32 The combined equation of the asymptotes of the hyperbola $2x^2 + 5xy + 2y^2 + 4x + 5y = 0$

(a)
$$2x^2 + 5xy + 2y^2 = 0$$

(b)
$$2x^2 + 5xy + 2y^2 - 4x + 5y + 2 = 0 = 0$$

(c)
$$2x^2 + 5xy + 2y^2 + 4x + 5y - 2 = 0$$

(d)
$$2x^2 + 5xy + 2y^2 + 4x + 5y + 2 = 0$$

Solution: (d) Given, equation of hyperbola $2x^2 + 5xy + 2y^2 + 4x + 5y = 0$ and equation of asymptotes

 $2x^2 + 5xy + 2y^2 + 4x + 5y + \lambda = 0$ (i) which is the equation of a pair of straight lines. We know that the standard equation of a pair of straight lines is $ax^2 + 2hxy + by^2 + 2gx + 2fy + c = 0$

Comparing equation (i) with standard equation, we get $\mathbf{a} = 2, \mathbf{b} = 2, \mathbf{h} = \frac{5}{2}, \mathbf{g} = 2, \mathbf{f} = \frac{5}{2}$ and $\mathbf{c} = \lambda$.

We also know that the condition for a pair of straight lines is $abc + 2fgh - af^2 - bg^2 - cff = 0$.

Therefore,
$$4\lambda + 25 - \frac{25}{2} - 8 - \frac{25}{4}\lambda = 0$$
 or $\frac{-9\lambda}{4} + \frac{9}{2} = 0$ or $\lambda = 2$

Substituting value of λ in equation (i), we get $2x^2 + 5xy + 2y^2 + 4x + 5y + 2 = 0$.

5.3.19 RECTANGULAR OR EQUILATERAL HYPERBOLA

(1) **Definition :** A hyperbola whose asymptotes are at right angles to each other is called a rectangular hyperbola. The eccentricity of rectangular hyperbola is always $\sqrt{2}$.

The general equation of second degree represents a rectangular hyperbola if $\Delta \neq 0$, $h^2 > ab$ and coefficient of x^2 + coefficient of $y^2 = 0$

The equation of the asymptotes of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are given by $y = \pm \frac{b}{a}x$.

The angle between these two asymptotes is given by $\tan\theta = \frac{\frac{b}{a} - \left(-\frac{b}{a}\right)}{1 + \frac{b}{a}\left(-\frac{b}{a}\right)} = \frac{2b/a}{1 - b^2/a^2} = \frac{2ab}{a^2 - b^2}$.

If the asymptotes are at right angles, then $\theta = \pi/2 \Rightarrow \tan\theta = \tan\frac{\pi}{2} \Rightarrow \frac{2ab}{a^2 - b^2} = \tan\frac{\pi}{2} \Rightarrow a^2 - b^2 = 0$

 $\Rightarrow a = b \Rightarrow 2a = 2b$. Thus the transverse and conjugate axis of a rectangular hyperbola are equal and the equation is $x^2 - y^2 = a^2$. The equations of the asymptotes of the rectangular hyperbola are $y = \pm x$ i.e, y = x and y = -x. Clearly, each of these two asymptotes is inclined at 45° to the transverse axis.

(2) Equation of the rectangular hyperbola referred to its asymptotes as the axes of coordinates: Referred to the transverse and conjugate axis as the axes of coordinates, the equation of the rectangular hyperbola is

$$x^2 - y^2 = a^2 \qquad \qquad \dots (i)$$

The asymptotes of (i) are y = x and y = -x. Each of these two asymptotes is inclined at an angle of 45° with the transverse axis, So, if we rotate the coordinate axes through an angle of $-\pi/4$ keeping the origin fixed, then the axes coincide with the asymptotes of the hyperbola and $x = X\cos(-\pi/4) - Y\sin(-\pi/4) = \frac{X+Y}{\sqrt{2}}$ and $y = X\sin(-\pi/4) + Y\cos(-\pi/4) = \frac{Y-X}{\sqrt{2}}$.

Substituting the values of x and y in (i),

We obtain the
$$\left(\frac{X+Y}{\sqrt{2}}\right)^2 - \left(\frac{Y-X}{\sqrt{2}}\right)^2 = a^2 \Rightarrow XY = \frac{a^2}{2} \Rightarrow XY = c^2$$

where
$$c^2 = \frac{a^2}{2}$$
.

This is transformed equation of the rectangular hyperbola (i).

(3) Parametric co-ordinates of a point on the hyperbola $XY = c^2$: If t is non-zero variable, the coordinates of any point on the rectangular hyperbola $xy = c^2$ can be written as (ct c/t). The point (ct c/t) on the hyperbola $xy = c^2$ is generally referred as the point 't'.

For rectangular hyperbola the coordinates of foci are $(\pm a\sqrt{2}, 0)$ and directrices are $x = \pm a\sqrt{2}$.

For rectangular hyperbola $xy = c^2$, the coordinates of foci are $(\pm c\sqrt{2}, \pm c\sqrt{2})$ and directrices are $x + y = \pm c\sqrt{2}$.

(4) Equation of the chord joining points t_1 and t_2 : The equation of the chord joining two points

$$\left(ct_1, \frac{c}{t_1}\right) \text{ and } \left(ct_2, \frac{c}{t_2}\right) \text{ on the hyperbola } xy = c^2 \text{ is } y - \frac{c}{t_1} = \frac{\frac{c}{t_2} - \frac{c}{t_1}}{ct_2 - ct_1}(x - ct_1) \Rightarrow x + yt_1t_2 = c(t_1 + t_2).$$

- (5) Equation of tangent in different forms
- (i) **Point form :** The equation of tangent at (x_1, y_1) to the hyperbola $xy = c^2$ is $xy_1 + yx_1 = 2c^2$ or $\frac{x}{x_1} + \frac{y}{y_1} = 2$
- (ii) **Parametric form:** The equation of the tangent at $\left(ct\frac{c}{t}\right)$ to the hyperbola $xy = c^2$ is $\frac{x}{t} + yt = 2c$. On replacing x_1 by ct and y_1 by $\frac{c}{t}$ on the equation of the tangent at (x_1, y_1) i.e. $xy_1 + yx_1 = 2c^2$ we get $\frac{x}{t} + yt = 2c$.

Note: \square Point of intersection of tangents at ' t_1 ' and ' t_2 ' is $\left(\frac{2ct_1t_2}{t_1+t_2}, \frac{2c}{t_1+t_2}\right)$

(6) Equation of the normal in different forms: (i) Point form: The equation of the normal at (x_1, y_1) to the hyperbola $xy = c^2$ is $xx_1 - yy_1 = x_1^2 - y_1^2$. As discussed in the equation of the tangent, we have $\left(\frac{dy}{dx}\right)_{(x_1, y_2)} = -\frac{y_1}{x_1}$

So, the equation of the normal at (x_1, y_1) is $y - y_1 = \frac{-1}{\left(\frac{dy}{dx}\right)_{(x_1, y_1)}} (x - x_1) \Rightarrow y - y_1 = \frac{x_1}{y_1} (x - x_1)$

$$\Rightarrow yy_1 - y_1^2 = xx_1 - x_1^2 \quad \Rightarrow xx_1 - yy_1 = x_1^2 - y_1^2$$

This is the required equation of the normal at (x_1, y_1) .

(ii) **Parametric form:** The equation of the normal at $\left(ct,\frac{c}{t}\right)$ to the hyperbola $xy = c^2$ is $xt^3 - yt - ct^4 + c = 0$. On replacing x_1 by ct and y_1 by c/t in the equation.

We obtain $xx_1 - yy_1 = x_1^2 - y_1^2$, $xct - \frac{yc}{t} = c^2t^2 - \frac{c^2}{t^2} \Rightarrow xt^3 - yt - ct^4 + c = 0$

- Note: \Box The equation of the normal at $\left(ct\frac{c}{t}\right)$ is a fourth degree in t. So, in general, four normals can be drawn from a point to the hyperbola $xy = c^2$
 - \Box If the normal at $\left(ct\frac{c}{t}\right)$ on the curve $xy = c^2$ meets the curve again in 't' then; $t = \frac{-1}{t^2}$.
 - Point of intersection of normals at ' t_1 ' and ' t_2 ' is $\left(\frac{c\{t_1t_2(t_1^2+t_1t_2+t_2^2)-1\}}{t_1t_2(t_1+t_2)}, \frac{c\{t_1^3t_2^3+(t_1^2+t_1t_2+t_2^2)\}}{t_1t_2(t_1+t_2)}\right)$

Important Tips

- A triangle has its vertices on a rectangular hyperbola; then the orthocentre of the triangle also lies on the same hyperbola.
- All conics passing through the intersection of two rectangular hyperbolas are themselves rectangular hyperbolas.
- An infinite number of triangles can be inscribed in the rectangular hyperbola $xy = c^2$ whose all sides touch the parabola $y^2 = 4ax$.

