CONTINUITY

INTRODUCTION

The word 'Continuous' means without any break or gap. If the graph of a function has no break, or gap or jump, then it is said to be continuous.

A function which is not continuous is called a discontinuous function.

While studying graphs of functions, we see that graphs of functions $\sin x$, x, $\cos x$, e^x etc. are continuous but greatest integer function [x] has break at every integral point, so it is not continuous. Similarly $\tan x$, $\cot x$, $\sec x$, $\frac{1}{x}$ etc. are also discontinuous function.

2.3.1 CONTINUITY OF A FUNCTION AT A POINT

A function f(x) is said to be continuous at a point x = a of its domain iff $\lim_{x \to a} f(x) = f(a)$. i.e. a function f(x) is continuous at x = a if and only if it satisfies the following three conditions:

- (1) f(a) exists. ('a' lies in the domain of f)
- (2) $\lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$ exist i.e. $\lim_{\mathbf{x} \to \mathbf{a}^{\dagger}} f(\mathbf{x}) = \lim_{\mathbf{x} \to \mathbf{a}} f(\mathbf{x})$ or R.H.L. = L.H.L.
- (3) $\lim_{x\to a} f(x) = f(a)$ (limit equals the value of function).

Cauchy's definition of continuity: A function f is said to be continuous at a point a of its domain b if for every $\varepsilon > 0$ there exists $\delta > 0$ (dependent on ε) such that $|x - a| < \delta \Rightarrow |f(x) - f(a)| < \varepsilon$.

Comparing this definition with the definition of limit we find that f(x) is continuous at x = a if $\lim_{x \to a} f(x)$ exists and is equal to f(a) i.e., if $\lim_{x \to a^{-}} f(x) = f(a) = \lim_{x \to a^{+}} f(x)$.

Heine's definition of continuity: A function f is said to be continuous at a point a of its domain a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a, the sequence a > 0 of the points in a converging to a.

converges to f(a) ie. $\lim_{n \to \infty} a \Rightarrow \lim_{n \to \infty} f(a_n) = f(a)$. This definition is mainly used to prove the discontinuity to a function.

Note:
Continuity of a function at a point, we find its limit and value at that point, if these two exist and are equal, then function is continuous at that point.

Formal definition of continuity: The function f(x) is said to be continuous at x = a in its domain if for any arbitrary chosen positive number $\epsilon > 0$, we can find a corresponding number δ depending on \in such that $|f(x) - f(a)| < \in \forall x \text{ for which } 0 < |x - a| < \delta$.

2.3.2 CONTINUITY FROM LEFT AND RIGHT

Function f(x) is said to be

- (1) Left continuous at x = a if $\lim_{x \to a-0} f(x) = f(a)$
- (2) Right continuous at x = a if $\lim_{x \to a+0} f(x) = f(a)$.

Thus a function f(x) is continuous at a point x = a if it is left continuous as well as right continuous at $\mathbf{x} = \mathbf{a}$

Example: 1 If
$$f(x) = \begin{cases} x + \lambda, & x < 3 \\ 4, & x = 3 \end{cases}$$
 is continuous at $x = 3$, then $\lambda = 3$

(a) 4 (b) 3 (c) 2 (d) 1

Solution: (d) L.H.L. at
$$x = 3$$
, $\lim_{x \to 3^{-}} f(x) = \lim_{x \to 3^{-}} (x + \lambda) = \lim_{h \to 0} (3 - h + \lambda) = 3 + \lambda$ (i)

R.H.L. at $x = 3$, $\lim_{x \to 3^{+}} f(x) = \lim_{x \to 3^{+}} (3x - 5) = \lim_{h \to 0} (3(3 + h) - 5) = 4$ (ii)

R.H.L. at
$$x = 3$$
, $\lim_{x \to 3^+} f(x) = \lim_{x \to 3^+} (3x - 5) = \lim_{h \to 0} (3(3 + h) - 5) = 4$ (ii)

Value of function
$$f(3) = 4$$

For continuity at x = 3

Limit of function = value of function $3 + \lambda = 4 \Rightarrow \lambda = 1$.

Example: 2 If
$$f(x) = \begin{cases} x \sin \frac{1}{x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
 is continuous at $x = 0$, then the value of k is

$$(b)-1$$

Solution: (c) If function is continuous at x = 0, then by the definition of continuity $f(0) = \lim_{x \to \infty} f(x)$

since
$$f(0) = k$$
. Hence, $f(0) = k = \lim_{x \to 0} (x) \left(\sin \frac{1}{x} \right)$

 $\Rightarrow k = 0$ (a finite quantity lies between -1 to 1) $\Rightarrow k = 0$.

Example: 3 If
$$f(x) = \begin{cases} 2x+1 \text{ when } x < 1 \\ k \text{ when } x = 1 \text{ is continuous at } x = 1, \text{ then the value of } k \text{ is } \\ 5x-2 \text{ when } x > 1 \end{cases}$$

Solution: (c) Since f(x) is continuous at x = 1,

$$\implies \lim_{\mathbf{x}\to\mathbf{1}^-} f(\mathbf{x}) = \lim_{\mathbf{x}\to\mathbf{1}^+} f(\mathbf{x}) = f(\mathbf{1})$$

Now
$$\lim_{x\to 1^-} f(x) = \lim_{h\to 0} f(1-h) = \lim_{h\to 0} 2(1-h) + 1 = 3$$
 $i.e., \lim_{x\to 1^-} f(x) = 3$

Similarly,
$$\lim_{x\to 1^+} f(x) = \lim_{h\to 0} f(1+h) = \lim_{h\to 0} f(1+h) - 2 \ i.e.$$
, $\lim_{x\to 1^+} f(x) = 3$

So according to equation (i), we have k = 3.

Example: 4 The value of k which makes $f(x) = \begin{cases} \sin(\frac{1}{x}), & x \neq 0 \\ k, & x = 0 \end{cases}$ continuous at x = 0 is

(a) 8

- (b) 1
- (c) -1
- (d) None of these

Solution: (d) We have $\lim_{x\to 0} f(x) = \lim_{x\to 0} \sin\frac{1}{x} = \text{An oscillating number which oscillates between } -1 \text{ and } 1.$

Hence, $\lim_{x\to 0} f(x)$ does not exist. Consequently f(x) cannot be continuous at x=0 for any value of k.

