CHAPTER-7

TRIANGLES MIND MAP

CHAPTER-7 TRIANGLES

KEY POINTS

- Two figures having the same shape and size are called congruent figures.
- Two plane figures are congruent, if each one when superimposed on the other, covers the other exactly.
- Two line segments are congruent, if they are of equal lengths.
- Two angles of equal measures are congruent.
- Two circles of the same radii are congruent.
- Two squares of the same sides are congruent.
- Two rectangles are congruent, if they have the same length and breadth.
- If two triangles ABC and DEF are congruent under the correspondence A \longleftrightarrow D, B \longleftrightarrow E and C \longleftrightarrow F, then symbolically, it is expressed as \triangle ABC \cong \triangle DEF.
- There are four congruent conditions for triangles.
 - (a) Side-Angle-Side (SAS) congruent rule: Two triangles are congruent, if two sides and the included angle of the one triangle are respectively equal to the two sides and the included angle of the other triangle.
 - (b) Angle-Side-Angle (ASA) congruence rule: Two triangles are congruent, if two angles and the included side of the one triangle are respectively equal to the two angles and the included side of the other triangle.
 - (c) **Side-Side (SSS) congruence rule**: Two triangles are congruent, if the three sides of one triangle are respectively equal to the three sides of the other triangle.
 - (d) Right angle-Hypotenuse-Side (RHS) congruence rule: Two right triangles are congruent, if the hypotenuse and one side of one triangle are respectively equal to the hypotenuse and one side of another triangle.

- Angles opposite to equal sides of a triangle are equal.
- Sides opposite to equal angles of a triangle are equal.
- In a triangle, angle opposite to the longer side is larger (greater)
- In a triangle, side opposite to the larger (greater) angle is longer.
- Sum of any two sides of a triangle is greater than the third side.

•	Difference of any two sides of a triangles is less than the third side.						
PART-A							
1.	Which of the following is not a criterion for congruency of triangles?						
	a)	SSS	b)	RHS			
	c)	AAA	d)	SAS			
2.	If <i>AB</i> ≅ <i>CD</i> then						
	a)	AB < CD	b)	AB + CD = 0			
	c)	AB = CD	d)	AB > CD			
3.	If $\triangle ABC \cong \triangle DEF$ then.						
	a)	AC = DE	b)	BC = DF			
	c)	FE=CB	d)	AB = DF			
4.	If or the	o the sum of the other two angles,					
	a)	an equilateral triangle	b)	an isosceles triangles			
	c)	an obtuse triangle	d)	a right triangle			
5.	If $AB = QR$, $BC = PR$ and $CA = PQ$, then						
	a)	$\triangle ABC \cong \triangle PQR$	b)	$\Delta CBA \cong \Delta PRQ$			
	c)	$\triangle BAC \cong \triangle RPQ$	d)	$\Delta PQR \cong \Delta BCA$			
6.	In \triangle ABC and \triangle DFE, AB = FD, \angle A = \angle D. The two triangles will be congruent by SAS axiom if						
	a)	BC=EF	b)	AC = DE			
	c)	AC=EF	d)	BC = DE			
7.	If \triangle ABC \cong \triangle FDE, AB = 5 cm, \angle B = 40°, A = 80°. Then which of the following is correct?						
	a)	DF = 5cm, \angle F=60°	b)	DF = 5 cm, \angle E=60°			
	c)	DF = 5cm, ∠C=60°	d)	Both (B) and (C)			
8.	In \triangle ABC, AB = AC, \angle B = 40°. Then \angle C is equal to						
	a)	50°	b)	40°			
	c)	80°	d)	140°			

