Total Marks: 30

[10]

* Choose the right answer from the given options. [1 Marks Each]

1. In the adjoining figure, AB = AC and AD is bisector of $\angle A$. The rule by which $\triangle ABD \cong \triangle ACD$.

(A) ASA

(B) SAS

(C) SSS

(D) AAS

Ans.:

b. SAS

Solution:

In $\triangle ABD$ and $\triangle ADC$, we have

AB = AC (Given)

 $\angle BAD = \angle DAC$ (Since AD, bisects $\angle A$)

AD = AD (common in both)

Hence, $\triangle ABD \cong \triangle ACD$ by SAS.

2. Line segments AB and CD intersect at O such that AC $\mid\mid$ DB. If $\angle CAB = 45^{\circ}$ and $\angle CDB = 55^{\circ}$, then $\angle BOD = (A)\ 100^{\circ}$ (B) 80° (C) 90° (D) 135°

Ans.:

b. 80°

Solution:

AC || BD

And, AB is transverse to these parallal lines

So $\angle CAB = \angle ABD$ (Alternate angles)

 $\Rightarrow \angle ABD = 45^{\circ}$

Now In $\triangle BOD$

 $\angle BOD + \angle ODB + \angle DBA = 180^{\circ}$

 $\angle \text{DBA} = \angle \text{ABD} = 45^{\circ}, \angle \text{ODB} = 55^{\circ}$

So $\angle BOD = 180^{\circ} - 45^{\circ} - 55^{\circ}$

 $=80^{\circ}$

3. In the given figure, AB = AC and OB = OC. Then, $\angle ABO : \angle ACO = ?$

(A) 1:1

(B) 2:1

(C) 1:2

(D) None of these

Ans.:

a. 1:1

Solution:

In $\triangle ABC$,

 $AB = AC \Rightarrow \angle ABC = \angle ACB...(i)$

In \triangle OBC,

 $OB = OC \Rightarrow \angle OBC = \angle OCB...(ii)$

Subtraction (ii) from (i), we get

 $\Rightarrow \angle ABO = \angle ACO$

So, $\angle ABO : \angle ACO = 1 : 1$

4. In $\triangle PQR,\, \angle P=60^{\circ},\, \angle Q=50^{\circ}.$ Which side of the triangle is the longest?

(A) PQ

(B) QR

(C) None

(D) PR

Ans.:

a. PQ

Solution:

In $\triangle PQR$, $\angle P=60^{\circ}$, $\angle Q=50^{\circ}$.

Now, by angle sum property, $\angle P + \angle Q + \angle R = 180^{\circ}$

 $60^\circ + 50^\circ + \angle R = 180^\circ$

or, $\angle R = 180^{\circ} - 110^{\circ} = 70^{\circ}$

So, $\angle R$ is the largest angle and the side opposite to it, i.e, PQ will be the longest side.

5. Side BC of a triangle ABC has been produced to a point D such that $\angle ACD = 120^{\circ}$. If $\angle B = \frac{1}{2} \angle A$, then $\angle A$ is equal to :

(A) 80°

(B) 75°

(C) 60°

(D) 90°

Ans.:

a. 80°

Solution:

$$\angle B = \frac{1}{2} \angle A$$

∠ACD is an exterior angle.

$$\Rightarrow \angle A + \angle B = \angle ACD$$

$$\Rightarrow \angle A = \frac{1}{2} \angle A = 120^{\circ}$$

$$\Rightarrow \tfrac{3\angle A}{2} = 120^\circ$$

$$\Rightarrow 3\angle A = 240^{\circ}$$

 $\Rightarrow \angle A = 80^\circ$

6. In the given figure, ABC is an equilateral triangle. The value of x + y is:

(B) 180°

(C) 240°

(D) 200°

Ans.:

c. 240°

Solution:

As triangle ABC is an equilateral traingle, therefore all the three angles are equal, that is, 60° each.

 $x = 180 - 60 = 120^{\circ}$ $y = 180 - 60 = 120^{\circ}$

 $x + y = 120 + 120 = 240^{\circ}$

7. The perimeter of a triangle is 36cm and its sides are in the ratio a:b:c=3:4:5 then a, b, c are respectively:

(A) 9cm, 15cm, 12cm

(B) 9cm, 12cm, 15cm (C) 12cm, 9cm, 15cm

(D) 15cm, 12cm, 9cm

Ans.:

b. 9cm, 12cm, 15cm

Solution:

Let the three sides a, b, c be 3x, 4x and 5x respectively.