Example: 5 The value of m for which the function $f(x) = \begin{cases} mx^2, x \le 1 \\ 2x, x > 1 \end{cases}$ is continuous at x = 1, is

(a) 0

- (b) 1
- (c) 2

(d) Does not exist

Solution: (c) LHL = $\lim_{x\to 1^-} f(x) = \lim_{h\to 0} f(x) - h^2 = m$

$$RHL = \lim_{x \to 1^+} f(x) = \lim_{h \to 0} f(1 + h) = 2$$
 and $f(1) = m$

Function is continuous at x=1, \therefore LHL = RHL = f(1)

Therefore m=2.

Example: 6 If the function $f(x) = \begin{cases} (\cos x)^{1/x}, & x \neq 0 \\ k, & x = 0 \end{cases}$ is continuous at x = 0, then the value of k is

(a) 1

- (b)-1
- (c) 0

(d) o

Solution: (a) $\lim_{x\to 0}(\cos x)^{1/x} = k \Rightarrow \lim_{x\to 0} \frac{1}{x} \log(\cos x) = \log k \Rightarrow \lim_{x\to 0} \frac{1}{x} \lim_{x\to 0} \log\cos x = \log k \Rightarrow \lim_{x\to 0} \frac{1}{x} \times 0 = \log_e k \Rightarrow k = 1.$

2.3.3 CONTINUITY OF A FUNCTION IN OPEN AND CLOSED INTERVAL

Open interval: A function f(x) is said to be continuous in an open interval (a, b) iff it is continuous at every point in that interval.

Note: \Box This definition implies the non-breakable behavior of the function f(x) in the interval (a, b).

Closed interval: A function f(x) is said to be continuous in a closed interval [a, b] iff,

- (1) f is continuous in (a, b)
- (2) f is continuous from the right at 'a' i.e. $\lim_{x\to a^+} f(x) = f(a)$
- (3) f is continuous from the left at 'b' i.e. $\lim_{x \to b^-} f(x) = f(b)$.

Example: 7 If the function $f(x) = \begin{cases} x + a^2 \sqrt{2} \sin x &, & 0 \le x < \frac{\pi}{4} \\ x \cot x + b &, & \frac{\pi}{4} \le x < \frac{\pi}{2}, & \text{is continuous in the interval } [0, \pi] \\ b \sin 2x - a \cos 2x, & \frac{\pi}{2} \le x \le \pi \end{cases}$

then the values of (a, b) are

(a)
$$(-1, -1)$$

$$(c) (-1, 1)$$

$$(d)(1,-1)$$

Solution: (b) Since f is continuous at $x = \frac{\pi}{4}$;

$$\therefore \mathbf{f}\left(\frac{\pi}{\mathbf{4}}\right) = \mathbf{f}\left(\frac{\pi}{\mathbf{4}} + \mathbf{h}\right) = \mathbf{f}\left(\frac{\pi}{\mathbf{4}} - \mathbf{h}\right) \Longrightarrow$$

$$\frac{\pi}{4}$$
 (1) + $b = \left(\frac{\pi}{4} - 0\right) + a^2 \sqrt{2} \sin\left(\frac{\pi}{4} - 0\right)$

$$\Rightarrow \frac{\pi}{4} + b = \frac{\pi}{4} + a^2 \sqrt{2} \sin \frac{\pi}{4} \Rightarrow b = a^2 \sqrt{2} \cdot \frac{1}{\sqrt{2}} \Rightarrow b = a^2$$

Also as f is continuous at
$$\mathbf{x} = \frac{\pi}{2}$$
; $\therefore \mathbf{f}(\frac{\pi}{2}) = \lim_{\mathbf{x} \to \frac{\pi}{2} - 0} \mathbf{f}(\mathbf{x}) = \lim_{\mathbf{h} \to 0} \mathbf{f}(\frac{\pi}{2} - \mathbf{h})$

$$\Rightarrow b\sin 2\frac{\pi}{2} - a\cos 2\frac{\pi}{2} = \lim_{h \to 0} \left(\frac{\pi}{2} - h \cos \frac{\pi}{2} - h + b \right) \Rightarrow b \cdot 0 - a(-1) = 0 + b \Rightarrow a = b.$$

Hence (0, 0) satisfy the above relations.

Example: 8 If the function $f(x) = \begin{cases} 1 + \sin \frac{\pi x}{2} & \text{for } -\infty < x \le 1 \\ ax + b & \text{for } 1 < x < 3 \text{ is continuous in the interval } (-\infty, 6) & \text{then the } 6 \tan \frac{x\pi}{12} & \text{for } 3 \le x < 6 \end{cases}$

values of a and b are respectively

Solution: (c) Θ The turning points for f(x) are x=1,3.

So,
$$\lim_{x\to 1^-} f(x) = \lim_{h\to 0} f(1-h) = \lim_{h\to 0} \left[1 + \sin\frac{\pi}{2}(1-h)\right] = \left[1 + \sin\left(\frac{\pi}{2} - 0\right)\right] = 2$$

Similarly,
$$\lim_{x\to 1^+} f(x) = \lim_{h\to 0} f(1+h) = \lim_{h\to 0} a(1+h) + b = a+b$$

 Θ f(x) is continuous at x = 1, so $\lim_{x \to 1^-} f(x) = \lim_{x \to 1^+} f(x) = f(1)$

$$\Rightarrow 2 = a + b \qquad \dots (1)$$

Again,
$$\lim_{x\to 3^-} f(x) = \lim_{h\to 0} f(3-h) = \lim_{h\to 0} a(3-h) + b = 3a+b \text{ and } \lim_{x\to 3^+} f(x) = \lim_{h\to 0} f(3+h) = \lim_{h\to 0} 6 \tan \frac{\pi}{12} (3+h) = 6$$

f(x) is continuous in $(-\infty, 6)$, so it is continuous at x = 3 also, so $\lim_{x \to 3^-} f(x) = \lim_{x \to 3^+} f(x) = f(3)$

$$\Rightarrow$$
 3a+b=6(ii)

Solving (i) and (ii) a = 2, b = 0.