Example: 33 If $5x^2 + \lambda y^2 = 20$ represents a rectangular hyperbola, then λ equals

(a) 5

- (c) 5
- (d) None of these

Solution: (c) Since the general equation of second degree represents a rectagular hyperbola if $\Delta \neq 0, h^2 > ab$ and coefficient of x^2 + coefficient of $y^2 = 0$. Therefore the given equation represents a rectangular hyperbola if $\lambda + 5 = 0$ i.e., $\lambda = -5$

Example: 34 If PN is the perpendicular from a point on a rectangular hyperbola to its asymptotes, the locus, the mid-point of PN is

- (a) Circle
- (b) Parabola
- (c) Ellipse
- (d) Hyperbola

Solution: (d) Let $xy = c^2$ be the rectangular hyperbola, and let $P(x_1, y_1)$ be a point on it. Let Q(h, k) be the mid-point of *PN*. Then the coordinates of *Q* are $\left(x_1, \frac{y_1}{2}\right)$.

$$\therefore$$
 $x_1 = h$ and $\frac{y_1}{2} = k \implies x_1 = h$ and $y_1 = 2k$

But $(\mathbf{x_1}, \mathbf{y_1})$ lies on $xy = c^2$.

$$\therefore h.(2k) = c^2 \implies hk \implies c^2/2$$

Hence, the locus of (h,k) is $xy = c^2/2$, which is a hyperbola.

Example: 35 If the normal at $\left(ct \frac{c}{t}\right)$ on the curve $xy = c^2$ meets the curve again in t', then

(a)
$$f = -\frac{1}{3}$$

(b)
$$t = -\frac{1}{t}$$

(c)
$$t = \frac{1}{2}$$

(d)
$$t^2 = -\frac{1}{2}$$

Solution: (a) The equation of the tangent at $\left(ct - \frac{c}{t}\right)$ is $ty = t^3x - ct^4 + c$

If it passes through $\left(ct, \frac{c}{t}\right)$ then

$$\Rightarrow \frac{tc}{t} = t^3ct - ct^4 + c \Rightarrow t = t^3t^2 - t^4t + t \Rightarrow t - t = t^3t(t - t) \Rightarrow t = -\frac{1}{t^3}$$

Example: 36 If the tangent and normal to a rectangular hyperbola cut off intercepts a_1 and a_2 on one axis and b_1 and b_2 on the other axis, then

- (a) $a_1b_1 + a_2b_2 = 0$ (b) $a_1b_2 + b_2a_1 = 0$
- (c) $a_1 a_2 + b_1 b_2 = 0$
- (d) None of these

Solution: (c) Let the hyperbola be $xy = c^2$. Tangent at any point t is $x + yt^2 - 2ct = 0$

Putting y=0 and then x=0 intercepts on the axes are $a_1=2ct$ and $b_1=\frac{2c}{t}$

Normal is $xt^3 - yt - ct^4 + c = 0$.

Intercepts as above are $a_2 = \frac{c(t^4 - 1)}{t^3}$, $b^2 = \frac{-c(t^4 - 1)}{t}$

$$\therefore \quad a_1 a_2 + b_1 b_2 = 2ct \times \frac{c(t^4 - 1)}{t^3} + \frac{2c}{t} \times \frac{-c(t^4 - 1)}{t} = \frac{2c^2}{t^2}(t^4 - 1) - \frac{2c^2}{t^2}(t^4 - 1) = 0; \quad \therefore \quad a_1 a_2 + b_1 b_2 = 0.$$

Example: 37 A variable straight line of slope 4 intersects the hyperbola xy=1 at two points. The locus of the point which divides the line segment between these two points in the ratio 1 : 2 is

(a)
$$16x^2 + 10xy + y^2 = 2$$
 (b) $16x^2 - 10xy + y^2 = 2$ (c) $16x^2 + 10xy + y^2 = 4$ (d) None of these

Solution: (a) Let P(h,k) be any point on the locus. Equation of the line through P and having slope 4 is y-k=4(x-h)(i)

Suppose this meets xy=1(ii) in $A(x_1, y_1)$ and $B(x_2, y_2)$

Eliminating y between (i) and (ii), we get $\frac{1}{x} - k = 4(x - h)$

$$\Rightarrow$$
 1-xk=4x²-4hx \Rightarrow 4x²-(4h-k)x-1=0(iii)

This has two roots say x_1, x_2 ; $x_1 + x_2 = \frac{4h - k}{4}$ (iv) and $x_1x_2 = -\frac{1}{4}$ (v)

Also,
$$\frac{2x_1 + x_2}{3} = h$$
 [Θ P divides AB in the ratio 1:2]

$$i.e., 2x_1 + x_2 = 3h$$
(Vi)

(vi) – (iv) gives,
$$x_1 = 3h - \frac{4h - k}{4} = \frac{8h + k}{4}$$
 and $x_2 = 3h - 2 \cdot \frac{8h + k}{4} = -\frac{2h + k}{2}$

Putting in (v), we get
$$\frac{8h+k}{4}\left(-\frac{2h+k}{2}\right)=-\frac{1}{4}$$

$$\Rightarrow$$
 $(8h+k)(2h+k)=2 \Rightarrow 16h^2+10hk+k^2=2$

 $\therefore \text{ Required locus of } P(h,k) \text{ is } 16x^2 + 10xy + y^2 = 2.$

Example: 38 PQ and RS are two perpendicular chords of the rectangular hyperbola $xy = c^2$. If C is the centre of the rectangular hyperbola, then the product of the slopes of CP, CQ, CR and CS is equal to

$$(a) - 1$$

(d) None of these

Solution: (b) Let t_1, t_2, t_3, t_4 be the parameters of the points P, Q, R and S respectively. Then, the coordinates of P, Q, R and S are $\left(ct_1, \frac{c}{t_1}\right)$, $\left(ct_2, \frac{c}{t_2}\right)$, $\left(ct_3, \frac{c}{t_3}\right)$ and $\left(ct_4, \frac{c}{t_4}\right)$ respectively.

Now,
$$PQ \perp RS \Rightarrow \frac{\frac{c}{t_2} - \frac{c}{t_1}}{c_2 - c_1} \times \frac{\frac{c}{t_4} - \frac{c}{t_3}}{c_4 - c_5} = -1 \Rightarrow -\frac{1}{t_1 t_2} \times -\frac{1}{t_3 t_4} = -1 \Rightarrow t_1 t_2 t_3 t_4 = -1 \dots (i)$$

.. Product of the slopes of *cp,cqcr* and *cs*

$$\frac{1}{t_1^2} \times \frac{1}{t_2^2} \times \frac{1}{t_3^2} \times \frac{1}{t_4^2} = \frac{1}{t_1^2 t_2^2 t_3^2 t_4^2} = 1$$
 [Using (i)]

5.3.20 Intersection of a Circle and a Rectangular Hyperbola

If a circle $x^2 + y^2 + 2qx + 2fy + k = 0$ cuts a rectangular hyperbola $xy = c^2$ in A, B, C and D and the parameters of these four points be t_1, t_2, t_3 and t_4 respectively; then

(1) (i)
$$\sum t_1 = -\frac{2g}{c}$$

(ii)
$$\sum t_1 t_2 = \frac{k}{c^2}$$

(iii)
$$\sum t_1 t_2 t_3 = \frac{-2f}{c}$$

$$(iv) \quad \boldsymbol{t_1 t_2 t_3 t_4} = 1$$

(iv)
$$t_1 t_2 t_3 t_4 = 1$$
 (v) $\sum \frac{1}{t_1} = -\frac{2f}{c}$

(2) Orthocentre of
$$\triangle ABC$$
 is $H\left(-ct_4, \frac{-c}{t_4}\right)$ but D is $\left(ct_4, \frac{c}{t_4}\right)$

Hence H and D are the extremities of a diagonal of rectangular hyperbola.