9.	In ABC, AB = BC, \angle B = 40°, Then \angle A is equal to					
	a)	70°	b)	40°		
	c)	140°	d)	100°		
10.	In right \triangle ABC, AB = BC. Then \angle A is equal to					
	a) `	45°	b)	90°		
	c)	60°	ď)	None of these		
11.	In \triangle PQR, \angle R = \angle P, QR = 4 cm and PR = 5 cm. Then PQ =					
	a)	4cm		5cm		
	c)	1 cm	ď)	9cm		
12.	If a, b, c are the lengths of the sides of a triangle, then					
		a-b>c		a+b <c< td=""></c<>		
	c)	c=a+b	d)	c <a+b< td=""></a+b<>		
13.	It is not possible to construct a triangle when the lengths of its sides					
	are					
	a)	3 cm, 4 cm, 5 cm	b)	3 cm, 5 cm, 5 cm		
	c)	5.3 cm, 2.2 cm, 3.1 cm	d)	9.3 cm, 5.2 cm, 7.4 cm		
14.	In ∆ABC, ∠B = 90° then					
	a)	AC=AB	b)	AC < AB		
	c)	AC < BC	d)	AC>AB		
15.	If ∆ABC is obtuse angled at C, then					
		AB > BC		AB = BC		
	c)	AB < BC	d)	AC>AB		
16.	In \triangle PQR, if \angle R > \angle Q, then					
		QR > PR	b)	PQ > PR		
	,	PQ < PR	,	QR < PR		
17.	,	ABC and Λ PQR. If AB = Q	,	$B = \angle P$, BC = PR then which one of		
	the following congruence conditions applies:					
	a)	SAS	b)	ASA		
	c)	SSS	ď)	RHS		
18.	,	ABC and \triangle DEF, if \angle A = \angle	∠F, ∠	$\angle B = \angle D$ and AB = FD, then which		
	one of the following congruence conditions applies:					
	a)	SAS	b)	ASA		
	c)	SSS	d)	RHS		
		Ą		p		
19.		7 cm		7 cm		
	5	5 cm	5	cm		
		3x	_	2x+20		
		B 6 cm C	- 1	E 6 cm F		

In the given figure, the value of x is

a) 4

b) 32

c) 20

d) 180

20. If $\triangle PQR \cong \triangle LMN$ than $NL = \underline{\hspace{1cm}}$

a) PQ

b) QF

c) RP

d) None of these

21. If $\triangle CAB \cong \triangle MLK$ then $\angle K =$ _____

a) ∠A

b) ∠B

c) ∠C

d) None of these

22. In $\triangle ABC$, $\angle C$ is the greatest angle, then

a) AC>AB

b) AB>AC

c) AB > BC

d) Both (b) and (c)

23. For $\triangle ABC$, which of the following is incorrect?

- a) (BC-AB) < AC
- b) (AC-BC) < AB
- c) (AC-AB) < BC
- d) None of these

24. If $\triangle ABC \cong \triangle ACB$, then

a) AB = AC

b) AB = BC

c) AC = BC

d) None of these

25. In the given figure AC is bisector of \angle BAD, AB = 3 cm, AC = 5cm, then AD = _____

a) 2 cm

b) 5 cm

c) 3 cm

d) 8 cm

Fill in the blanks :-

26. Two figures are congruent if they have the _____ shape and same _____

27. Two circles are congruent if they have radii.

28. Two equilateral triangles are congruent. if they have _____ sides.

29. Two square are congruent if they have _____ sides.

30. The sum of any two sides of a triangle is _____ than the third side.

- 31. The difference of any two sides of a triangle is than the third side.
- 32. In a right triangle, the hypotenuse is the side
- 33. If two angles of a triangle are unequal, then the smaller angle has the side opposite to it.
- 34. If two sides of a triangle are unequal, then the larger side has angle opposite to it.
- 35. In a triangle, sides opposite to equal angles are State which of the following statements are true and false.
- 36. In a triangle, the greatest angle has the longest side opposite to it.
- 37. Two triangles are congruent if three angles of one triangle are equal to three angles of the other triangle.
- 38. In a triangle, the shortest side has the smallest angle opposite to it.
- 39. It is necessary to write the correspondence of vertices correctly for writing congruence of triangles in symbolic form.
- 40. If all the line segments that can be drawn from a point to a line not containing it, the perpendicular line segment is the shortest one.
- 41. If $\triangle ABC \cong \triangle DEF$ then
 - (i) AB =

- (iii) CA = _____ (iv) ∠E = _____ (v) ∠EDF = _____ (vi) ∠BCA = _____
- 42. Circle $O_1 \cong Circle O_2$. If radius of circle $O_1 = 6$ cm then diameter of circle O_2 is
- 43. In the given figure, if a = b = c then $\angle AOC \cong$