Trick: In above type of questions first find out the turning points. For example in above question they are x = 1,3. Now find out the values of the function at these points and if they are same then the function is continuous *i.e.*, in above problem.

$$f(x) = \begin{cases} 1 + \sin\frac{\pi}{2} x \; ; \; -\infty < x \le 1, & f(1) = 2 \\ ax + b \; ; & 1 < x < 3 & f(1) = a + b, f(3) = 3a + b \\ 6 \tan\frac{\pi}{12} \; ; & 3 \le x < 6 \quad f(3) = 6 \end{cases}$$

Which gives 2 = a + b and 6 = 3a + b after solving above linear equations we get a = 2, b = 0.

Example: 9 If
$$f(x) = \begin{cases} x \sin x, & \text{when } 0 < x \le \frac{\pi}{2} \\ \frac{\pi}{2} \sin(x + x), & \text{when } \frac{\pi}{2} < x < \pi \end{cases}$$
 then

- (a) f(x) is discontinuous at $x = \frac{\pi}{2}$ (b) f(x) is continuous at $x = \frac{\pi}{2}$ (c) f(x) is continuous at x = 0 (d) None of these

Solution: (a)
$$\lim_{x \to \frac{\pi}{2}^{-}} f(x) = \frac{\pi}{2}, \lim_{x \to \frac{\pi}{2}^{+}} f(x) = -\frac{\pi}{2} \text{ and } f(\frac{\pi}{2}) = \frac{\pi}{2}.$$

Since $\lim_{x+\frac{\pi}{2}^-} \neq \lim_{x+\frac{\pi}{2}^+} f(x)$, : Function is discontinuous at $x = \frac{\pi}{2}$

Example: 10 If
$$f(x) = \begin{cases} \frac{1-\cos 4x}{x^2}, & \text{when } x < 0 \\ \frac{a}{\sqrt{x}}, & \text{when } x = 0 \text{ is continuous at } x = 0, \text{ then the value of 'a' will be } \\ \frac{\sqrt{x}}{\sqrt{(16+\sqrt{x})}-4}, & \text{when } x > 0 \end{cases}$$

- (a) 8
- (b) 8

(d) None of these

Solution: (a)
$$\lim_{x\to 0^-} f(x) \lim_{x\to 0^-} \left(\frac{2\sin^2 2x}{(2x)^2}\right) 4 = 8$$
 and $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^+} \left[\left(\sqrt{16 + \sqrt{x}}\right) + 4\right] = 8$

Hence a = 8.

2.3.4 CONTINUOUS FUNCTION

(1) A list of continuous functions:

Function f(x)	Interval in which $f(x)$ is continuous
(i) Constant K	$(-\infty,\infty)$
(ii) x^n , (<i>n</i> is a positive integer)	$(-\infty,\infty)$
(iii) x^{-n} (<i>n</i> is a positive integer)	$(-\infty,\infty)-\{0\}$
(iv) $ x-a $	$(-\infty, \infty)$
(V) $p(x) = a_0 x^n + a_1 x^{n-1} + a_2 x^{n-2} + \dots + a_n$	$(-\infty, \infty)$
(vi) $\frac{p(x)}{q(x)}$, where $p(x)$ and $q(x)$ are polynomial	$(-\infty, \infty) - \{x : q(x) = 0\}$
in x	
(vii) sinx	$(-\infty,\infty)$
(viii) cosx	$(-\infty, \infty)$
(ix) tanx	$(-\infty,\infty)-\{(2n+1)\pi/2:n\in I\}$
(x) cotx	$(-\infty, \infty) - \{n\pi : n \in I\}$

(xi) secx	$(-\infty, \infty) - \{(2n+1)\pi/2 : n \in I\}$
(xii) cosea	$(-\infty, \infty) - \{n\pi : n \in I\}$
$(Xiii) e^x$	$(-\infty, \infty)$
(XiV) log _e x	$(0,\infty)$

- (2) Properties of continuous functions: Let f(x) and g(x) be two continuous functions at x = a. Then
 - (i) **c**(x) is continuous at x = a, where c is any constant
 - (ii) $f(x) \pm g(x)$ is continuous at x = a.
 - (iii) f(x). g(x) is continuous at x = a.
 - (iv) f(x)/g(x) is continuous at x = a, provided $g(a) \neq 0$.

Important Tips

- \sim A function f(x) is said to be continuous if it is continuous at each point of its domain.
- A function f(x) is said to be everywhere continuous if it is continuous on the entire real line R i.e. $(-\infty,\infty)$. eg. polynomial function e^x , $\sin x$, $\cos x$, constant, x^n , |x-a| etc.
- Integral function of a continuous function is a continuous function.
- Fig(x) is continuous at x = a and f(x) is continuous at x = g(a) then (fog) (x) is continuous at x = a.
- \mathcal{F} If f(x) is continuous in a closed interval [a, b] then it is bounded on this interval.
- If f(x) is a continuous function defined on [a, b] such that f(a) and f(b) are of opposite signs, then there is at least one value of x for which f(x) vanishes. i.e. if f(a)>0, $f(b)<0 \Rightarrow \exists c \in (a, b)$ such that f(c)=0.
- F If f(x) is continuous on [a, b] and maps [a, b] into [a, b] then for some $x \in [a, b]$ we have f(x) = x.
- (3) Continuity of composite function: If the function u = f(x) is continuous at the point x = a, and the function y = g(u) is continuous at the point u = f(a), then the composite function y = (gof(x)) = g(f(x)) is continuous at the point x = a.

2.3.5 DISCONTINUOUS FUNCTION

(1) **Discontinuous function**: A function 'f' which is not continuous at a point $\mathbf{x} = \mathbf{a}$ in its domain is said to be discontinuous there at. The point 'a' is called a point of discontinuity of the function.

The discontinuity may arise due to any of the following situations.

- (i) $\lim_{x \to a^+} f(x)$ or $\lim_{x \to a^-} f(x)$ or both may not exist
- (ii) $\lim_{x \to a^{\pm}} f(x)$ as well as $\lim_{x \to a^{\pm}} f(x)$ may exist, but are unequal.
- (iii) $\lim_{x \to a^{+}} f(x)$ as well as $\lim_{x \to a^{-}} f(x)$ both may exist, but either of the two or both may not be equal to f(a).

