*	Choose the right answer from th	ne given options. [1 Marks Each]		[20]	
1.	Let $n(A) = 28$, $n(A \cap B) = 8$, $n(A \cup$	B) = 52, then $n(A \cap B') =$.			
	(A) 30	(B) 32	(C) 20	(D) none of these.	
2.	If out of 150 students who read at least one newspaper The Times of India, The Hindustan Times and The Hindu. There are 65 who read The Times of India, 41 who read The Hindu and 50 who read The Hindustan Times.What is the maximum possible number of students who read all the three newspaper?				
	(A) 7	(B) 42	(C) 3	(D) Cannot be determined	
3.	If $n(A)$ denotes the number of el (A) 8	ements in set A and if $n(A) = 4,n(B)$	B) = 5 and n(A \cap B) = 3 then n[(A \times (C) 10	B) ∩ (B × A)]= (D) 11	
4.	Given A = {a, b, c, d, e, f, g, h} and (A) {i, o, u}	d B = {a, e, i, o, u} then B - A is equ (B) {a, b, c}	ual to: (C){c, d, e}	(D) {a, i, z}	
5.	Let F_1 be the set of all parallelonand F_5 the set of trapeziums in a	s, F_3 the set of all rhombuses, F_4	the set of all squares		
	(A) $\mathrm{F}_2\cap\mathrm{F}_3$	(B) $\mathrm{F}_3\cap\mathrm{F}_4$	(C) $\mathrm{F}_2 \cup \mathrm{F}_3$	(D) $F_2 \cup F_3 \cup F_4 \cup F_1$.	
6.	In 2nd quadrant? (A) X < 0, Y < 0	(B) X < 0, Y > 0	(C) X > 0, Y > 0	(D) X > 0, Y < 0	
7.	The symmetric difference of A =	{1, 2, 3} and B = {3, 4, 5} is:			
	(A)	(B)	(C)	(D)	
	{1, 2}	{1, 2, 4, 5}	{4, 3}	{2, 5, 1, 4, 3}.	
8.	•	d for Mathematics and 37 opted f o opt for at least one of the subje	for Biology How may have opted tects)	for only Mathematics?	
	(A) 15	(B) 17	(C) 13	(D) 19	
9.	elements in A × B is:	and 5 elements respectively and	d having 2 elements in common.	Then the number of	
	(A) 6	(B) 36	(C) 15	(D) None of these	
10.	If $A = \{x : x \text{ is a multiple of 3}\}$ and $B = \{x : x \text{ is a multiple of 5}\}$, then $A - B$ is:				
	(A) A∩B	(B) $A \cap \overline{B}$	(C) $\overline{A} \cap \overline{B}$	(D) $\overline{A \cap B}$.	
11.	If A = {1, 2, 3, 4, 5}, then the num (A) 120	ber of proper subsets of A is: (B) 30	(C) 31	(D) 32.	
				. ,	
12.	An investigator interviewed 100 students to determine the performance of three drinks: milk, coffee and tea. The investigator reported that 10 students take all three drinks milk, coffee and tea; 20 students take milk and coffee; 25 students take milk and tea; 12 students take milk only; 5 students take coffee only and 8 students take tea only. Then the number of students who did not take any of three drinks is:				
	(A) 10	(B) 20	(C) 25	(D) 30.	
13.	If A and B are two given sets, the (A) A	en $A\cap (A\cap B)^c$ is equal to: (B) B	(C) ϕ	(D) $A \cap B^c$.	
14.	Let U be the universal set containing 700 elements. If A, B are subsets of U such that $n(A) = 200$, $n(B) = 300$ and $n(A \cap B) = 100$. Then, $n(A' \cap B') = 100$.				
	(A) 400	(B) 600	(C) 300	(D) None of these.	
15.	For any set A, (A')' is equal to:				
	(A)	(B)	(C)	(D)	
	Α'	A	ϕ	None of these.	
16.	Suppose A ₁ , A ₂ ,, A ₃₀ are thirty sets each having 5 elements and B ₁ , B ₂ ,, B _n are n sets each with 3 elements. Let				
	$\bigcup\limits_{i=1}^{30}A_i=\bigcup\limits_{j=1}^nB_j=S\;\;\text{and each eler}\;\;$	ment of S belong to exactly 10 of	the $A_i^{'s}$ and exactly 9 of the $B_j^{'s}$, th	en n is equal to:	
	(A) 15	(B) 3	(C) 45	(D) 35.	
17	1 0 + 4 - [1 2 2 4 5 6 7 9 0 10]	Then the number of subsets of A	containing exactly two elements	ic.	

(C) 45

(A) 20

(B) 40

(D) 90

18.	hile preparing the progress reports of the students, the class teacher found that 70% of the students passed in Hindi, 0% passed in English and only 65% passed in both the subjects. Find out the percentage of students who failed in both subjects.					
	(A) 15%	(B) 20%	(C) 30%	(D) 35%		
19.	. $\{(A, B): A^2 + B^2 = 1\}$ on the sets	has the following relation.				
	(A) Reflexive		(B) Symmetric			
	(C) Reflexive and transitive		(D) None			
20.	. The range of the function f(x) =	= 3x - 2, is.				
	(A) $(-\infty,\infty)$	(B) $R - (3)$	(C) $(-\infty,0)$	(D) $(0,-\infty)$		
·						