MATHEMATICS CIRCLES

CIRCLES

SYNOPSIS

Circle: If d is the diameter of the circle and 'r' is its radius then

$$d = 2r$$
 units or $r = \frac{d}{2}$ units

Circumference of the circle: The length of the circle is called circumference of the circle.

 $\pi = \frac{The \ circumference \ of \ a \ circle}{The \ diameter \ of \ a \ circle}$

$$\frac{C}{d} = \pi$$
 $C = \pi d$ or $C = 2\pi r$

Note: π is not a rational number

Perimeter of a semi circle = $\pi r + d$ or $\pi r + 2r$ or $\frac{36}{7} \times radius$

Area of a circle $A = \pi r^2$ sq.units or $\frac{\pi d^2}{4}$ sq.units

WORK SHEET

<u>SIN(</u>	GLE ANSWER 7	<u> 「YPE</u>					
1.	A is a set of points in a plane, which are at the same distance from a given						
	point in the same plane.						
	A) line	B) line segment	C) circle	D) parabola			
2.							
	of the circle.						
	A) diameter	B) radius	C) chord	D) secant			
3.		number of Radii.					
	A) limited	B) only one	C) unlimited	D) two			
4.		wing the same radii					
	A) congruent	B) similar	C) equal	D) unequal			
5.	A chord passing through the centre of a circle is called a of the circle.						
		B) radius					
6.							
		B) radius		D) secant			
7.	The diameter of a circle is its radius.						
		B) thrice					
8.	A chord which is not passing through the centre of a circle is its diameter.						
	A) shorter thanC) equals to		B) greater than				
9.		ngest chord is called					
	•	B) radius	, –	D) secant			
10.	A part of a ci	ircle is called	_ of the circle.				
	A) radius	B) an arc	C) diameter	D) secant			

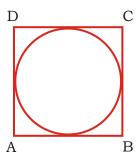
CIRCLES MATHEMATICS

11.	An arc which	ch is exactly half	of the circle is called a	ı
	A) chord	B) diameter	C) semi circle	D) circle
12.	The diameter	r of a circle divid	les the circle into	semi circle
	A) two	B) three	C) four	D) five
13.	A chord div	ides the circle in	tosegments.	
	A) two	B) three	C) four	D) five
14.	The circum:	ference of a circl	e is times its radius	•
	Α) π	B) $\pi/2$	C) 2 π	D) 4 π
15.	The circum	ference of a circl	le is units.	
	A) πr^2	B) $2\pi r$	C) πr	D) $2\pi d$
16.	The area of			
	A) πr^2	B) 2πr	C) πr	D) $2\pi d$
17.	If ABCD is	hen ∠A – ∠C is		
	A) 180°	B) 0°	C) 360°	D) 90°

MULTI ANSWER TYPE

- 18. If the radius of circle is 56 cm, then
 - 1) it's circumfrence is 352 cm
- 2) it's circumfrence is 354 cm²

3) it's area is 9856 cm²


- 4)it's area is 9394 cm²
- 19. In a circle of radius 28 cm, an arc subtends an angle of 108° at the centre
 - 1) area of the sector is 852 cm
- 2) area of the sector is 739.2 cm
- 3) length of the arc is 52 cm
- 4) length of the arc is 52.8 cm

REASONING ANSWER TYPE

20. Statement-II: If the radius of the circle is doubled, then its area is four times of its original area.

Statement-II: Circumference of a circle is $C = \pi d$ units.

- 1) Both Statements are true, Statement II is the correct explanation of Statement I.
- 2) Both Statements are true, Statement II is not correct explanation of Statement I.
- 3) Statement I is true, Statement II is false.
- 4) Statement I is false, Statement II is true.
- 21. Statement-I: The side of the square is 14 cm

Statement-II: The ratio of the square and circle perimeter is 14:11

- 1) Both Statements are true, Statement II is the correct explanation of Statement I.
- 2) Both Statements are true, Statement II is not correct explanation of Statement I.
- 3) Statement I is true, Statement II is false.
- 4) Statement I is false, Statement II is true.

MATHEMATICS CIRCLES

COMPREHENSION TYPE

Writeup:1

In an equilateral triangle of side 12cm, a circle is inscribed touching its sides.

Take = $\pi = 3.14$ and $\sqrt{3} = 1.73$.

Based on the above data answer the following questions.