Important Tips

A function f is said to have removable discontinuity at x = a if $\lim_{x \to a} f(x) = \lim_{x \to a} f(x)$ but their common value is not equal to f(a).

Such a discontinuity can be removed by assigning a suitable value to the function f at x = a.

- Fig. If $\lim_{x \to \infty} f(x)$ does not exist, then we can not remove this discontinuity. So this become a nonremovable discontinuity or essential discontinuity.
- - (a) f + g and f g are discontinuous
- (b) f.g may be continuous
- \mathcal{F} If f and g are discontinuous at x = c, then f + g, f g and fg may still be continuous.
- Point functions (domain and range consists one value only) is not a continuous function.

Example: 11 The points of discontinuity of $y = \frac{1}{u^2 + u - 2}$ where $u = \frac{1}{x - 1}$ is

- (a) $\frac{1}{2}$,1,2
- (b) $\frac{-1}{2}$,1,-2 (c) $\frac{1}{2}$,-1,2
- (d) None of these

Solution: (a) The function $u = f(x) = \frac{1}{x-1}$ is discontinuous at the point x = 1. The function

$$y = g(x) = \frac{1}{u^2 + u - 2} = \frac{1}{(u + 2)(u - 1)}$$
 is discontinuous at $u = -2$ and $u = 1$

When
$$u=-2\Rightarrow \frac{1}{x-1}=-2\Rightarrow x=\frac{1}{2}$$
, When $u=1\Rightarrow \frac{1}{x-1}=1\Rightarrow x=2$.

Hence, the composite y = g(f(x)) is discontinuous at three points $= \frac{1}{2}$, 1, 2.

Example: 12 The function $f(x) = \frac{\log(1 + ax) - \log(1 - bx)}{x}$ is not defined at x = 0. The value which should be assigned to f at x = 0 so that it is continuous at x = 0, is

- (a) $\mathbf{a} \mathbf{b}$
- (b) a+b
- (c) $\log a + \log b$
- (d) loga-logb

Solution: (b) Since limit of a function is a+b as $x \to 0$, therefore to be continuous at x=0, its value must be a+b at $x=0 \Rightarrow f(0)=a+b$.

Example: 13 If $f(x) = \begin{cases} \frac{x^2 - 4x + 3}{x^2 - 1}, & \text{for } x \neq 1 \\ 2, & \text{for } x = 1 \end{cases}$, then

(a) $\lim_{x\to 1^+} f(x) = 2$

- (b) $\lim_{x\to 1^-} f(x) = 3$
- (c) f(x) is discontinuous at x=1
- (d) None of these

Solution: (c) f(1) = 2, $f(1+) = \lim_{x \to 1+} \frac{x^2 - 4x + 3}{x^2 - 1} = \lim_{x \to 1+} \frac{(x-3)}{(x+1)} = -1$

 $f(1-) = \lim_{x \to 1-} \frac{x^2 - 4x + 3}{x^2 - 1} = -1 \Rightarrow f(1) \neq f(1-)$. Hence the function is discontinuous at x = 1.

Example: 14 If $f(x) = \begin{cases} x-1, & x < 0 \\ \frac{1}{4}, & x = 0 \\ \frac{1}{2}, & x = 0 \end{cases}$, then

(a)
$$\lim_{x\to 0^+} f(x) = 1$$

(b)
$$\lim_{x\to 0^-} f(x) = 1$$

(c)
$$f(x)$$
 is discontinuous at $x = 0$

Solution: (c) Clearly from curve drawn of the given function f(x), it is discontinuous at x = 0.

Example: 15 Let $f(x) = \begin{cases} (1+|\sin x|)^{\frac{a}{|\sin x|}}, & -\frac{\pi}{6} < x < 0 \\ b, & x = 0 \end{cases}$, then the values of a and b if f is continuous at $\frac{\tan^2 x}{e^{\tan^2 x}}$, $0 < x < \frac{\pi}{6}$

x = 0, are respectively

(a)
$$\frac{2}{3}, \frac{3}{2}$$

(b)
$$\frac{2}{3}$$
, $e^{2/3}$ (c) $\frac{3}{2}$, $e^{3/2}$

(c)
$$\frac{3}{9}$$
, $e^{3/2}$

(d) None of these

Solution: (b)

$$f(x) = \begin{cases} (1 + |\sin x|)^{\frac{a}{|\sin x|}} & ; & -\left(\frac{\pi}{6}\right) < x < 0 \\ \frac{b}{e^{\tan 2x}} & ; & x = 0 \\ \frac{\tan 2x}{e^{\tan 3x}} & ; & 0 < x < \left(\frac{\pi}{6}\right) \end{cases}$$

For f(x) to be continuous at x = 0

$$\Rightarrow \lim_{x\to 0^{-}} f(x) = f(0) = \lim_{x\to 0^{+}} f(x) \Rightarrow \lim_{x\to 0} (1+|\sin x|)^{\frac{a}{|\sin x|}} = e^{\lim_{x\to 0^{-}} \left(|\sin x| \frac{a}{|\sin x|}\right)} = e^{a}$$

Now,
$$\lim_{x\to 0^+} e^{\tan 2x/\tan 3x} = \lim_{x\to 0^+} e^{\left(\frac{\tan 2x}{2x}\cdot 2x\right)/\left(\frac{\tan 3x}{3x}\cdot 3x\right)} = \lim_{x\to 0^+} e^{2/3} = e^{2/3}.$$

$$\therefore e^a = b = e^{2/3} \implies a = \frac{2}{3} \text{ and } b = e^{2/3}.$$

Example: 16 Let f(x) be defined for all x > 0 and be continuous. Let f(x) satisfy $f(\frac{x}{y}) = f(x) - f(y)$ for all x, y and f(e) = 1, then

- (a) f(x) = In x (b) f(x) is bounded
- (c) $f\left(\frac{1}{x}\right) \to 0$ as $x \to 0$ (d) $xf(x) \to 1$ as $x \to 0$

Let f(x) = In (x), x > 0 f(x) = In (x) is a continuous function of x for every positive value **Solution:** (a) of x.

$$f\left(\frac{x}{v}\right) = \operatorname{In}\left(\frac{x}{v}\right) = \operatorname{In}\left(x\right) - \operatorname{In}\left(y\right) = f(x) - f(y).$$

Example: 17 Let $f(x) = [x] \sin\left(\frac{\pi}{[x+1]}\right)$, where [.] denotes the greatest integer function. The domain of f is

.... and the points of discontinuity of f in the domain are

(a) $\{x \in R | x \in [-1,0)\}, I - \{0\}$

(b) $\{x \in R | x \notin [1,0)\}, I - \{0\}$

(C) $\{x \in R | x \notin [-1,0)\}, I - \{0\}$

(d) None of these

Note that [x+1] = 0 if $0 \le x+1 < 1$ Solution: (c)

i.e.
$$[x+1]-0$$
 if $-1 \le x < 0$.

