
[10]

* Choose the right answer from the given options. [1 Marks Each]

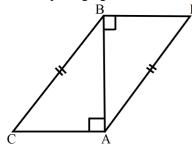
1. In the adjoining figure, $\triangle ABC \cong \triangle ADC$. If $\angle BAC = 30^{\circ}$ and $\angle ABC = 100^{\circ}$ then $\angle ACD$ is equal to:

(A) 80°

(B) 60°

(C) 30°

(D) 50°


- 2. If $\angle OCA = 80^{\circ}$, $\angle COA = 40^{\circ}$, and $\angle BDO = 70^{\circ}$ then $x^{\circ} + y^{\circ} = ?$
 - (A) 270°

(B) 210°

(C) 230°

(D) 190°

3. In the adjoining figure, BC = AD, CA \perp AB and BD \perp AB. The rule by which \triangle ABC \cong \triangle BAD is:

(A) ASA

(B) RHS

(C) SSS

(D) SAS

4. If $\triangle ABC \cong \triangle PQR$ then which of the following is not true?

- (A) BC = PQ
- (B) AC = PR
- (C) BC = QR
- (D) AB = PQ

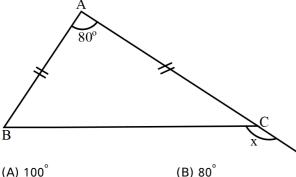
5. If two acute angles of a right triangle are equal, then each acute is equal to:

(A) 30°

(B) 45°

(C) 60°

(D) 90°


6. In $\triangle ABC$, if $\angle B=30^\circ$ and $\angle C=70^\circ$, then which of the following is the longest side?

- (A) AB or AC
- (B) BC

(C) AB

(D) AC

7. In fig, in $\triangle ABC$, AB = AC, then the value of x is:

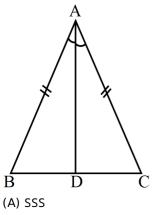
(A) 100°

(C) 120°

(D) 130°

8. Line sqements AB and CD intersect at O such that AC||DB. If $\angle CAB = 45^{\circ}$ and $\angle CDB = 55^{\circ}$, then $\angle BOD = 55^{\circ}$ (A) 80° (B) 90° (C) 100° (D) 135°

9. Two sides of a triangle are oflengths 5cm and 1.5cm. The length of the third side of the triangle cannot be:


(A) 3.6cm

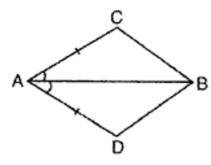
(B) 3.8cm

(C) 4cm

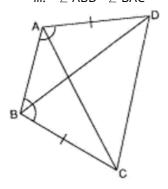
(D) 3.4cm

10. In the adjoining figure, AB = AC and AD is bisector of $\angle A$. The rule by which $\triangle ABD \cong \triangle ACD$ is:

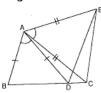
(B) SAS


(C) AAS

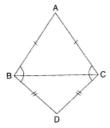
(D) ASA


* Answer the following short questions. [2 Marks Each]

[10]

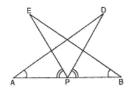

11. In quadrilateral ABCD (See figure). AC = AD and AB bisects \angle A. Show that \triangle ABC \cong \triangle ABD. What can you say about BC and BD?

- 12. ABCD is a quadrilateral in which AD = BC and \angle DAB = \angle CBA : Prove that:
 - i. \triangle ABD \cong \triangle BAC
 - ii. BD = AC
 - iii. ∠ ABD= ∠ BAC

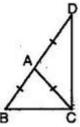

13. In figure, AC = AE, AB = AD and \angle BAD = \angle EAC. Show that BC = DE.

14. ABC is a triangle in which altitudes BE and CF to sides AC and AB are equal. Show that $\triangle ABE \cong \triangle ACF$, AB = AC i.e. $\triangle ABC$ is an isosceles triangle.

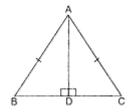
15. ABC and DBC are two isosceles triangles on the same base BC. Show that \angle ABD = \angle ACD.

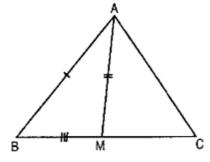

* Answer the following questions. [3 Marks Each]

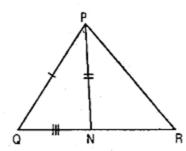
[15]


16. AB is a line segment and P is its mid-point. D and E are points on the same side of AB such that $\angle BAD = \angle ABE$ and $\angle EPA = \angle DPB$.

Show that:


- i. $\triangle DAP \cong \triangle EBP$
- ii. AD = BE


17. \triangle ABC is an isosceles triangle in which AB = AC. Side BA is produced to D such that AD = AB(See figure). Show that \angle BCD is a right angle.



- 18. Show that the angles of an equilateral triangle are 60° each.
- 19. AD is an altitude of an isosceles triangle ABC in which AB = AC. Show that
 - i. AD bisects BC
 - ii. AD bisects ∠A.

- 20. Two sides AB and BC and median AM of the triangle ABC are respectively equal to side PQ and QR and median PN of PQR (See figure). Show that:
 - i. $\triangle ABM \cong \triangle PQN$
 - ii. $\triangle ABC \cong \triangle PQR$