- 22. Radius of circle is
 - 1) $\sqrt{3}$ cm
- 2) $2\sqrt{3}$ cm
- 3) $3\sqrt{3}$ cm
- 4) $4\sqrt{3}$ cm

- 23. Area of the incircle is
 - 1) 9.42 cm^2
- 2) 24.6 cm²
- 3) 37.68 cm²
- 4) 48. 24 cm²
- 24. The area of the portion of the triangle not included in the circle is
 - 1) 24.6 cm²
- 2) 37.68 cm²
- 3) 62.28 cm²
- 4) None of these

Writeup:2

A wire of length 88 m is first bent in the from a circle. It is bent in the form of a square. Read the above passage and answer the questions below.

- 25. Side of a square is
 - 1) 22 m
- 2) 20 m
- 3) 24m
- 4) 26m

- 26. Area of circle is
 - 1) 584m²
- 2) 616m²
- 3) 640m²
- 4) 480m²
- 7. The ratio of area of a circle and area of square is
 - 1) 14 : 11
- 2) 14:12
- 3) 11:14
- 4) 14:10

MATRIX MATCHING TYPE

28. **Column - I**

a) Circumference of a circle

1) πr^2 sq.units 2) $\frac{\pi d^2}{4}$ sq.units

Column - II

- b) If radius of the circle is half of its
- original radius, then its new area is c) Area of circle
- d) Perimeter of a semicircle is original

- 3) $2\pi r$ units
- 4) One fourth times of its
- 5) $\pi r + d$ units

29. Column - I

Column - II

- a) The perimeter of a sheet of paper in the shape of a quadrant of a circle is 75 cm. Then its area = (in cm²)
- 1) 21

2) 42

- hexagon is inscribed in a circle of radius 14 cm.
- b) A regular
- Then the area of the circle falling outside the hexagon is (in cm²)
- c) The cross section of a tunnel is in the shape of a semicircle surmounted on the longer side of a rectangle whose shorter side measures 6m. If the perimeter of the cross section is 66cm, then breadth of the tunnel is (in cm²)

3) 106.79

of a circle inscribed in a square of area 147 sq.cm is (in cm²)

- d) The area 4) 346.5
- 5) $115\frac{1}{2}$

CIRCLES MATHEMATICS

INTEGER ANSWER TYPE

30. A play field is in the form of a circle whose radius is 42m. If fencing costs 2 rupees per meter, then the cost of fencing is Rs. _____.

WORK SHEET (KEY)							
1) 3	2) 2	3) 3	4) 1	5) 1			
6) 4	7) 1	8) 1	9) 1	10) 2			
11) 3	12) 1	13) 1	14) 3	15) 2			
16) 1	17) 2	18) 1,3	19) 2,4	20) 2			
21) 2	22) 2	23) 3	24) 1	25) 1			
26) 2	27) 1	28) 3,4,(1,2),3	29) 4,3,1,5	30) 528			

18. Area =
$$\frac{22}{7} \times 56 \times 56 = 9856 \text{ cm}^2$$

Circumference = $2\pi r = 2 \times \frac{22}{7} \times 56 = 352 \text{ cm}$

19. a) Area of the sector
$$= \pi r^2 \left(\frac{\theta}{360^\circ} \right) = \frac{22}{7} \times 28 \times 28 \times \frac{108^\circ}{360^\circ}$$

 $= 22 \times 4 \times 28 \times \frac{3}{10} = 739.2 \text{cm}$

b) Length of the arc =
$$2\pi r \left(\frac{\theta}{360^{\circ}} \right) = 2 \times \frac{22}{7} \times 28 \times \frac{108}{360^{\circ}} = 52.8 \text{ cm}$$

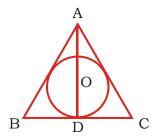
20. R = 2r; New area =
$$\pi R^2 = \pi (2r)^2 = 4\pi r^2 = 4$$
 (original area)

21. Side of the square = diametre of the circle
$$\Rightarrow$$
 s = d \Rightarrow d = 14 cm \Rightarrow 2r = 14 \Rightarrow r = 7 cm

: ratio of perimetres =
$$4 \times \text{side}$$
 : $2\pi r = 4 \times 14 : 2 \times \frac{22}{7} \times 7 = 56 : 44 = 14 : 11$

22 - 24 Paragraph.

Let ABC be an equilateral triangle of side 12 cm.


Let $AD \perp BC$. Then, D is the midpoint of BC.

$$\therefore$$
 BD = DC = 6 cm and AB = 12 cm.

$$\therefore AD = \sqrt{AB^2 - BD^2}$$

MATHEMATICS CIRCLES

$$\sqrt{12^2-6^2} = 6\sqrt{3} \text{ cm}$$

Let O be the centre of the inscribed circle. Then, O is the centroid of $\triangle ABC$.