Thus domain of **f** is $R-[-1,0) = \{x \notin [-1,0)\}$

We have $\sin\left(\frac{\pi}{|x+1|}\right)$ is continuous at all points of R-[-1,0) and [x] is continuous on R-Lwhere *I* denotes the set of integers.

Thus the points where f can possibly be discontinuous are...., $-3, -2, -1, 01, 2, \dots$ But for $0 \le x < 1, [x] = 0$ and $\sin\left(\frac{\pi}{[x+1]}\right)$ is defined.

Therefore f(x) = 0 for $0 \le x < 1$.

Also f(x) is not defined on $-1 \le x < 0$.

Therefore, continuity of f at 0 means continuity of f from right at 0. Since f is continuous from right at 0, f is continuous at 0. Hence set of points of discontinuities of f is $I - \{0\}$.

Example: 18 If the function $f(x) = \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x}$, $(x \ne 0)$ is continuous at each point of its domain, then the value of **(0)** is

- (c) 2/3
- (d) 1/3

Solution: (b) $f(x) = \lim_{x \to 0} \left(\frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \right) = f(0)$, $\left(\frac{0}{0} \text{ form} \right)$

Applying L-Hospital's rule,
$$f(0) = \lim_{x \to 0} \frac{\left(2 - \frac{1}{\sqrt{1 - x^2}}\right)}{\left(2 + \frac{1}{1 + x^2}\right)} = \frac{2 - 1}{2 + 1} = \frac{1}{3}$$

$$\mathbf{Trick}: f(0) = \lim_{x \to 0} \frac{2x - \sin^{-1} x}{2x + \tan^{-1} x} \Rightarrow \lim_{x \to 0} \frac{2 - \frac{\sin^{-1} x}{x}}{2 + \frac{\tan^{-1} x}{x}} = \frac{2 - 1}{2 + 1} = \frac{1}{3}.$$

Example: 19 The values of A and B such that the function $f(x) = \begin{cases} -2\sin x, & x \le -\frac{\pi}{2} \\ A\sin x + B, & -\frac{\pi}{2} < x < \frac{\pi}{2} \end{cases}$, is continuous cosx, $x \ge \frac{\pi}{2}$

everywhere are

(a)
$$A = 0, B = 1$$

(b)
$$A = 1, B = 1$$

(c)
$$A = -1, B = 1$$

(b)
$$A=1, B=1$$
 (c) $A=-1, B=1$ (d) $A=-1, B=0$

Solution: (c) For continuity at all $x \in R$ we must have $f\left(-\frac{\pi}{2}\right) = \lim_{x \to (-\pi/2)^-} (-2\sin x) = \lim_{x \to (-\pi/2)^+} (A\sin x + B)$

$$\implies$$
 2 = $-A + B$

and
$$f\left(\frac{\pi}{2}\right) = \lim_{x \to (\pi/2)^{-}} (A\sin x + B) = \lim_{x \to (\pi/2)^{+}} (\cos x)$$

$$\Rightarrow$$
 0 = $A + B$

From (i) and (ii), A = -1 and B = 1.

Example: 20 If $f(x) = \frac{x^2 - 10x + 25}{x^2 - 7x + 10}$ for $x \ne 5$ and f is continuous at x = 5, then f(5) = 1

(d) 25

Solution: (a)
$$f(5) = \lim_{x \to 5} f(x) = \lim_{x \to 5} \frac{x^2 - 10x + 25}{x^2 - 7x + 10} = \lim_{x \to 5} \frac{(x - 5)^2}{(x - 2)(x - 5)} = \frac{5 - 5}{5 - 2} = 0$$
.

Example: 21 In order that the function $f(x) = (x+1)^{\cot x}$ is continuous at x=0, f(0) must be defined as

(a)
$$f(0) = \frac{1}{e}$$

(b)
$$f(0) = 0$$

(c)
$$f(0) = e$$

(d) None of these

Solution: (c) For continuity at 0, we must have $f(0) = \lim_{x \to 0} f(x)$

$$= \lim_{x\to 0} (x+1)^{\cot x} = \lim_{x\to 0} \left((1+x)^{\frac{1}{x}} \right)^{x \cot x} = \lim_{x\to 0} \left((1+x)^{\frac{1}{x}} \right)^{\lim_{x\to 0} \left(\frac{x}{\tan x} \right)} = e^{1} = e.$$

Example: 22 The function $f(x) = \sin|x|$ is

(a) Continuous for all x

(b) Continuous only at certain points

(c) Differentiable at all points

(d) None of these

Solution: (a) It is obvious. Example: 23 If $f(x) = \begin{cases} \frac{1-\sin x}{\pi-2x}, & x \neq \frac{\pi}{2} \\ \lambda, & x = \frac{\pi}{2} \end{cases}$ be continuous at $x = \frac{\pi}{2}$, then value of λ is

$$(a) -1$$

(d) 2

Solution: (c) f(x) is continuous at $x = \frac{\pi}{2}$, then $\lim_{x \to \pi/2} f(x) = f(0)$ or $\lambda = \lim_{x \to \pi/2} \frac{1 - \sin x}{\pi - 2x}$, $\left(\frac{0}{0} \text{ form}\right)$

Applying L-Hospital's rule,
$$\lambda = \lim_{x \to \pi/2} \frac{-\cos x}{-2} \implies \lambda = \lim_{x \to \pi/2} \frac{\cos x}{2} = 0.$$

Example: 24 If $f(x) = \frac{2 - \sqrt{x+4}}{\sin 2x}$; $(x \ne 0)$, is continuous function at x = 0, then f(0) equals

(a)
$$\frac{1}{4}$$

(b)
$$-\frac{1}{4}$$

(c)
$$\frac{1}{8}$$

$$(d) - \frac{1}{8}$$

Solution: (d) If f(x) is continuous at x = 0, then, $f(0) = \lim_{x \to 0} f(x) = \lim_{x \to 0} \frac{2 - \sqrt{x + 4}}{\sin 2x}$, $\left(\frac{0}{0} \text{ form}\right)$

Using L-Hospital's rule,
$$f(0) = \lim_{x\to 0} \frac{\left(-\frac{1}{2\sqrt{x+4}}\right)}{2\cos 2x} = -\frac{1}{8}$$
.