(3) Centre of mean position of four points is
$$\left\{\frac{c}{4}\sum t_1, \frac{c}{4}\sum \left(\frac{1}{t_1}\right)\right\}$$
 i.e., $\left(-\frac{g}{2}, -\frac{f}{2}\right)$

- Θ Centres of the circles and rectangular hyperbola are (-g, -f) and (0, 0); mid point of centres of circle and hyperbola is $\left(-\frac{g}{2}, -\frac{f}{2}\right)$. Hence the centre of the mean position of the four points bisects the distance between the centres of the two curves (circle and rectangular hyperbola)
- (4) If the circle passing through ABC meet the hyperbola in fourth points D; then centre of circle is (-g, -f)

$$i.e., \ \left\{ \frac{c}{2} \left(t_1 + t_2 + t_3 + \frac{1}{t_1 t_2 t_3} \right); \frac{c}{2} \left(\frac{1}{t_1} + \frac{1}{t_2} + \frac{1}{t_3} + t_1 t_2 t_3 \right) \right\}$$

Example: 39 If a circle cuts a rectangular hyperbola $xy = c^2$ in A, B, C, D and the parameters of these four points be 4, 4, 4 and 4 respectively. Then

(a)
$$\mathbf{t_1t_2} = \mathbf{t_3t_4}$$

(b)
$$t_1t_2t_3t_4 = 1$$

(c)
$$t_1 = t_2$$

(d)
$$t_3 = t_4$$

Solution: (b) Let the equation of circle be $x^2 + y^2 = a^2$

Parametric equation of rectangular hyperbola is x = ct, $y = \frac{c}{c}$

Put the values of x and y in equation (i) we get $c^2t^2 + \frac{c^2}{2} = a^2 \implies c^2t^2 - a^2t^2 + c^2 = 0$

Hence product of roots $t_1t_2t_3t_4 = \frac{c^2}{2} = 1$

Example: 40 If the circle $x^2 + y^2 = a^2$ intersects the hyperbola $xy = c^2$ in four points $P(x_1, y_1), Q(x_2, y_2), P(x_3, y_3)$, $S(x_4, y_4)$ then

(a)
$$x_1 + x_2 + x_3 + x_4 = 0$$

(a)
$$x_1 + x_2 + x_3 + x_4 = 0$$
 (b) $y_1 + y_2 + y_3 + y_4 = 0$ (c) $x_1 x_2 x_3 x_4 = c^4$

$$(c) x_1x_2x_3x_4=c^4$$

(d)
$$y_1y_2y_3y_4 = c^4$$

Solution: (a,b,c,d) Given, circle is $x^2 + y^2 = a^2$

.....(i) and hyperbola be $xy = c^2$ (ii)

from (ii) $y = \frac{c^2}{r}$. Putting in (i), we get $x^2 + \frac{c^4}{r^2} = a^2 \implies x^4 - a^2x^2 + c^4 = 0$

$$\therefore x_1 + x_2 + x_3 + x_4 = 0, x_1 x_2 x_3 x_4 = c^4$$

Since both the curves are symmetric in x and y, $\therefore y_1 + y_2 + y_3 + y_4 = 0$; $y_1y_2y_3y_4 = c^4$.

ASSIGNMENT

<u>DEFINITION STANDARD FORM OF HYPERBOLA</u>, <u>CONJUGATE OF</u> HYPERBOLA

<u>HY</u>	<u>PERBOLA</u>			
Bas	ic Level			
1.	The locus of the cent	tre of a circle, which touches	s externally the given tw	o circle, is
	(a) Circle	(b) Parabola	(c) Hyperbola	(d) Ellipse
2.	The locus of a point always a constant is	which moves such that the	difference of its distance	s from two fixed points i
	(a) A straight line	(b) A circle	(c) An ellipse	(d) A hyperbola
3.	The one which does	not represent a hyperbola is		
	(a) $xy=1$	(b) $x^2 - y^2 = 5$	(c) $(x-1)(y-3)=3$	$(d) x^2 - y^2 = 0$
4.	The equation of the l	nyperbola whose directrix is	x + 2y = 1, focus (2, 1) and	d eccentricity 2 will be
	(a) $x^2 - 16xy - 11y^2 - 12$	x+6y+21=0	(b) $3x^2 + 16xy + 15y^2 - 4x - 4$	-14y-1=0
	(c) $x^2 + 16xy + 11y^2 - 12$	x-6y+21=0	(d) None of these	
5 .	The locus of the point value of k is	nt of intersection of the line	S $\sqrt{3}x - y - 4\sqrt{3}k = 0$ and $\sqrt{3}$	$kx + ky - 4\sqrt{3} = 0$ for differen
	(a) Circle	(b) Parabola	(c) Hyperbola	(d) Ellipse
6.	Locus of the point of	f intersection of straight line	$\frac{x}{a} - \frac{y}{b} = m$ and $\frac{x}{a} + \frac{y}{b} = \frac{1}{m}$ is	
	(a) An ellipse	(b) A circle	(c) A hyperbola	(d) A parabola
7 .	The eccentricity of the	ne hyperbola $2x^2 - y^2 = 6$ is		
	(a) $\sqrt{2}$	(b) 2	(c) 3	(d) $\sqrt{3}$
8.	Centre of hyperbola	$9x^2 - 16y^2 + 18x + 32y - 151 = 0$ is		
	(a) $(1, -1)$	(b)(-1,1)	(c)(-1,-1)	(d) (1, 1)
9.	The eccentricity of the	ne conic $x^2 - 4y^2 = 1$, is		
	(a) $\frac{2}{\sqrt{3}}$	(b) $\frac{\sqrt{3}}{2}$	(c) $\frac{2}{\sqrt{5}}$	$(d) \frac{\sqrt{5}}{2}$
10.	The eccentricity of a	hyperbola passing through	the point $(3, 0)$, $(3\sqrt{2}, 2)$ v	vill be
	(a) $\sqrt{13}$	(b) $\frac{\sqrt{13}}{3}$	(c) $\frac{\sqrt{13}}{4}$	$(d) \frac{\sqrt{13}}{2}$
11.	If (4, 0) and (-4, 0) eccentricity is	be the vertices and (6, 0)	and $(-6, 0)$ be the foci	of a hyperbola, then it
	(a) 5/2	(b) 2	(c) 3/2	(d) $\sqrt{2}$
12.	If e and e are eccent	ricities of hyperbola and its	conjugate respectively, t	hen
	(a) $\left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 1$	$(b) \frac{1}{e} + \frac{1}{e'} = 1$	$(c) \left(\frac{1}{e}\right)^2 + \left(\frac{1}{e'}\right)^2 = 0$	(d) $\frac{1}{e} + \frac{1}{e'} = 2$