Then according to the conditions given in the question, we have

3x + 4x + 5x = 36

12x = 36

x = 3cm

Thus, the three sides are:

 $a = 3 \times 3 = 9$ cm, $b = 4 \times 3 = 12$ cm and $c = 5 \times 3 = 15$ cm

8. In the given figure, AB > AC. Then, which of the following is true?

(A) AB < AD

(B) Cannot be determined

(C) AB > AD

(D) AB = AD

Ans.:

c. AB > AD

Solution:

AB > AC [given.]

 $\therefore \angle ACB > \angle ABC$

Now, $\angle ADB > \angle ACD$ (exterior angle is always greater than each interior angle)

 $\Rightarrow \angle ADB > \angle ACB > \angle ABC$

 $\Rightarrow \angle ADB > \angle ADB$

 $\Rightarrow AB > AD$

9. In the above quadrilateral ACBD, we have AC= AD and AB bisect the LA .Which of the following is true?

- (A) $\triangle ABC \cong \triangle ABD$
- (B) $\angle C = \angle D$
- (C) All are true
- (D) BC = BD

Ans.:

c. All are true

Solution:

AC = AD

 $\angle AB = \angle BAD$

AB = AB

By SAS, we have

 $\triangle ABC \cong \triangle ABD$

Hence, we have BC = BD and $\angle C = \angle D$.

So, all the given options are true.

10. In the following, write the correct answer.

In $\triangle ABC$ if AB = AC and $\angle B = 50^{\circ}$ then is equal to:

(A) 40°

(B) 50°

(C) 80°

(D) 130°

Ans.:

b. 50°

Solution: Given $\triangle ABC$ such that AB = AC and $\angle B = 50^{\circ}$

* Answer the following short questions. [2 Marks Each]

[8]

11. AB is a line segment. P and Q are points on opposite sides of AB such that each of them is equidistant from the points A and B (See Figure). Show that the line PQ is the perpendicular bisector of AB.

Ans.: In \triangle PAQ and \triangle PBQ,

AP = BP (Given)

AQ = BQ (Given)

PQ = PQ (Common)

So, $\triangle PAQ \cong \triangle PBQ$ (SSS rule)

Therefore, $\angle APQ = \angle BPQ$ (CPCT).

Now let us consider $\triangle PAC$ and $\triangle PBC$.

You have: AP = BP (Given)

 \angle APC = \angle BPC (\angle APQ = \angle BPQ proved above)

PC = PC (Common)

So, $\triangle PAC \cong \triangle PBC$ (SAS rule)

Therefore, AC = BC (CPCT)(i)

 $\angle ACP = \angle BCP (CPCT)$

and
$$\angle ACP + \angle BCP = 180^{\circ}$$
 (Linear pair)

So,
$$2\angle ACP = 180^{\circ}$$

Or,
$$\angle ACP = 90^{\circ}$$
(ii)

From (i) and (ii), we can easily conclude that PQ is the perpendicular bisector of AB.

12. In $\triangle PQR, \angle P = 70^{\circ}$ and $\angle R = 30^{\circ}$. Which side of this triangle is the longest? Give reason for your answer.

Ans.: In $\triangle PQR$, we have

$$\angle Q = 180^{\circ} - (\angle P + \angle R)$$

$$=180^{\circ}-(70^{\circ}+30^{\circ})=180^{\circ}-100^{\circ}$$

$$=80^{\circ}$$

Now, in the larger and side opposite to greater angle is loger.

Hence, PR is the longest side.

13. In the given figure, the side BC of $\triangle ABC$ has been produced on both sides-on the left to D and on the right to E. If $\angle ABD = 106^{\circ}$ and $\angle ACE = 118^{\circ}$, find the measure of each angle of the triangle.

Ans.: As $\angle DBA$ and $\angle ABC$ form a linear pair.

So,
$$\angle DBA + \angle ABC = 180^{\circ}$$

$$\Rightarrow 106^{\circ} + \angle ABC = 180^{\circ}$$

$$\Rightarrow \angle ABC = 180^\circ - 106^\circ = 74^\circ$$

Also, $\angle ACB$ and $\angle ACE$ form a linear pair.