Example: 25 If function $f(x) = \begin{cases} x & \text{if } x \text{ is rational} \\ 1 - x & \text{if } x \text{ is irrational} \end{cases}$ then f(x) is continuous at number of points

(d) None of these

Solution: (c) At no point, function is continuous.

Example: 26 The function defined by $f(x) = \left\{ \begin{pmatrix} x^2 + e^{\frac{1}{2-x}} \end{pmatrix}^{-1} , x \neq 2, \text{ is continuous from right at the point } x \right\}$

= 2, then k is equal to

(b)
$$1/4$$

$$(c) -1/4$$

(d) None of these

Solution: (b) $f(x) = \left[x^2 + e^{\frac{1}{2-x}} \right]^{-1}$ and f(2) = k

If f(x) is continuous from right at x = 2 then $\lim_{x\to 2^+} f(x) = f(2) = k$

$$\Rightarrow \lim_{x\to 2^+} \left[x^2 + e^{\frac{1}{2-x}} \right]^{-1} = k \Rightarrow k = \lim_{h\to 0} f(2+h) \Rightarrow k = \lim_{h\to 0} \left[(2+h)^2 + e^{\frac{1}{2-(2+h)}} \right]^{-1}$$

$$\implies k = \lim_{h \to 0} \left[4 + h^2 + 4h + e^{-1/h} \right]^{-1} \implies k = \left[4 + 0 + 0 + e^{-\infty} \right]^{-1} \implies k = \frac{1}{4}.$$

Example: 27 The function $f(x) = \frac{1 - \sin x + \cos x}{1 + \sin x + \cos x}$ is not defined at $x = \pi$. The value of f(x), so that f(x) is continuous at $x = \pi$, is

(a)
$$-\frac{1}{2}$$

(b)
$$\frac{1}{2}$$

$$(c) - 1$$

(d) 1

Solution: (c)
$$\lim_{x \to \pi} f(x) = \lim_{x \to \pi} \frac{2\cos^2 \frac{x}{2} - 2\sin \frac{x}{2}\cos \frac{x}{2}}{2\cos^2 \frac{x}{2} + 2\sin \frac{x}{2}\cos \frac{x}{2}} = \lim_{x \to \pi} \frac{\cos \frac{x}{2} - \sin \frac{x}{2}}{\cos \frac{x}{2} + \sin \frac{x}{2}} = \lim_{x \to \pi} (\pi - \frac{x}{2})$$

$$\therefore At \mathbf{x} = \pi, \mathbf{f}(\pi) = -\tan\frac{\pi}{4} = -1.$$

Example: 28 If $f(x) = \begin{cases} \frac{\sqrt{1 + kx} - \sqrt{1 - kx}}{x}, & \text{for } 1 \le x < 0 \\ 2x^2 + 3x - 2, & \text{for } 0 \le x \le 1 \end{cases}$ is continuous at x = 0, then k = 0

$$(a) - 4$$

$$(b) - 3$$

$$(c) - 2$$

$$(d) - 1$$

Solution: (c) L.H.L. = $\lim_{x\to 0^-} \frac{\sqrt{1+kx}-\sqrt{1-kx}}{x} = k$

R.H.L. =
$$\lim_{x\to 0^+} (2x^2 + 3x - 2) = -2$$

Since it is continuous, hence L.H.L = R.H.L $\Rightarrow k = -2$.

Example: 29 The function $f(x) = |x| + \frac{|x|}{x}$ is

- (a) Continuous at the origin
- (b) Discontinuous at the origin because |x| is discontinuous there
- (c) Discontinuous at the origin because $\frac{|x|}{x}$ is discontinuous there
- (d) Discontinuous at the origin because both |x| and $\frac{|x|}{x}$ are discontinuous there

Solution: (c) |x| is continuous at x = 0 and $\frac{|x|}{x}$ is discontinuous at x = 0

$$\therefore$$
 $f(x) = |x| + \frac{|x|}{x}$ is discontinuous at $x = 0$.

ASSIGNMENT

If the function $f(x) = \begin{cases} 5x - 4 & \text{if } 0 < x \le 1 \\ 4x^2 + 3bx & \text{if } 1 < x < 2 \end{cases}$ is continuous at every point of its domain, then the value

of b is

- (a) -1

(c) 1

- (d) None of these
- If $f(x) = \begin{cases} \frac{\log(1+2ax) \log(1-bx)}{x}, & x \neq 0 \\ k & , x = 0 \end{cases}$ is continuous at x = 0, then k equals

 (a) 2a + b (b) 2a b (c) b 2a

- (d) b+a
- If $f(x) = \begin{cases} x & \text{when } 0 \le x < 1 \\ k 2x & \text{when } 1 \le x \le 2 \end{cases}$ is continuous at x = 1, then value of k is
 - (a) 1

(b) -1

(c)3

(d) 2

- If $f(x) = \begin{cases} x, & x < 0 \\ 1, & x = 0 \\ x^2, & x > 0 \end{cases}$ then true statement is
- (a) $\lim_{x\to 0} f(x) = 1$ (b) $\lim_{x\to 0} f(x) = 0$ (c) f(x) is continuous at x = 0 (d) $\lim_{x\to 0} f(x)$ does not exist

- If $f(x) = \frac{x-a}{\sqrt{x-\sqrt{a}}}$ is continuous at x = a, then f(a) equals