	$5x^2 - 4y^2 = 45 \text{respect}$	ively, then ee'=		
	(a) 9	(b) 4	(c) 5	(d) 1
14.	The directrix of the	hyperbola is $\frac{x^2}{9} - \frac{y^2}{4} = 1$		
	(a) $x = 9/\sqrt{13}$	(b) $y = 9/\sqrt{13}$	(c) $x = 6/\sqrt{13}$	(d) $y=6/\sqrt{13}$
15.	The latus rectum of	the hyperbola $16x^2 - 9y^2 = 144$	ı, is	
	(a) $\frac{16}{3}$	(b) $\frac{32}{3}$	(c) $\frac{8}{3}$	(d) $\frac{4}{3}$
16.	The foci of the hype	$erbola 2x^2 - 3y^2 = 5, is$		
	(a) $\left(\pm \frac{5}{\sqrt{6}}, 0\right)$	(b) $\left(\pm \frac{5}{6},0\right)$	(c) $\left(\pm \frac{\sqrt{5}}{6}, 0\right)$	(d) None of these
17.	The distance between	en the directrices of a rectan	gular hyperbola is 10 un	its, then distance between
	its focus			
	(a) 10√2	(b) 5	(c) $5\sqrt{2}$	(d) 20
18.		ne focal distances of any point	nt on the hyperbola $9x^2$ –	
	(a) 8	(b) 7	(c) 6	(d) 4
19.		transverse and conjugate ax distances of any point of the		nd 6 respectively, then the
	(a) 8	(b) 6	(c) 14	(d) 2
20.	The length of transv	verse axis of the hyperbola s	$3x^2 - 4y^2 = 32\dot{1}S$	
	(a) $\frac{8\sqrt{2}}{\sqrt{3}}$	$(b) \frac{16\sqrt{2}}{\sqrt{3}}$	(c) $\frac{3}{32}$	(d) $\frac{64}{3}$
21.		s through the points (3, 2) ong <i>x</i> -axis. The length of its		s its centre at origin and
	(a) 2	(b) 4	(c) 6	(d) None of these
22.	The equation of the	hyperbola whose foci are t	he foci of the ellipse $\frac{x^2}{25}$	$+\frac{y^2}{9} = 1$ and the eccentricity
	is 2, is			
	(a) $\frac{x^2}{4} + \frac{y^2}{12} = 1$	(b) $\frac{x^2}{4} - \frac{y^2}{12} = 1$	(c) $\frac{x^2}{12} + \frac{y^2}{4} = 1$	(d) $\frac{x^2}{12} - \frac{y^2}{4} = 1$
23.		en the foci of a hyperbola igate axis is 6. The equation		
	(a) $3x^2 - y^2 = 3$	(b) $x^2 - 3y^2 = 3$	(c) $3x^2 - y^2 = 9$	$(d) x^2 - 3y^2 = 9$
24.	If (0,±4) and (0,±2) be	the foci and vertices of a hyp	perbola then its equation	is
	(a) $\frac{x^2}{4} - \frac{y^2}{12} = 1$	(b) $\frac{x^2}{12} - \frac{y^2}{4} = 1$	(c) $\frac{y^2}{4} - \frac{x^2}{12} = 1$	(d) $\frac{y^2}{12} - \frac{x^2}{4} = 1$

13. If e and e' are the eccentricities of the ellipse $5x^2 + 9y^2 = 45$ and the hyperbola

	equation of the hyper	rbola is				
	(a) $\frac{4}{49}x^2 - \frac{196}{51}y^2 = 1$	(b) $\frac{49}{4}x^2 - \frac{51}{196}y^2 = 1$	(c) $\frac{4}{49}x^2 - \frac{51}{196}y^2 = 1$	(d) None of these		
26.	If the centre, vertex equation of the hyper	and focus of a hyperbola rbola is	be (0, 0),(4, 0) and (6,	0) respectively, then the		
	(a) $4x^2 - 5y^2 = 8$	(b) $4x^2 - 5y^2 = 80$	(c) $5x^2 - 4y^2 = 80$	(d) $5x^2 - 4y^2 = 8$		
27 .	The equation of a hy axis is 8, is	perbola, whose foci are (5,	(0, 0) and $(-5, 0)$ and the 1	ength of whose conjugate		
	(a) $9x^2 - 16y^2 = 144$	(b) $16x^2 - 9y^2 = 144$	(c) $9x^2 - 16y^2 = 12$	(d) $16x^2 - 9y^2 = 12$		
28.	If the latus rectum hyperbola is	of an hyperbola be 8 and	d eccentricity be $3/\sqrt{5}$,	then the equation of the		
	(a) $4x^2 - 5y^2 = 100$	(b) $5x^2 - 4y^2 = 100$	(c) $4x^2 + 5y^2 = 100$	(d) $5x^2 + 4y^2 = 100$		
29.	The equation of the h	nyperbola whose conjugate	axis is 5 and the distance	e between the foci is 13, i		
	(a) $25x^2 - 144y^2 = 900$	(b) $144x^2 - 25y^2 = 900$	(c) $144x^2 + 25y^2 = 900$	(d) $25x^2 + 144y^2 = 900$		
30.	For hyperbola $\frac{x^2}{\cos^2 \alpha}$	$-\frac{y^2}{\sin^2 \alpha} = 1 \text{ Which of the follows}$	owing remains constant v	vith change in 'α'		
	(a) Abscissae of vert	ices (b)	Abscissae of foci	(c) Eccentricity (d		
31.	The hyperbola is the	conic with eccentricity				
	(a) $e > 1$	(b) $e < 1$	(c) $e = 1$	(d) $e = 0$		
32 .	The eccentricity of the	The eccentricity of the conic $9x^2 - 16y^2 = 144$ is				
	(a) $\frac{4}{5}$	(b) $\frac{5}{4}$	(c) $\frac{4}{3}$	(d) √ 7		
33.	If e,e' be the eccentric	cities of two conics S and s	\mathbf{g}' and if $\mathbf{e}^2 + \mathbf{e}'^2 = 3$, then b	oth S and s can be		
	(a) Ellipses	(b) Parabolas	(c) Hyperbolas	(d) None of these		
34.	If e_1, e_2 be respectivel	y the eccentricities of ellips	Se $9x^2 + 4y^2 = 36$ and hyper	bola $9x^2 - 4y^2 = 36$, then		
	(a) $e_1^2 + e_2^2 > 3$	(b) $e_1^2 + e_2^2 = 2$	(C) $e_1^2 + e_2^2 > 4$	(d) $e_1^2 + e_2^2 < 4$		
35 .	The length of the late	us rectum of the hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1 \text{ is}$			
	(a) $\frac{2a^2}{b}$	(b) $\frac{2b^2}{a}$	(c) $\frac{b^2}{a}$	(d) $\frac{a^2}{b}$		
36.	The distance between hyperbola is	n the foci of a hyperbola is	16 and its eccentricity i	s $\sqrt{2}$, then the equation o		
	(a) $x^2 + y^2 = 32$	(b) $x^2 - y^2 = 16$	(c) $x^2 + y^2 = 16$	(d) $x^2 - y^2 = 32$		

The length of the transverse axis of a hyperbola is 7 and it passes through the point (5, -2), the

25.

37 .	The equation of the	hyperbola with vertices (3	(-3, 0) and $(-3, 0)$ and semi-	-latus-rectum 4, is given by
	(a) $4x^2 - 3y^2 + 36 = 0$	(b) $4x^2 - 3y^2 + 12 = 0$	(c) $4x^2 - 3y^2 - 36 = 0$	(d) None of these
38.	Equation of the hype	erbola with eccentricity 3/	2 and foci at (± 2,0) is	
	(a) $\frac{x^2}{4} - \frac{y^2}{5} = \frac{4}{9}$	(b) $\frac{x^2}{9} - \frac{y^2}{9} = \frac{4}{9}$	(c) $\frac{x^2}{4} - \frac{y^2}{9} = 1$	(d) None of these
39 .	The eccentricity of t	he hyperbola with latus re	ectum 12 and semi-conjug	gate axis $2\sqrt{3}$, is
	(a) 2	(b) 3	(c) $\frac{\sqrt{3}}{2}$	(d) 2√3
40.	The eccentricity of t	the hyperbola $3x^2 - 4y^2 = -1$	2 is	
	(a) $\sqrt{\frac{7}{3}}$	(b) $\frac{\sqrt{7}}{2}$	$(c) - \sqrt{\frac{7}{3}}$	$(d) - \frac{\sqrt{7}}{2}$
41.	The equation $\frac{x^2}{12-k}$	$-\frac{y^2}{8-k} = 1$ represents		
	(a) A hyperbola if k	< 8	(b)An ellipse if k :	> 8
	(c) A hyperbola if 8	< <i>k</i> < 12	(d)None of these	
		IATIONS OF HYDERD	OLA SDECIALEODA	AC OF HADEDDOLA
Ras	ic Level	JATIONS OF HYPERB	OLA, SPECIAL FORN	IS OF HIPERDOLA
42.		on of circle of hyperbola	$\frac{x^2}{x^2} - \frac{y^2}{y^2} - 1$ is	
42.			<i>u o</i>	(1)
	(a) $x^2 + y^2 = a^2$		$(c) x^2 + y^2 = a^2 + b^2$	(d) $x^2 + y^2 = a^2 - b^2$
43 .	A point on the curve	$\frac{x^2}{A^2} - \frac{y^2}{B^2} = 1 is$		
	(a) $(A\cos\theta, B\sin\theta)$	(b) ($Asec\theta$, $Btan\theta$)	(C) $(A\cos^2\theta, B\sin^2\theta)$	(d) None of these
44.	The locus of the point the parameter, is	int of intersection of the li	nes $axsec\theta + bytan\theta = a$ and	$ax tan \theta + by sec \theta = b$, where θ is
	(a) A straight line	(b) A circle	(c) An ellipse	(d) A hyperbola
45 .	The eccentricity of t	he conic represented by x	$x^2 - y^2 - 4x + 4y + 16 = 0$ is	
	(a) 1	(b) $\sqrt{2}$	(c) 2	(d) 1/2
46 .	The latus rectum of	the hyperbola $9x^2 - 16y^2 - 1$	8x - 32y - 151 = 0 is	
	(a) $\frac{9}{4}$	(b) 9	(c) $\frac{3}{2}$	(d) $\frac{9}{2}$
47 .	The vertices of a hy	perbola are at (0,0) and (10)	on and one of its foci is a	t (180). The equation of the
	hyperbola is			
	(a) $\frac{x^2}{25} - \frac{y^2}{144} = 1$	(b) $\frac{(x-5)^2}{25} - \frac{y^2}{144} = 1$	(c) $\frac{x^2}{25} - \frac{(y-5)^2}{144} = 1$	(d) $\frac{(x-5)^2}{25} - \frac{(y-5)^2}{144} = 1$
48.	The equations of the	e transverse and conjugate	axis of the hyperbola 162	$x^2 - y^2 + 64x + 4y + 44 = 0$ are
	(a) $x = 2, y + 2 = 0$	(b) $x = 2 v = 2$	(c) $y = 2, x + 2 = 0$	(d) None of these

