Total Marks: 30

[10]

* Choose the right answer from the given options. [1 Marks Each]

1. x = 2, y = -1 is a solution of the linear equation:

(A)
$$x + 2y = 0$$

(B)
$$x + 2y = 4$$

(C)
$$2x + y = 0$$

(D)
$$2x + y = 5$$

Ans.:

a.
$$x + 2y = 0$$

Solution:

Substituting x = 2 and y = -1 in the following equations:

L.H.S. =
$$x + 2y = 2 + 2(-1) = 2 - 2 = 0 = R.H.S.$$

L.H.S. =
$$x + 2y = 2 + 2(-1) = 2 - 2 = 0 \neq 4 \neq R.H.S.$$

L.H.S. =
$$2x + y = 2(2) + (-1) = 4 - 1 = 3 \neq 0 \neq R.H.S.$$

L.H.S. =
$$2x + y = 2(2) + (-1) = 4 - 1 = 3 \neq 5 \neq R.H.S.$$

Hence, correct option is (a).

2. A linear equation in two variables x and y is of the form ax + by + c = 0, where:

(A)
$$a \neq 0, b \neq 0$$

(B)
$$a \neq 0, b = 0$$

(C)
$$a = 0, b \neq 0$$

(D)
$$a = 0, c = 0$$

Ans.:

a.
$$a \neq 0, b \neq 0$$

Solution:

A linear equation in tow variables x and y is of the form ax + by + c = 0, where $a \neq 0$ and $b \neq 0$, since if either a or be is 0, the degree of the equation would be but it would not be a linear equation in tow

If both a and b are 0, then the equation is not linear.

3. The graph of the equation x + y = 4.

(A) Intersects both the axis. (B) Parallel to the x-axis. (C) Intersects x-axis only.

(D) Intersects y-axis only.

Ans.:

a. Intersects both the axis.

Solution:

The graph of the equation x + y = 4,

Put
$$x = 0$$
 cut y axis at $y = 4$,

Put
$$y = 0$$
 cut x axis at $x = 4$.

4. All linear equations in two variables have ___

(A) One solution

(B) Infinitely many

(C) Three solutions

(D) Two solution

solutions

Ans.:

b. Infinitely many solutions

5. The graph of the linear equation 2x + 3y = 6 is a line which meets the x-axis at the point.

Ans.:

c. (3, 0)

Solution:

2x + 3y = 6 meets the x-axis.

Put
$$y = 0$$
,

$$2x + 3(0) = 6$$

$$x = 3$$

Therefore, graph of the given line meets x-axis at (3, 0).

6. The graph of the linear equation 2x + 5y = 10 meets the x-axis at the point.

Ans.:

b. (5, 0)

Solution:

If the graph of the linear equation 2x + 5y = 10 meets the x-axis, then y = 0.

Substituting the value of y = 0 in equation 2x + 5y = 10, we get

$$2x + 5(0) = 10$$

$$\Rightarrow$$
 2x = 10

$$\Rightarrow x = \frac{10}{2}$$

$$\Rightarrow x = 5$$

So, the point of meeting is (5, 0).

- 7. The equation 2x + 5y = 7 has a unique solution, if x and y are:
 - (A) Natural numbers.
- (B) Rational numbers.
- (C) Positive real numbers.
- (D) Real numbers.

Ans.:

a. Natural numbers.

Solution:

The equation 2x + 5y = 7 has a unique solution, if x and y are natural numbers.

If we take x = 1 and y = 1, the given equation is satisfied.

8. The equation of the y-axis is:

(A)
$$x = 0$$

(B)
$$y = 0$$

(C)
$$x + y = 0$$

(D)
$$x = y$$

Ans.:

a. x = 0

Solution:

Since the x-coordinate of any point on y-axis is always 0.

So, the equation of the y-axis is x = 0.

9. Write the correct answer in the following:

Any point on the X-axis is of the form,

(A)(x, y)

(D)(x, x)

Ans.:

c. (x, 0)

Solution:

Every point on the X-axis has its y-coordinate equal to zero. i.e., y = 0.

- 10. How many lines pass through two points?
 - (A) Two.

- (B) Only one.
- (C) Many.
- (D) Three.

Ans.:

- b. Only one.
 - Solution:

Only one because if a line is passing through two points then that two points are solution of a single linear equation so only one line passes over two given points.

* Answer the following short questions. [2 Marks Each]

[8]

11. Find four different solutions of the equation x + 2y = 6

Ans.: We have By inspection, x = 2, y = 2 is a solution because for x = 2, y = 2 x + 2 y = 2 + 4 = 6

Now, let us choose x = 0. With this value of x, the given equation reduces to 2y = 6 which has the unique solution y = 3. So x = 0, y = 3 is also a solution of x + 2y = 6.