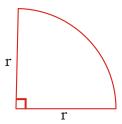
:. AO : OD = 2 : 1 and OD =
$$\frac{1}{3}$$
AD = $\frac{1}{3} \times 6\sqrt{3}$ cm = $2\sqrt{3}$ cm.

$$\therefore$$
 r = OD = $2\sqrt{3}$ cm

Required area = (area of $\triangle ABC$) - (area of the in circle)

$$= \left[\frac{\sqrt{3}}{4} \times (12)^2 - 3.14 \times (2\sqrt{3})^2 \right] cm^2 = (36\sqrt{3} - 3.14 \times 12) cm^2 =$$

$$(36\times1.73 - 3.14\times12) \text{ cm}^2$$

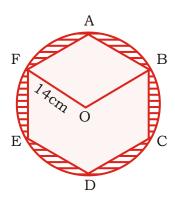

$$= (62.28 - 37.68) \text{ cm}^2 = 24.6 \text{ cm}^2.$$

25-27 Paragraph.

$$2\pi r = 88$$
 \Rightarrow $r = \frac{88}{2\pi} = \frac{88}{2 \times 22} \times 7$ \Rightarrow $r = 14 \text{ m}$
 $4 \times \text{side} = 88$ \Rightarrow $4 \times \text{side} = 88$ $\Rightarrow \text{side} = 22$

∴ Ratio Area =
$$\pi r^2$$
: (side)² = $\frac{22}{7} \times 14^2$: $22 \times 22 = \frac{22}{7} \times 196$: 484 = 14 : 11

29. a) Let the radius ber. Then,

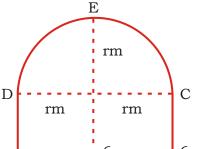

$$perimeter = \left(\frac{\pi}{2} + 2\right)r \ \Rightarrow 75 \ cm = \left(\frac{1}{2} \cdot \frac{22}{7} + 2\right)r \ = 75 \ cm = \frac{25}{7}r \ \Rightarrow r = 21 \ cm.$$

$$\therefore$$
 area = $\frac{1}{4} \cdot \pi r^2 = \frac{1}{4} \times \frac{22}{7} \times 21 = \frac{693}{2} = 346.5 \text{ cm}^2$.

b) Required area = area of the circle - area of the regular hexagon.

CIRCLES MATHEMATICS

> $= \pi r^2 = \frac{22}{7} \times 14^2 = 616 \text{ cm}^2.$ Area of the circle



Area of the regular hexagon = $6 \times \text{area}$ of the equilateral $\triangle OAB$

=
$$6 \times \frac{\sqrt{3}}{4} \times OA^2 = \frac{3\sqrt{3}}{2} \times 14^2 \text{ cm}^2 = 294\sqrt{3} \text{ cm}^2 = 509. 21 \text{ cm}^2.$$

 $= 616 \text{ cm}^2 - 509.21 \text{ cm}^2 = 106.79 \text{ cm}^2.$

Let the radius of the semicircle be r meters. Then, the perimeter of the cross section = AB + BC + AD + Semi circle DEC. $= (2r + 6 + 6 + \pi r)m.$

$$= \left(12 + 2r + \frac{22}{7}r\right)m = \left(12 + \frac{36}{7}r\right)m \qquad \therefore 66 \text{ m} = \left(12 + \frac{36}{7}r\right)m.$$

$$\Rightarrow 66 = \left(12 + \frac{36}{7}\right) \Rightarrow r = \frac{54 \times 7}{36} = \frac{21}{2}$$

 \therefore AB = breadth of the tunnel = 2rm = $2 \times \frac{21}{2}$ m = 21 m.

Diameter of a circle = side of a square. d) Side of a square = $\sqrt{\text{area}}$ = $\sqrt{147}$ = $7\sqrt{3}$ cm. MATHEMATICS CIRCLES

$$\Rightarrow$$
 Radius of circle = $\frac{7\sqrt{3}}{2}$ cm.

Area of circle =
$$\pi \left(\frac{7\sqrt{3}}{2}\right)^2 = 115\frac{1}{2}$$
 sq. cm.

30.
$$r = 42m$$

Circumfernce =
$$\frac{2 \times 22}{7} \times 42 = 264$$
m.

Cost of pencing the play field = $264 \times 2 = 528$ rupees.