49.	Foci of the hyperbola	$1 \frac{x^2}{16} - \frac{(y-2)^2}{9} = 1 \text{ are}$			
	(a) (5, 2),(- 5, 2)	(b) (5 , 2), (5 , – 2)	(c) (5	(, 2), (- 5 - 2)	(d) None of these
50 .	The eccentricity of th	ne conic $x^2 - 2x - 4y^2 = 0$ is			
	(a) $\frac{1}{4}$	(b) $\frac{3}{2}$	(c) $\frac{}{2}$	<u>5</u> 2	(d) $\frac{\sqrt{5}}{4}$
51 .	The equation $16x^2 - 3y$	2 - 32x + 12y - 44 = 0 represents	a hype	rbola	
	(a) The length of whose transverse axis is $4\sqrt{3}$		(b) T	he length of whose	e conjugate axis is 4
	(c) Whose centre is (-1, 2)	(d)W	hose eccentricity i	$S\sqrt{\frac{19}{3}}$
52 .	The equation of the h	yperbola whose foci are (6,9	5),(-4,5)	and eccentricity $\frac{5}{4}$	is
	(a) $\frac{(x-1)^2}{16} - \frac{(y-5)^2}{9} = 1$	(b) $\frac{x^2}{16} - \frac{y^2}{9} = 1$	$(c) \frac{(x)}{x}$	$\frac{(y-1)^2}{16} - \frac{(y-5)^2}{9} = -1$	(d) None of these
53 .	The equation $x = \frac{e^t + e^t}{2}$	$\frac{e^{-t}}{2}$; $y = \frac{e^t - e^{-t}}{2}$; $t \in R$ represents			
	(a) An ellipse	(b) A parabola	(c) A	hyperbola	(d) A circle
54 .	The vertices of the hy	yperbola 9 x² – 16 y² – 36 x + 96 y	- 252 = (are	
	(a) (6, 3) and (-6, 3)) (b) $(6, 3)$ and $(-2, 3)$	(c) (-	-6, 3) and $(-6, -3)$) (d)None of these
55 .	The curve represente	d by $x = a(\cosh\theta + \sinh\theta), y = b(\cos\theta)$	$\sinh heta$ – \sin	$\mathbf{h}\mathbf{h}\mathbf{ heta})$ is	
	(a) A hyperbola	(b) An ellipse	(c) A	A parabola	(d) A circle
56 .	The foci of the hyper	$bola 9x^2 - 16y^2 + 18x + 32y - 151$	= oare		
	(a) $(2, 3), (5, 7)$	(b) (4, 1), (-6, 1)	(c) (C	0, 0), (5, 3)	(d) None of these
Adv	ance Level				
57 .	The equations of the	transverse and conjugate	axes of	f a hyperbola resp	pectively are x+2y-3
	2x - y + 4 = 0 and their 1	respective lengths are $\sqrt{2}$ and	ad $\frac{2}{\sqrt{3}}$.	The equation of th	e hyperbola is
	(a) $\frac{2}{5}(x+2y-3)^2-\frac{3}{5}(2x+2y-3)^2$	$-y+4)^2=1$	(b) $\frac{2}{5}$	$(2x-y+4)^2-\frac{3}{5}(x+2y)^2$	$-3)^2=1$
	(c) $2(2x-y+4)^2-3(x+2)^2$	$(2y-3)^2=1$	(d) 2	$2(x+2y-3)^2-3(2x-y-1)^2$	$+4)^2=1$

The points of intersection of the curves whose parametric equations are $x = t^2 + 1$, y = 2t and

(a) A rectangular hyperbola (b) A hyperbola (c) An ellipse (d) A parabola

(c) (-2, 4)

(d)(1,2)

58.

59.

x = 2s, y = 2/s is given by

Equation $\frac{1}{r} = \frac{1}{8} + \frac{3}{8} \cos\theta$ represents

(b)(2,2)

(a) (1, -3)

POSITION OF A POINT, TANGENTS, PAIR OF TANGENTS & DIRECTOR CIRCLE OF AN HYPERBOLA

(c) $c^2 = b^2 m^2 - a^2$ (d) $a^2 = b^2 m^2 + c^2$

Basic Level

60. The line y = mx + c touches the curve $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, if

61. The line lx+my+n=0 will be a tangent to the hyperbola $\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$, if

(a) $c^2 = a^2m^2 + b^2$ (b) $c^2 = a^2m^2 - b^2$

	(a) $a^2 f^2 + b^2 m^2 = n^2$	(b) $a^2 f^2 - b^2 m^2 = n^2$	(c) $a^2m^2 - b^2n^2 = a^2l^2$	(d) None of these	
62 .	If the straight line x	$\cos \alpha + y \sin \alpha = p$ be a tangent to	the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	1 , then	
	(a) $a^2 \cos^2 \alpha + b^2 \sin^2 \alpha =$		(b) $a^2 \cos^2 \alpha - b^2 \sin^2 \alpha = p$		
	(c) $a^2 \sin^2 \alpha + b^2 \cos^2 \alpha =$	= p ²	(d) $a^2 \sin^2 \alpha - b^2 \cos^2 \alpha = a^2$	p^2	
63.	The equation of the t	tangent at the point (asec0, bt	an θ) of the conic $\frac{x^2}{a^2} - \frac{y^2}{b^2} =$	1 , is	
	(a) $x \sec^2 \theta - y \tan^2 \theta = 1$		(b) $\frac{x}{a} \sec \theta - \frac{y}{b} \tan \theta = 1$		
	(c) $\frac{x + a\sec\theta}{a^2} - \frac{y + b\tan\theta}{b^2}$	$\frac{\theta}{\theta} = 1$	(d) None of these		
64.	If the line $y = 2x + \lambda$ b	e a tangent to the hyperbola	$36x^2 - 25y^2 = 3600$ then λ	. =	
	(a) 16	(b) - 16	(c) ±16	(d) None of these	
65 .	The equation of the	tangent to the hyperbola 4y2	$x = x^2 - 1$ at the point $(1, 0)$	is	
	(a) $x=1$	(b) $y=1$	(c) $y=4$	(d) $x = 4$	
66.	The straight line $x + y$	$y = \sqrt{2}p$ will touch the hyperb	ola $4x^2 - 9y^2 = 36$, is		
	(a) $p^2 = 2$	(b) $p^2 = 5$	(c) $5p^2 = 2$	(d) $2p^2 = 5$	
67 .	The equation of the	tangent to the hyperbola 2x2	$2 - 3y^2 = 6$ which is paralle	I to the line $y=3x+4$, is	
	(a) $y = 3x + 5$	(b) $y = 3x - 5$	(c) $y = 3x + 5$ and $y = 3x - 3x$	5 (d) None of these	
68.	The equation of tangents to the hyperbola $3x^2 - 4y^2 = 12$ which cuts equal intercepts from the axes, are				
	(a) $\mathbf{y} + \mathbf{x} = \pm 1$	(b) $y - x = \pm 1$	(c) $3x + 4y = \pm 1$	(d) $3x-4y=\pm 1$	
69.	The line $3x-4y=5$ is	a tangent to the hyperbola	$\mathbf{x^2} - 4\mathbf{y^2} = 5$. The point of \mathbf{c}	contact is	
	(a) (3, 1)	(b) $(2, 1/4)$	(c)(1,3)	(d) None of these	
70.	The equation of a co	ommon tangent to the conics	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ and $\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	ı, is	
	(a) $x + y = a^2 - b^2$	(b) $x+y=\sqrt{a^2-b^2}$	$(C) x-y=\sqrt{a^2-b^2}$	(d) $x+y=\sqrt{b^2-a^2}$	
71.	The equation of com	amon tangents to the parabo	la $y^2 = 8x$ and hyperbola	$3x^2 - y^2 = 3, iS$	
	(a) $2x \pm y + 1 = 0$	(b) $2x \pm y - 1 = 0$	(c) $x \pm 2y + 1 = 0$	(d) $\mathbf{x} \pm 2\mathbf{y} - 1 = 0$	
72 .	The radius of the dir	ector circle of the hyperbola	$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, is		
	(a) a - b	(b) $\sqrt{a-b}$	(c) $\sqrt{a^2-b^2}$	(d) $\sqrt{a^2+b^2}$	