So,
$$\angle ACB + \angle ACE = 180^{\circ}$$

$$\Rightarrow \angle ACB + 118^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle ACB = 180^{\circ} - 118^{\circ} = 62^{\circ}$$

In $\triangle ABC$, we have,

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

$$74^{\circ} + 62^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow 136^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow \angle BAC = 180^{\circ} - 136^{\circ} = 44^{\circ}$$

 \therefore In triangle ABC, $\angle A=44^{\circ}, \angle B=74^{\circ}$ and $\angle C=62^{\circ}$

14. In the given figure, side BC of $\triangle ABC$ is produced to D. If $\angle ACD = 128^{\circ}$ and $\angle ABC = 43^{\circ}$, find $\angle BAC$ and $\angle ACB$.

Ans.: Since $\angle ACB$ and $\angle ACD$ form a linear pair.

So,
$$\angle ACB + \angle ACD = 180^{\circ}$$

$$\Rightarrow \angle ACB + 128^{\circ} = 180^{\circ}$$

$$\Rightarrow \angle{ACB} = 180^{\circ} - 128 = 52^{\circ}$$

Also,
$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$

$$\Rightarrow 43^{\circ} + 52^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow 95^{\circ} + \angle BAC = 180^{\circ}$$

$$\Rightarrow \angle BAC = 180^{\circ} - 95^{\circ} = 85^{\circ}$$

$$\therefore \angle ACB = 52^{\circ} \text{ and } \angle BAC = 85^{\circ}.$$

* Answer the following questions. [3 Marks Each]

15. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$.

Show that:

i.
$$\triangle DAP \cong \triangle EBP$$

[12]

ii. AD = BE

Ans.: Given: AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$.

To prove:

i. $DDAP \cong DEBP$

ii. AD = BE

Proof:(ii)

 \angle EPA = \angle DPB ...[Given]

 \angle EPA + \angle EPD = \angle EPD + \angle DPB ...[Adding \angle EPD to both sides]

 $\angle APD = \angle BPE ...(1)$

In DDAP and DEBP

 $\angle DAP = \angle EBP ...[Given]$

AP = BP ...[As P is the mid-point of the line AB]

 $\angle APD = \angle BPE \dots [From (1)]$

∴ DDAP ≅ DEBP proved ...[ASA property] ...(2)

(i) As DDAP \cong DEBP ...[From (2)]

 \therefore AD = BE ...[c.p.c.t.]

16. In Fig. AB $\mid \mid$ DE Find $\angle ACD$.

Ans.: Since AB || DE

 $\therefore \angle ABC = \angle CDE = 40^{\circ}$ [Alternate angles]

$$\therefore \angle ACB = 180^{\circ} - \angle ABC - \angle BAC$$

$$=180^\circ-40^\circ-30^\circ$$

 $=110^{\circ}$

$$\therefore \angle ACD = 180^{\circ} - 110^{\circ}$$
 [Linear pair]

 $=70^{\circ}$

17. In Fig. AC \perp CE and \angle A : \angle B : \angle C = 3 : 2 : 1, find the value of \angle ECD.

Ans.: $\angle A : \angle B : \angle C = 3 : 2 : 1$

Let the angles be 3x, 2x and x

$$\Rightarrow$$
 3x + 2x + x = 180° [Angle sum property]

 \Rightarrow 6x = 180°

$$\Rightarrow x = 30 = \angle ACB$$

$$\therefore \angle ECD = 180^{\circ} - \angle ACB - 90^{\circ}$$
 [Linear pair]

$$=180^\circ-30^\circ-90^\circ$$

 $=60^{\circ}$

$$\therefore \angle ECD = 60^{\circ}$$

18. In the given figure, AB $\mid\mid$ CD and EF is a transversal. If $\angle AEF=65^{\circ}, \angle DFG=30^{\circ}, \angle EFG=90^{\circ}$

and $\angle GEF = x^{\circ}$, find the value of x. C

Ans.: AB $\mid\mid$ CD and EF is the transversal.

 \Rightarrow $\angle AEF = \angle EFD$ (alternate angles)

$$\Rightarrow \angle AEF = \angle EFG + \angle DFG$$

$$\Rightarrow 65^{\circ} = \angle \mathrm{EFG} + 30^{\circ}$$

$$\Rightarrow \angle \mathrm{EFG} = 35^{\circ}$$

In $\triangle \text{GEF}$, by angle sum property,

$$\angle GEF + \angle EGF + \angle EFG = 180^{\circ}$$

$$\Rightarrow x + 90^{\circ} + 35^{\circ} = 180^{\circ}$$

$$\Rightarrow x = 55^{\circ}$$