Similarly, taking y = 0, the given equation reduces to x = 6. So, x = 6, y = 0 is a solution of x + 2y = 6 as well. Finally, let us take y = 1. The given equation now reduces to x + 2 = 6, whose solution is given by x = 4. Therefore, (4, 1) is also a solution of the given equation. So four of the infinitely many solutions of the given equation are: (2, 2), (0, 3), (6, 0) and (4, 1). Hence the required Solutions.

12. The cost of ball pen is Rs. 5 less than half of the cost of fountain pen. Write this statement as a linear equation in two variables.

Ans.: Let the cost of fountain pen be y and cost of ball pen be x.

According to the given equation, we have

$$x = \frac{y}{2} - 5$$

$$\Rightarrow$$
 2x = y - 10

$$\Rightarrow$$
 2x - y + 10 = 0

Here y is the cost of one fountain pen and x is that of one ball pen.

13. If x = -1, y = 2 is a solution of the equation 3x + 4y = k, find the value of k.

Ans.: We are given, 3x + 4y = k

Given that, (-1, 2) is the solution of equation 3x + 4y = k.

Substituting x = -1 and y = 2 in 3x + 4y = k,

We get;
$$3x - 1 + 4 \times 2 = k$$

$$K = -3 + 8$$

14. If the point (2, -2) lies on the graph of the linear equation 5x + ky = 4, find the value of k.

Ans.: It is given that (2, -2) is a solution of the equation 5x + ky = 4

$$\therefore$$
 5 × 2 + k × (-2) = 4

$$\Rightarrow$$
 10 - 2k = 4

$$\Rightarrow$$
 -2k = 4 - 10

$$\Rightarrow$$
 -2k = 4 - 10

$$\Rightarrow$$
 -2k = -6

$$\Rightarrow \mathbf{k} = \frac{6}{2}$$

$$\Rightarrow$$
 k = 3

* Answer the following questions. [3 Marks Each]

15. Write two solutions of the form x = 0, y = a and x = b, y = 0 for the following equations:

$$2x + 3y = 24$$

Ans.: We are given, 2x + 3y = 24

Substituting x = 0 in the given equation, we get; $2 \times 0 + 3y = 24$

$$3y = 24$$

$$y = \frac{24}{3}$$

$$y = 8$$

Thus x = 0 and y = 8 is a solution of 2x + 3y = 24

Substituting y = 0 in the given equation, we get;

$$2x + 3 \times 0 = 24$$

$$2x = 24$$

$$x = \frac{24}{2}$$

Thus
$$x = 12$$
 and $y = 0$ is a solution of $2x + 3y = 24$

16. Write two solutions of the form x = 0, y = a and x = b, y = 0 for the following equations:

$$-4x + 3y = 12$$

Ans.: We are given, -4x + 3y = 12

Substituting x = 0 in the given equation, we get;

$$-4 \times 0 + 3y = 12$$

$$3y = 12$$

$$y = 4$$

Thus x = 0 and y = 4 is a solution of the -4x + 3y = 12

Substituting y = 0 in the given equation, we get;

$$-4x + 3 \times 0 = 12 - 4x = 12$$

$$x = -\frac{12}{4}$$

$$x = -3$$

Thus
$$x = -3$$
 and $y = 0$ is a solution of $-4x + 3y = 12$

17. Solve the equation 2y - 1 = y + 1 and represent it graphically on the coordinate plane.

Ans.:

We are given,

$$2y - 1 = y + 1$$

we get,

$$2y - y = 1 + 1$$

$$V = 2$$

The representation of the solution on the Cartesian plane, it is a line parallel to y axis passing through the point (0, 2) is shown below

[12]

18. I	f the point $(a, 2)$ lies on the graph of the linear equatio $2x - 3y + 8 = 0$, find the value of a.
	Ans.:
	We are given (a, 2) lies on the graph of linear equation 2x - 3y + 8 = 0.
	So, the given co-ordinates are the solution of the equation $2x - 3y + 8 = 0$.
	Therefore, we can calculate the value of a by substituting the value of given co-ordinates in equation $2x - 3y + 8$
	= 0.
	Substituting $x = a$ and $y = 2$ in equation $2x - 3y + 8 = 0$, we get
	$2 \times a - 3 \times 2 + 8 = 0$
	2a - 6 + 8 = 0
	2a + 2 = 0
	2a = -2
	$\mathrm{a}=-rac{2}{2}$
	a = -1