	(a) (2, 1) or (1, 2)	(b) $(2, -1)$ or $(-2, 1)$	(c) $(-1, -2)$	(d)(-2,-1)
74.	The line $y = 4x + c$ touc	ches the hyperbola $x^2 - y^2 = 1$	iff	
	(a) $\boldsymbol{c} = \boldsymbol{0}$	(b) $c = \pm \sqrt{2}$	(c) $c = \pm \sqrt{15}$	(d) $c = \pm \sqrt{17}$
75 .	The line $5x + 12y = 9 \text{ to}$	buches the hyperbola $x^2 - 9y^2$	e = 9 at the point	
	(a) $\left(-5, \frac{4}{3}\right)$	$(b)\left(5,-\frac{4}{3}\right)$	$(c) \left(3,-\frac{1}{2}\right)$	(d) None of these
76.	The number of tange	ents to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2}$	1 from an external point	tis
	(a) 2	(b) 4	(c) 6	(d) 5
77.	The slope of the tang	gent to the hyperbola $2x^2 - 3y$	$v^2 = 6$ at $(3, 2)$ is	
	(a) -1	(b) 1	(c) 0	(d) 2
78.	A common tangent to	$0 9x^2 - 16y^2 = 144 \text{ and } x^2 + y^2 =$	9 is	
	(a) $y = \frac{3}{\sqrt{7}}x + \frac{\pi}{\sqrt{7}}$	(b) $y = 3\sqrt{\frac{2}{7}}x + \frac{15}{\sqrt{7}}$	(c) $y = 2\sqrt{\frac{3}{7}}x + 15\sqrt{7}$	(d) None of these
79.	The product of the po	erpendiculars from two foci	on any tangent to the hy	perbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$
	(a) a^2	$(b) - a^2$	(c) b^2	(d) $-b^2$
80.	If the two intersection number of intersection	ng lines intersect the hypering points are	bola and neither of the	m is a tangent to it, then
	(a) 1	(b) 2	(c) 2, 3 or 4	(d) 2 or 3
81.	The equation of a tar	ngent parallel to $y = x$ drawn	to $\frac{x^2}{3} - \frac{y^2}{2} = 1$ is	
	(a) $x-y+1=0$	(b) $x+y+2=0$	(c) $x+y-1=0$	(d) $x-y+2=0$
82.	The equation of the t	angent to the conic $x^2 - y^2 - y^2$	8x + 2y + 11 = 0 at $(2, 1)$ is	
	(a) $x + 2 = 0$	(b) $2x+1=0$	(C) x-2=0	(d) $x+y+1=0$
83.	The equation of ta $\mathbf{x} - \mathbf{y} + 4 = 0$	ngents to the hyperbola	$x^2 - 4y^2 = 36$ which are p	erpendicular to the line
	(a) $y = -x + 3\sqrt{3}$	(b) $y = -x - 3\sqrt{3}$	(c) $y = -x \pm 2$	(d) None of these
84.	The position of point	t(5, -4) relative to the hype	$erbola 9x^2 - y^2 = 1$	
	(a) Outside the hyper	rbola (b)Inside the hyperbola	a (c) On the conjugate as	xis (d) On the hyperbola

The tangents to the hyperbola $x^2 - y^2 = 3$ are parallel to the straight line 2x + y + 8 = 0 at the following

73.

points.

Advance Level

If the two tangents drawn on hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ in such a way that the product of their gradients is c^2 , then they intersects on the curve

(a)
$$y^2 + b^2 = c^2(x^2 - a^2)$$

(a)
$$y^2 + b^2 = c^2(x^2 - a^2)$$
 (b) $y^2 + b^2 = c^2(x^2 + a^2)$

(c)
$$ax^2 + by^2 = c^2$$

(d) None of these

C the centre of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. The tangent at any point P on this hyperbola meets the straight lines bx - ay = 0 and bx + ay = 0 in the points Q and R respectively. Then $cQ \ cR = 0$

(a)
$$a^2 + b^2$$

(b)
$$a^2 - b^2$$

(c)
$$\frac{1}{a^2} + \frac{1}{b^2}$$

(d) $\frac{1}{2} - \frac{1}{2}$

Let $P(a\sec\theta, b\tan\theta)$ and $Q(a\sec\phi, b\tan\phi)$, where $\theta + \phi = \frac{\pi}{2}$, be two points on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$. If (h,k) is the point of intersection of the normals at P and Q, then k is equal to

(a)
$$\frac{a^2 + b^2}{a}$$

(b)
$$-\left(\frac{a^2+b^2}{a}\right)$$

(c)
$$\frac{a^2+b^2}{b}$$

(d) $-\left(\frac{a^2+b^2}{b}\right)$

Let P be a point on the hyperbola $x^2 - y^2 = a^2$ where a is a parameter such that P is nearest to the line y = 2x. The locus of P is

(a)
$$x-2y=0$$

(b)
$$2y - x = 0$$

(c)
$$x + 2y = 0$$

(d)
$$2y + x = 0$$

An ellipse has eccentricity $\frac{1}{2}$ and one focus at the point $p(\frac{1}{2},1)$. Its one directrix is the common tangent nearer to the point P, to the circle $x^2 + y^2 = 1$ and the hyperbola $x^2 - y^2 = 1$. The equation of the ellipse in the standard form, is

(a)
$$\frac{(x-1/3)^2}{1/9} + \frac{(y-1)^2}{1/12} = 1$$

(b)
$$\frac{(x-1/3)^2}{1/9} + \frac{(y+1)^2}{1/12} = 1$$

(c)
$$\frac{(x-1/3)^2}{1/9} - \frac{(y-1)^2}{1/12} = 1$$

(d)
$$\frac{(x-1/3)^2}{1/9} - \frac{(y+1)^2}{1/12} = 1$$

NORMALS, CO – NORMAL POINTS

Basic Level

The condition that the straight line lx+my=n may be a normal to the hyperbola $b^2x^2-a^2y^2=a^2b^2$ is

(a)
$$\frac{a^2}{f^2} - \frac{b^2}{m^2} = \frac{(a^2 + b^2)^2}{n^2}$$
 (b) $\frac{f^2}{a^2} - \frac{m^2}{b^2} = \frac{(a^2 + b^2)^2}{n^2}$ (c) $\frac{a^2}{f^2} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{f^2}$ (d) $\frac{f^2}{a^2} + \frac{m^2}{b^2} = \frac{(a^2 - b^2)^2}{f^2}$

(b)
$$\frac{f^2}{a^2} - \frac{m^2}{b^2} = \frac{(a^2 + b^2)}{a^2}$$

(c)
$$\frac{a^2}{P} + \frac{b^2}{m^2} = \frac{(a^2 - b^2)^2}{n^2}$$

(d)
$$\frac{f^2}{a^2} + \frac{m^2}{b^2} = \frac{(a^2 - b^2)^2}{a^2}$$

The equation of the normal to the hyperbola $\frac{x^2}{16} - \frac{y^2}{9} = 1$ at (-4, 0) is

(a)
$$y = 0$$

(b)
$$y = x$$

(c)
$$\mathbf{x} = \mathbf{0}$$
 (d)

$$x = -y$$

The equation of the normal at the point $(asec\theta, btan\theta)$ of the curve $b^2x^2 - a^2y^2 = a^2b^2$ is **92**.