(c) a

(d) 2a

- If f(x) = |x b|, then function 6.
 - (a) Is continuous $\forall x$ (b) Is continuous at $x = \infty$ (c) Is discontinuous at x = b (d) None of these
- If $f(x) = \begin{cases} \frac{x^4 16}{x 2}, & \text{when } x \neq 2 \\ 16, & \text{when } x = 2 \end{cases}$ then
 - (a) f(x) is continuous at x=2

(b) f(x) is discontinuous at x=2

(c) $\lim_{x\to 2} f(x) = 16$

- (d) None of these
- In the following discontinuous function is 8.
 - (a) sinx
- (b) x^2

(c) $\frac{1}{1-2x}$

(d) $\frac{1}{1+x^2}$

- If $f(x) = \begin{cases} x^2, & \text{when } x \leq 1 \\ x + 5, & \text{when } x > 1 \end{cases}$ then
 - (a) f(x) is continuous at x=1

(b) f(x) is discontinuous at x=1

(c) $\lim_{x\to 1} f(x) = 1$

(d) None of these

- If $f(x) = \begin{cases} 1 + x, & \text{when } x \le 2 \\ 5 x, & \text{when } x > 2 \end{cases}$ then 10.
 - (a) f(x) is continuous at x=2

- (b) f(x) is discontinuous at x=2
- (c) f(x) is discontinuous at x = 0
- (d) None of these
- The point of discontinuity of the function $f(x) = \frac{1 + \cos 5x}{1 \cos 4x}$ is 11.
 - (a) x = 0
- (b) $\mathbf{x} = \pi$
- (c) $x = \pi/2$

(d) All of these

12. Function f(x) = |x| is

(a)	Discontinuous at	0
(a)	Discontinuous at	x = 0

(b) Discontinuous at x = 1

(c)Continuous at all points

(d) Discontinuous at all points

13. If
$$f(x) = \begin{cases} x^2, & \text{when } x \neq 1 \\ 2, & \text{when } x = 1 \end{cases}$$
 then

(a)
$$\lim_{x\to 1} f(x) = 2$$

(b) f(x) is continuous at x = 1

(c) f(x) is discontinuous at x = 1

(d) None of these

14. Let
$$f(x) = \begin{cases} \frac{\sin \pi x}{5x}, & x \neq 0 \\ k, & x = 0 \end{cases}$$
. If $f(x)$ is continuous at $x = 0$, then $k = 0$

(a)
$$\frac{\pi}{5}$$

(b)
$$\frac{5}{\pi}$$

(d) 0

15. Function
$$f(x) = x - |x|$$
 is

(a) Discontinuous at x = 0

(b)Discontinuous at x = 1

(c) Continuous at all points

(d) Discontinuous at all points

16. Function
$$f(x) = x + |x|$$
 is

(a) Continuous at all points

(b) Discontinuous at x = 0

(c) Discontinuous at x=1

- (d) Discontinuous at all points
- 17. If f(x) is continuous function and g(x) is discontinuous function, then correct statement is
 - (a) f(x) + g(x) is continuous function
- (b) f(x) g(x) is continuous function
- (c) f(x) + g(x) is discontinuous function
- (d) f(x).g(x) is discontinuous function

18. Function
$$f(x) = \begin{cases} -1, & \text{when } x < -1 \\ -x, & \text{when } 1 \le x \le 1 \text{ is continuous} \\ 1, & \text{when } x > 1 \end{cases}$$

(a) Only at x=1

(b) Only at x = -1

(c) At both x=1 and x=-1

(d) Neither at x=1 nor at x=-1

Advance Level

19. Let $f(x) = \frac{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}}{x}$ the value which should be assigned to f at x = 0 so that it is continuous everywhere is

(a) $\frac{1}{2}$

(b) -2

(c) 2

(d) 1

20. The value of $\ell(0)$ so that the function $\ell(x) = \frac{\sqrt{1+x} - (1+x)^{1/3}}{x}$ becomes continuous is equal to

(a) $\frac{1}{6}$

(b) $\frac{1}{4}$

(c) 2

(d) $\frac{1}{3}$

21. If
$$f(x) = \begin{cases} \frac{|x-a|}{x-a} & \text{when } x \neq a \\ 1 & \text{when } x = a \end{cases}$$
 then

(a) f(x) is continuous at x=a

(b) f(x) is discontinuous at x=a

(c) $\lim_{x\to a} f(x) = 1$

(d) None of these

22. If
$$f(x) = \begin{cases} \frac{x}{e^{1/x} + 1}, & \text{when } x \neq 0 \\ 0, & \text{when } x = 0 \end{cases}$$
 then

(c) f(x) is continuous at x = 0 (d) None of these

(a) $\lim_{x\to 0^+} f(x) = 1$ (b) $\lim_{x\to 0^-} f(x) = 1$ If the function $f(x) = \begin{cases} \frac{k\cos x}{\pi - 2x}, & \text{when } x \neq \frac{\pi}{2} \\ 3, & \text{, when } x = \frac{\pi}{2} \end{cases}$ be continuous at $x = \frac{\pi}{2}$, then $k = \frac{\pi}{2}$

(d) None of these

A function f(x) is defined in [0,1] as follows $f(x) =\begin{cases} x, & \text{if } x \text{ is irrational} \\ 1-x, & \text{if } x \text{ is irrationa} \end{cases}$, then correct statement is

(a) f(x) is continuous at x = 0

(b) f(x) is continuous at x=1

(c) f(x) is continuous at $x = \frac{1}{2}$

(d) f(x) is everywhere discontinuous

If $f(x) = \begin{cases} \frac{e^{1/x} - 1}{e^{1/x} + 1}, & x \neq 0 \\ 1, & x = 0 \end{cases}$, then at x = 0, f(x) is

(a) Continuous (b) Left continuous (c) Right continuous (d) None of these The function $f(x) = \begin{cases} x+2 & 1 \le x \le 2 \\ 4 & x=2 \text{ is continuous} \\ 3x-2, & x>2 \end{cases}$

(a) x = 2 only (b) $x \le 2$

(c) $1 \le x$

(d) None of these

If $f(x) = \begin{cases} 1, & \text{when } 0 < x \le \frac{3\pi}{4} \\ 2\sin\frac{2x}{9}, & \text{when } \frac{3\pi}{4} < x < \pi \end{cases}$ then