44. Which is the longest side of the triangles given in the figure?

45. Which is the largest angle in the $\angle PQR$?

46. Which two triangles are congruent in the given figure. Write them in symbolic form.

Part - B

47. Match the columns:

Column A

Column B

- (ii) $\frac{1}{1000} \frac{1}{1000} \frac{1}$
- (iii) 6 cm $\overset{\text{A}}{\underset{\text{B}}{\text{10 cm}}} \overset{\text{10 cm}}{\underset{\text{C}}{\text{c}}} \overset{\text{D}}{\underset{\text{E}}{\text{10 cm}}} (c) \text{ ASA congruence}$
- (iv) X $Z \cong B$ $Z \otimes B$ $Z \otimes$

48. Match the columns:

Column A

Column B

(i)
$$\stackrel{\bullet}{\underset{A}{\longleftarrow}} \stackrel{\bullet}{\underset{X}{\longrightarrow}} \cong \stackrel{\bullet}{\underset{P}{\longleftarrow}} 10 \text{ cm } \stackrel{\bullet}{\underset{Q}{\bigcirc}}$$
 $x = ?$ (a) 2 cm

(ii)
$$\left(\begin{array}{c} x \\ O \end{array}\right) \cong \left(\begin{array}{c} 2 \text{ cm} \\ \end{array}\right) \quad x = ? \quad \text{(b) 5 cm}$$

(iii)
$$X = \mathbb{R}$$
 $X = \mathbb{R}$ (c) 10 cm

(iv)
$$x =$$
? (d) 4 cm

(v)
$$4 \text{ cm}$$

$$R \cong \begin{bmatrix} C \\ x \\ B \end{bmatrix}$$

$$X = ? \text{ (e) } 11 \text{ cm}$$

49. In the given figure. If AB = CD, AD = BC then prove that \triangle ADC \cong \triangle CBA

- 50. If $\triangle ABC$ is an isosceles triangle such that AB = AC, then prove that altitude AD from A on BC bisects it.
- 51. Which criteria of congruence of triangles is satisfied in the given figure.

- 52. In a \triangle PQR, \angle P = 110°, PQ = PR. Find \angle Q and \angle R.
- 53. In the given figure AB = AC and \angle ACD = 125°. Find \angle A

- 54. In $\triangle ABC$, if $\angle A = 55^{\circ}$, $\angle B = 75^{\circ}$ then find out the smallest and longest side of the triangle.
- 55. In the given figure, AC bisects \angle A and \angle C. If AD = 5 cm find AB.

56. The vertex angle of an isosceles triangle is 80°. Find out the measure of base angles.

57. In the given figure, Q is a point on the side SR of \triangle PSR such that PQ = PR Prove that PS > PQ.

- 58. ABC is a triangle and D is the mid-point of BC. The Perpendicular from D to AB and AC are equal. Prove that triangle is isosceles.
- 59. Prove that angles opposite to the equal sides of an isosceles triangle are equal.
- 60. In the given figure, AC > AB and AD bisects ∠BAC Prove that ∠ADC > ADB.

- 61. S is any point in the interior of a $\triangle PQR$. Prove that SQ + SR < PQ + PR.
- 62. In the given figure, if AD = BD = CD, Find \angle BAC

63. In the given figure, if AB = BC and \angle A = \angle C then find the value of x.

64. In the given figure ∠ABC = ∠BAC, D and E are points on BC and AC respectively such that DB = AE. If AD and BE intersect at O then prove that OA = OB.

65. In the given figure, if AB = AC, \angle BAD = \angle CAE then prove that \triangle ADE is an isosceles triangle.

- 66. In \triangle DEF, \angle E = 2 \angle F DM is the angle bisector of \angle EDF that intersects EF at M. If DM = MF, then prove that \angle EDF = 72°
- 67. Prove that the angles of an equilateral triangle are 60° each.
- 68. In the given figure, \angle a > \angle b, show that \angle ATM < \angle AMT.

Part-D

- 69. AF, BD and CE altitudes of \triangle ABC are equal. Prove that ABC is an equilateral triangle.
- 70. Prove that two triangles are congruent if two angles and the included side of one triangle are equal to the two angles and the included side of the other triangle.
- 71. O is any point in the interior of a $\triangle ABC$. Prove that $(OA + OB + OC) > \frac{1}{2}$ (AB + BC + CA)
- 72. Prove that the perimeter of a triangle is greater than the sum of its three altitudes.
- 73. Two sides AB, BC and median AM of one \triangle ABC are respectively equal to sides PQ, QR, and median PN of \triangle PQR. Show that.
 - (i) $\triangle ABM \cong \triangle PQN$
 - (ii) ∆ABC≅∆PQR
- 74. In the given figure, PQR is a triangle in which altitudes QS and RT to sides PR and PQ are equal. show that.