(a)
$$\frac{ax}{a} + \frac{by}{b} = a^2 + b^2$$

(b)
$$\frac{ax}{a} + \frac{by}{a} = a^2 + b^2$$

(c)
$$\frac{ax}{a} + \frac{by}{a} = a^2 + b^2$$

(a)
$$\frac{ax}{\cos\theta} + \frac{by}{\sin\theta} = a^2 + b^2$$
 (b) $\frac{ax}{\tan\theta} + \frac{by}{\sec\theta} = a^2 + b^2$ (c) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 + b^2$ (d) $\frac{ax}{\sec\theta} + \frac{by}{\tan\theta} = a^2 - b^2$

The number of normals to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ from an external point is 93.

(b)
$$4$$

(d)

CHORD OF CONTACT, EQUATION OF THE CHORD WHOSE MID POINT IS GIVEN & **EQUATION OF CHORD JOINING TWO POINTS**

Basic Level

The locus of the middle points of the chords of hyperbola $3x^2 - 2y^2 + 4x - 6y = 0$ parallel to y = 2x is

(a)
$$3x - 4y = 4$$

(b)
$$3y - 4x + 4 = 0$$

(c)
$$4x-4y=3$$

(d)
$$3x-4y=2$$

The equation of the chord of the hyperbola $x^2 - y^2 = 9$ which is bisected at (5, -3) is 95.

(a)
$$5x + 3v = 9$$

(b)
$$5x-3y=16$$

(c)
$$5x+3v=16$$

(d)
$$5x - 3y = 9$$

If the chords of contact of tangents from two points (x_1, y_1) and (x_2, y_2) to the hyperbola $\frac{x^2}{c^2} - \frac{y^2}{k^2} = 1$ are 96. at right angles, then $\frac{x_1x_2}{v_1v_2}$ is equal to

(a)
$$-\frac{a^2}{b^2}$$

(b)
$$-\frac{b^2}{a^2}$$

(c)
$$-\frac{b^4}{a^4}$$

(d)
$$-\frac{a^4}{b^4}$$

Equation of the chord of the hyperbola $25x^2 - 16y^2 = 400$ which is bisected at the point (6, 2) is

(a)
$$16x - 75y = 418$$

(b)
$$75x-16y=418$$

(c)
$$25x-4y=400$$

(d) None of these

Advance Level

If x = 9 is the chord of contact of the hyperbola $x^2 - y^2 = 9$, then the equation of the corresponding pair of tangent is

(a)
$$9x^2 - 8y^2 + 18x - 9 = 0$$
 (b) $9x^2 - 8y^2 - 18x + 9 = 0$ (c) $9x^2 - 8y^2 - 18x - 9 = 0$ (d) $9x^2 - 8y^2 + 18x + 9 = 0$

(c)
$$9x^2 - 8y^2 - 18x - 9 = 0$$

(d)
$$9x^2 - 8v^2 + 18x + 9 = 0$$

If $(a\sec\theta, b\tan\theta)$ and $(a\sec\phi, b\tan\phi)$ are the ends of a focal chord of $\frac{x^2}{c^2} - \frac{y^2}{b^2} = 1$, then $\tan\frac{\theta}{2}\tan\frac{\phi}{2}$ equals to

(a)
$$\frac{e-1}{e+1}$$

(b)
$$\frac{1-e}{1+e}$$

(c)
$$\frac{1+e}{1-e}$$

(d)
$$\frac{e+1}{e-1}$$

100. If $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ (a > b) and $x^2 - y^2 = c^2$ cut at right angles, then

(a)
$$a^2 + b^2 = 2c^2$$

(b)
$$b^2 - a^2 = 2c^2$$

(c)
$$a^2 - b^2 = 2c^2$$

(d)
$$a^2b^2 = 2c^2$$

101. The locus of the middle points of the chords of contact of tangents to the hyperbola $x^2 - v^2 = a^2$ from points on the auxiliary circle, is

(a)
$$a^2(x^2+y^2)=(x^2-y^2)$$
 (b) $a^2(x^2+y^2)=(x^2-y^2)^2$

(c)
$$a^2(x^2+y^2)=(x-y)^2$$

102. The locus of the mid points of the chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$, which subtend a right angle at the origin

(a)
$$\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2 \left(\frac{1}{a^2} - \frac{1}{b^2}\right) = \frac{x^2}{a^4} + \frac{y^2}{b^4}$$

(b)
$$\left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right)^2 \left(\frac{1}{a^2} - \frac{1}{b^2}\right) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

$$\left(c\right) \left(\frac{x^2}{a^2} - \frac{y^2}{b^2}\right) \left(\frac{1}{a^2} - \frac{1}{b^2}\right) = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

(d) None of these

POLE AND POLAR, DIAMETER OF POLAR POINTS

Basic Level

103. The diameter of $16x^2 - 9y^2 = 144$ which is conjugate to x = 2y is

(a)
$$y = \frac{16}{9}x$$

(b)
$$y = \frac{32}{9}x$$

(c)
$$x = \frac{16}{9}y$$

(d)
$$x = \frac{32}{9}y$$

104. The lines 2x + 3y + 4 = 0 and 3x - 2y + 5 = 0 may be conjugate w.r.t the hyperbola $\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$, if

(a)
$$a^2 + b^2 = \frac{10}{3}$$

(a)
$$a^2 + b^2 = \frac{10}{3}$$
 (b) $a^2 - b^2 = \frac{10}{3}$

(c)
$$b^2 - a^2 = \frac{10}{3}$$

(d) None of these

105. The polars of (x_1, y_1) and (x_2, y_2) w.r.t $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ are perpendicular to each other if

(a)
$$\frac{x_1x_2}{y_1y_2} = -\frac{b^2}{a^4}$$

(b)
$$\frac{x_1x_2}{y_1y_2} = -\frac{a^4}{b^4}$$

(a)
$$\frac{x_1x_2}{y_1y_2} = -\frac{b^2}{a^4}$$
 (b) $\frac{x_1x_2}{y_1y_2} = -\frac{a^4}{b^4}$ (c) $x_1x_2 + y_1y_2 = \frac{a^2}{b^2}$ (d) $x_1x_2 - y_1y_2 = \frac{a^2}{b^2}$

(d)
$$x_1x_2 - y_1y_2 = \frac{a^2}{L^2}$$

Advance Level

106. The locus of the pole of normal chords of the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{L^2} = 1$ is

(a)
$$a^6 / x^2 - b^6 / y^2 = (a^2 + b^2)^2$$

(b)
$$x^2/a^2-y^2/b^2=(a^2+b^2)^2$$

(c)
$$a^2/x^2-b^2/y^2=(a^2+b^2)^2$$

(d) None of these

107. The locus of the pole with respect to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ of any tangent to the circle, whose diameter is the line joining the foci is the

(a) Ellipse

(b) Hyperbola

(c) Parabola

(d) None of these

ASYMPTOTES OF HYPERBOLA

Basic Level

108. The product of the lengths of perpendicular drawn from any point on the hyperbola $x^2 - 2y^2 - 2 = 0$ to its asymptotes is

(a)
$$\frac{1}{2}$$

(b)
$$\frac{2}{3}$$

(c)
$$\frac{3}{2}$$

109. The angle between the asymptotes of $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ is equal to

(a)
$$2 \tan^{-1} \left(\frac{b}{a} \right)$$

(b)
$$2 \tan^{-1} \frac{a}{h}$$

(c)
$$\tan^{-1}\frac{a}{h}$$

(d)
$$\tan^{-1}\frac{b}{a}$$

Advance Level

110. The product of perpendicular drawn from any point on a hyperbola to its asymptotes is

(a)
$$\frac{a^2b^2}{a^2+b^2}$$

(b)
$$\frac{a^2+b^2}{a^2b^2}$$

(c)
$$\frac{ab}{\sqrt{a}+\sqrt{b}}$$

(d)
$$\frac{ab}{a^2+b^2}$$

111. From any point on the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ tangents are drawn to the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 2$.