(a) f(x) is continuous at x=0

(b) f(x) is continuous at $x = \pi$

(c) f(x) is continuous at $x = \frac{3\pi}{4}$

(d) f(x) is discontinuous at $x = \frac{3\pi}{4}$

1/2 - x, 0 < x < 1/2If $f(x) = \begin{cases} 0, & x = 0 \\ 1/2, & x = 1/2 \\ 3/2 - x, & 1/2 < x < 1 \end{cases}$, then false statement is

(a) f(x) is discontinuous at x = 0

(b) f(x) is continuous at $x = \frac{1}{2}$

(c) f(x) is discontinuous at x=1

(d) f(x) is continuous at $x = \frac{1}{4}$

 $f(x) = \frac{\sqrt{1 + px} - \sqrt{1 - px}}{x}, -1 \le x < 0 = \frac{2x + 1}{x - 2}, 0 \le x \le 1$ is continuous in the interval [-1,1] then p equals

(c) $\frac{1}{2}$

(d) 1

The function $f(x) = \begin{cases} x^2/a & \text{, } 0 \le x < 1 \\ a & \text{, } 1 \le x < \sqrt{2} \text{ is continuous for } 0 \le x < \infty, \text{ then the most suitable values} \\ (2b^2 - 4b)/x^2, \sqrt{2} \le x < \infty \end{cases}$

of a and b are

(d) None of these

(a) a = 1, b = -1 (b) $a = -1, b = 1 + \sqrt{2}$ (c) a = -1, b = 131. Let $f(x) = \begin{cases} \frac{x^3 + x^2 - 16x + 20}{(x - 2)^2}, & \text{if } x \neq 2 \\ k, & \text{, If } x = 2 \end{cases}$ if f(x) be continuous for all x, then k = -1

	(a) 7	(b) –7	(c) ±7	(d) None of these
32 .	If $f(x) = \begin{cases} \frac{x^2 + 3x - 1}{x^2 + 2x - 1} \\ a \end{cases}$	$\frac{10}{15}$, when $x \neq -5$ is contingular.	uous at $x = -5$, then the val	ue of 'a' will be
	(a) $\frac{3}{2}$	(b) $\frac{7}{8}$	(c) $\frac{8}{7}$	(d) $\frac{2}{3}$
33.	The function $f(x)$	$=[x]^2-[x^2]$ (where [y] is	the greatest integer less that	an or equal to y), is discontinuous
	at (a)All integer (c)All integer		(b) All integers ex (d) All integers ex	•
34.	If $f(x) = \frac{1}{2}x - 1$, the	en on the interval [0, z	au]	
	(a) $tan[f(x)]$ and -	$\frac{1}{f(x)}$ are both continuous	us (b) $tan[f(x)]$ and $\frac{1}{f(x)}$	are both discontinuous
	(c) $tan[f(x)]$ and	$f^{-1}(x)$ are both continuous	ous (d) $tan[f(x)]$ is continuous	nuous but $\frac{1}{f(x)}$ is not continuous
35 .	(a) f(x) is continu (c) f(x) is continu	ous on R^+ lous on $R-Z$	the greatest integer function (b) (a) is continued (d) None of the	nuous on <i>R</i> se
36 .	Let $f(x) = [2x^3 - 5]$, function is discont		est integer function. Then	number of points in (1, 2) where
tiic i	(a) 0	(b) 13	(c) 10	(d) 3
37 .	The number of p	points at which the fur	nction $f(x) = \frac{1}{x - [x]}$ [.] denote	s, the greatest integer function) is
not	continuous is			
38.	(a) 1 If $f(x) = \begin{cases} \frac{\sin x}{x} + \cos x \end{cases}$	(b) 2 sx, when $x \neq 0$, then , when $x = 0$	(c) 3	(d) None of these
	$(a) \lim_{\mathbf{x} \to 0^+} f(\mathbf{x}) \neq 2$, when $x = 0$ $(b) \lim_{x \to 0^{-}} f(x) = 0$	(c) Ax) is continuo	us at $x = 0$ (d)None of these
39 .			action $f(x) = \frac{1}{\log x }$ is discont	
40.	(a) 1 The function Ax	(b) 2 p = p(x+1) + q(x-1), where	(c) 3	(d) 4 function is continuous at $x=1$ if
	(a) $p - q = 0$	(b) $p + q = 0$	(c) $\boldsymbol{p} = 0$	(d) $q=0$
41.	Function $f(x) = \int 1$	$+\frac{x}{a}\Big ^{1/x}$ is continuous a	at $x = 0$, if $f(0)$ equals	
42 .	(a) e ^a	(b) e^{-a} e greatest integer func	(c) 0 etion and $f(x) = [\tan^2 x]$. Then (b) $f(x)$ is continuo	(d) $e^{1/a}$ us at $x = 0$
		ferentiable at $x = 0$	(d) $f(0) = 1$	
43.	The function $f(x)$	$d = \begin{cases} x + a\sqrt{2}\sin x & 0 \le x < \\ 2x\cot x + b & \pi/4 \le x \\ a\cos 2x - b\sin x & \pi/2 < x \end{cases}$	$\pi/4$ $\leq \pi/2$ is continuous for $0 \leq x$ $x \leq \pi$	\leq_{π} then a, b are
	(a) $\frac{\pi}{6}, \frac{\pi}{12}$	(b) $\frac{\pi}{3}, \frac{\pi}{6}$	(c) $\frac{\pi}{6}$, $-\frac{\pi}{12}$	(d) None of these

- **44.** Let $f: R \to R$ be any function. Define $g: R \to R$ by g(x) = |f(x)| for all x, Then g is
 - (a) Onto if f is onto

- (b) One-one if f is one-one
- (c) Continuous if f is continuous
- (d) Differentiable if f is differentiable

ANSWER

ASSIGNMENT (BASIC & ADVANCE LEVEL)

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
a	a	c	b	b	a,	b	c	b	a	d	c	c	a	c	a	c	d	d	a
					b														
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	c	b	c	С	c	С	b	b	c	a	b	d	b	b	b	d	С	С	b
41	42	43	44																<u></u>
d	b	c	c																