(i) $\triangle PQS \cong \triangle PRT$

75. In the given figure, AB = AD, $\angle 1 = \angle 2$ and $\angle 3 = \angle 4$. Prove that AP= AQ.

76. In the given figure, ABC is a right angled triangle, right angled at C, M is the mid-point of hypotenuse AB. C is joined to M and produced to a point D such that DM = CM. D is joined to B. Prove that

- 77. Prove that the sum of any two sides of a triangle is greater than its third side.
- 78. Vandana wishes to literate the poor children of the nearby slum area. She makes flash cards for them as shown in the given figure.

- (a) Which two flash cards are congruent?
- (b) Which criteria of congruency is satisfied here?
- (c) Write the third side of both the triangles which are equal by CPCT.
- 79. Prove that the sum of any two sides of a triangle is greater than twice the median drawn to the third side.
- 80. In the given figure, AB = CD, CE = BF and ∠ACE = ∠DBF. Prove that

- (i) \triangle ACE \cong \triangle DBF
- (ii) AE = DF

CHAPTER-7

TRIANGLES

ANSWERS

- 1. c) AAA
- 2. c) AB = CD
- 3. c) FE = CB
- 4. d) a right triangle
- 5. b) \triangle CBA \cong \triangle PRQ
- 6. b) AC = DE
- 7. d) Both (B) and (C)
- 8. b) 40°
- 9. a) 70°
- 10. a) 45°
- 11. a) 4cm
- 12. d) c < a + b
- 13. c) 5.3 cm, 2.2 cm, 3.1 cm
- 14. d) AC > AB
- 15. a) AB > BC
- 16. b) PQ > PR
- 17. a) SAS
- 18. b) ASA
- 19. c) 20
- 20. c) RP
- 21. b) ∠B
- 22. d) Both (b) and (d)
- 23. d) None of these
- 24. a) AB = AC
- 25. c) 3 cm
- 26. Same, Size
- 27. equal
- 28. equal
- 29. equal
- 30. greater
- 31. less
- 32. largest
- 33. smaller
- 34. greater

- 35. egual
- 36. True
- 37. False
- 38. True
- 39. True
- 40. True
- (i) DE 41.
 - (ii) EF
 - (iii) FD
 - (iv)∠B
 - (v) ∠BAC
 - (vi)∠EFD
- 12cm 42.
- 43. ∠BOD
- 44. BC
- 45. ∠Q
- 46. $\Delta LOM \cong \Delta QOP$
- 47. (i) (b)
 - (ii) (a)
 - (iii) (d)
 - (iv)(c)
- 48. (i) (c)
- - (ii) (a)
 - (iii) (e)
 - (iv)(b)
 - (v) (d)
- 51. SAS
- 52. $\angle Q = \angle R = 35^{\circ}$
- ∠A = 70° 53.
- 54. Smallest Side = AB Longest Side = AC
- 55. AB = 5cm
- 56. 50°, 50°
- 62. \angle BAC = 90°
- 63. 75°
- 78. (a) (i) and (iii)
 - (b) $\triangle ABC \cong \triangle QRP$ (SAS Congruency)
 - (c) BC = PR

PRACTICE TEST

Time: 50 Min. Triangles M.M. 20

1. Find the measure of each exterior angle of an equilateral triangle.

(1)

- 2. Which of the following is not a criterion for congruence of triangles? (1)
 - (a) SSA

(b) SAS

(c) ASA

- (d) SSS
- 3. In a \triangle ABC, If AB = AC and \angle A = 70. Find \angle B and \angle C. (2)
- 4. The vertical angle of an isosceles triangle is 100°. Find its base angles. (2)
- 5. In the given figure, ABC is a triangle in which AB = AC, side BA is produced to D such that AB = AD. Prove that \angle BCD = 90°. (3)

6. In the given figure, if AB =BC and \angle A = \angle C. Then find the value of x.

7. In the given figure, C is the midpoint of AB, if \angle DCA = \angle ECB.and \angle DBC = \angle EAC, Prove that DC = EC and BD = AE.

8. In the given figure ABC is a right angled triangle, right angled at C. M is the midpoint of hypotenuse is joined to M and produced to a point D such that DM = CM. D is joined to B.

Show that CM = $\frac{1}{2}$ AB.