	The area cut-off by the chord of contact on the asymptotes is equal to					
	(a) $\frac{ab}{2}$	(b) <i>ab</i>	(C) 2ab	(d) 4 <i>ab</i>		
112.	_	e hyperbola whose asym n passes through origin is	nptotes are the straig	ht lines $3x-4y+7=0$ and		
	(a) (3x-4y+7)(4x+3y+1	1) = 0	(b) $12x^2 - 7xy - 12y^2 + 31x$	+17y=0		
	(c) $12x^2 - 7xy + 2y^2 = 0$		(d) None of these			
113.	The equation of the as	symptotes of the hyperbola	$2x^2 + 5xy + 2y^2 - 11x - 7y - 4$	= 0 are		
	(a) $2x^2 + 5xy + 2y^2 - 11x - $	-7y-5=0	(b) $2x^2 + 4xy + 2y^2 - 7x - 1$	1y+5=0		
	(C) $2x^2 + 5xy + 2y^2 - 11x - $	-7y+5=0	(d) None of these			
		RECTANGULA	R HYPERBOLA			
Basi	c Level					
114.	Eccentricity of the cur	$\text{rve } x^2 - y^2 = a^2 18$				
	(a) 2	(b) $\sqrt{2}$	(c) 4	(d) None of these		
115.	The eccentricity of cu	$\text{rve } x^2 - y^2 = 1 \text{ is}$				
	(a) $\frac{1}{2}$	$(b) \frac{1}{\sqrt{2}}$	(c) 2	(d) $\sqrt{2}$		
116.	The eccentricity of the	e hyperbola $x^2 - y^2 = 25$ is				
	(a) $\sqrt{2}$	(b) $\frac{1}{\sqrt{2}}$	(c) 2	(d) $1+\sqrt{2}$		
117.	If transverse and conju	ugate axes of a hyperbola a	re equal, then its eccenti	ricity is		
	(a) $\sqrt{3}$	(b) √ 2	(c) $\frac{1}{\sqrt{2}}$	(d) 2		
118.	The eccentricity of the	e hyperbola $\frac{\sqrt{1999}}{3}(x^2 - y^2) = 1$	ıis			
	(a) $\sqrt{3}$	(b) $\sqrt{2}$	(c) 2	(d) 2√2		
119.	Eccentricity of the rec	etangular hyperbola $\int_0^1 e^x \left(\frac{1}{x}\right)^{-1}$	$-\frac{1}{x^3}dx$ is			
	(a) 2	(b) $\sqrt{2}$	(c) 1	(d) $\frac{1}{\sqrt{2}}$		
190	The reciprocal of the	eccentricity of rectangular h	nyperhola is	٧Z		
120.	(a) 2	(b) $\frac{1}{2}$	(c) $\sqrt{2}$	(d) $\frac{1}{\sqrt{2}}$		
	(u) 2	$\overline{2}$	(C) VZ	(d) $\sqrt{2}$		
121.	The locus of the point	of intersection of the lines	(x+y)t = a and $x-y = at$, W	where t is the parameter, is		
	(a) A circle		(b) An ellipse			
	(c) A rectangular hype		(d) None of these			
122.	-		() T	(f) F 111		
	(a) Parabola	(b) Rectangular hyperbola	(c) Hyperbola	(d) Ellipse		

124.	The coordinates of the	he foci of the rectangular hy	y perbola $xy = c^2$ are	
	(a) (± c + c)	(b) $(\pm \alpha \sqrt{2}, \pm \alpha \sqrt{2})$	(c) $\left(\pm \frac{c}{\sqrt{2}}, \pm \frac{c}{\sqrt{2}}\right)$	(d) None of these
125.	A tangent to a hype	rbola $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$ intercepts a	length of unity from ea	ch of the coordinate axes
	then the point (a, b) li	es on the rectangular hyperb	oola	
	(a) $x^2 - y^2 = 2$	(b) $x^2 - y^2 = 1$	$(c) x^2 - y^2 = -1$	(d) None of these
126.	A rectangular hyperl	bola is one in which		
	(a) The two axes are	rectangular	(b) The two axes are e	equal
	(c) The asymptotes a	are perpendicular	(d) The two branches	are perpendicular
127.	If e and e_1 are the ec	centricities of the hyperbola	as $xy = c^2$ and $x^2 - y^2 = c^2$, t	hen $e^2 + e_1^2$ is equal to
	(a) 1	(b) 4	(c) 6	(d) 8
128.	If the line $ax + by + c =$	o is a normal to the curve xy	y = 1, then	
	(a) $a > 0$, $b > 0$	(b) $a > 0, b < 0 \text{ or } a < 0, b > 0$	(c) $a < 0, b < 0$	(d) None of these
129.	The number of norm	nals that can be drawn from	any point to the rectangu	ılar hyperbola $xy = c^2$ is
	(a) 1	(b) 2	(c) 3	(d) 4
130.	The equation of th	ne chord joining two poin	ts (x_1, y_1) and (x_2, y_2) on t	the rectangular hyperbol
	$xy = c^2 iS$	3 0 1		.
	(a) $\frac{x}{x_1 + x_2} + \frac{y}{y_1 + y_2} = 1$	(b) $\frac{x}{x_1 - x_2} + \frac{y}{y_1 - y_2} = 1$	(c) $\frac{x}{y_1 + y_2} + \frac{y}{x_1 + x_2} = 1$	(d) $\frac{x}{y_1 - y_2} + \frac{y}{x_1 - x_2} = 1$
131.	If a triangle is inscri	bed in a rectangular hyperbo	ola, its orthocentre lies	
	(a) Inside the curve	(b) Outside the curve	(c) On the curve	(d) None of these
Adv	ance Level			
132.	The equation of the	common tangent to the curv	$yes y^2 = 8x \text{ and } xy = -1 \text{ is}$	
	(a) $3y = 9x + 2$	(b) $y = 2x + 1$	(c) $2y = x + 8$	(d) $y = x + 2$
133.	A rectangular hyper and S , then $CP^2 + CQ^2$	bola whose centre is C is $C^2 + CR^2 + CS^2 =$	cut by any circle of radi	us r in four points P,Q , R
	(a) r^2	(b) 2r ²	(c) $3r^2$	(d) $4r^2$
134.		(x_4, y_3) and (x_4, y_4) are four contractions of the $\triangle PQR$ are	cyclic points on the rec	tangular hyperbola $xy = c^2$
	(a) $(x_4, -y_4)$	(b) (x_4, y_4)	$(C) (-x_4,-y_4)$	(d) $(-x_4,y_4)$
135.	If a circle cuts the re	ectangular hyperbola xy=1 ir	the points (x_r, y_r) where	r = 1,2,3,4 then
	(a) $x_1 x_2 x_3 x_4 = 2$		(c) $x_1 + x_2 + x_3 + x_4 = 0$	
		***	*	

123. What is the slope of the tangent line drawn to the hyperbola $xy = a(a \ne 0)$ at the point (a,1)

(c) a

(d) -a

(b) $\frac{-1}{a}$

(a) $\frac{1}{a}$

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
С	d	d	a	С	С	d	ь	d	ь	С	a	d	a	b	a	d	a	a	а
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
а	b	с	с	С	с	b	a	a	b	a	b	С	a,d	a	d	С	a	a	a
41	42	43	44	45	46	47	48	49	50	51	52	53	54	55	56	57	58	59	60
С	a	b	d	b	d	b	С	a	С	d	a	С	b	a	b	b	b	b	ь
61	62	63	64	65	66	67	68	69	70	71	72	73	74	75	76	77	78	79	80
b	b	b	С	a	d	С	b	a	b	a	С	b	С	b	a	b	b	С	c
81	82	83	84	85	86	87	88	89	90	91	92	93	94	95	96	97	98	99	100
a	С	a,b	a	a	a	d	a,b	a	a	a	С	b	a	С	d	b	b	b	c
101	102	103	104	105	106	107	108	109	110	111	112	113	114	115	116	117	118	119	120
b	a	b	a	b	a	a	b	a	a	d	b	С	b	d	a	b	b	b	d
121	122	123	124	125	126	127	128	129	130	131	132	133	134	135					
c	ь	b	b	b	a,b,	ь	b	d	a	С	d	d	d	ь					