* Choose The Right Answer From The Given Options.[1 Marks Each]

[10]

1. A number which can be written in the form, $\frac{p}{q}$ where p and q are integers and _____ is called a rational number.

$$(A) q = 0$$

(B)
$$q \neq 0$$

(C)
$$q = 1$$

(D) None of these

Ans.:

b.
$$q \neq 0$$

2. a(b + c) = ab + ac is called:

(A) Commutative

(B) Associative law (C) Distributive law (D) None of these

law

Ans.:

C. Distributive law

3. The additive inverse of $\frac{2}{3}$ is:

(A)
$$-\frac{2}{3}$$

(B)
$$\frac{2}{3}$$

(C)
$$-\frac{3}{2}$$

Ans.:

a.
$$-\frac{2}{3}$$

4. Tick (\checkmark) the correct answer the following:

Additive inverse of $\frac{-5}{9}$ is:

(A)
$$\frac{-9}{5}$$

(C)
$$\frac{5}{9}$$

(D)
$$\frac{9}{5}$$

Ans.:

c.
$$\frac{5}{9}$$

Solution:

Additive inverse of $\frac{-5}{9}$ is $=\left(\frac{5}{9}\right)$

5. Which of the following numbers is its own reciprocal:

(C)
$$\frac{1}{5}$$

Ans.:

d. 1

Solution:

The 1 and -1 are the two numbers which having reciprocal of its own. Except 1 and -1 no other numbers are not having its own reciprocal.

6. Which of the following statements is false?

- (A) Natural numbers are closed under subtraction.
- (B) Whole numbers are not closed under subtraction.

- (C) Integers are closed under subtraction.
- (D) Rational numbers are closed under subtraction.

Ans.:

- a. Natural numbers are closed under subtraction.
- 7. The rational number which is equal to negative is:

(A) 0

(B) -1

(C) 1

(D) $\frac{1}{2}$

Ans.:

a. 0

- 8. One (1) is:
 - a. The identity for addition of rational numbers.
 - b. The identity for subtraction of rational numbers.
 - c. The identity for multiplication of rational numbers.
 - d. The identity for division of rational numbers.

Ans.:

c. The identity for multiplication of rational numbers.

Solution:

One (1) is the identity for multiplication of rational numbers.

That means,

If a is a rational number.

Then, a - 1 = 1 - a = a

Note: One (1) is the multiplication identity for integers and whole number also.

- 9. Multiplicative inverse of a negative rational number is:
 - a. A positive rational number.
 - b. A negative rational number.
 - c. 0
 - d. 1

Ans.:

b. A negative rational number.

Solution:

We know that, the product of two rational numbers is 1, taken they are multiplication inverse of each other, e.g.

Suppose, p is negative rational number, i.e.

 $\frac{1}{p}$ is the multiplicative inverse of -p,

Then,
$$-p \times \frac{1}{-p} = 1$$

Hence, multiplicative inverse of a negative rational number is a negative rational number.

10. Mark (\checkmark) against the correct answer of the following:

What should be subtracted from $\frac{-2}{3}$ to get $\frac{3}{4}$?

- a. $\frac{-11}{12}$
- b. $\frac{-13}{12}$
- c. $\frac{-5}{4}$
- d. $\frac{-17}{12}$

Ans.:

d.
$$\frac{-17}{12}$$

Solution:

Let the number be x

Now,

$$\frac{-2}{3} - \mathbf{x} = \frac{3}{4}$$

$$\Rightarrow -1 \times \left(\frac{2}{3} + \mathbf{x}\right) = \frac{3}{4}$$

$$\Rightarrow \frac{2}{3} + \mathbf{x} = \frac{-3}{4}$$

$$\Rightarrow \mathbf{x} = \frac{-3}{4} + \left(\text{Additive inverse of } \frac{2}{3}\right)$$

$$\Rightarrow \mathbf{x} = \frac{-3}{4} - \left(\frac{-2}{3}\right)$$

$$\Rightarrow \mathbf{x} = \frac{-3}{4} + \frac{2}{3}$$

$$\Rightarrow \mathbf{x} = \frac{-3 \times 3}{4 \times 3} + \frac{2 \times 4}{3 \times 4}$$

$$\Rightarrow \mathbf{x} = \frac{-9}{12} + \frac{-8}{12}$$

* Questions With Calculation.[2 Marks Each]

[8]

11. Verify the property $x \times (y + z) = x \times y + x \times z$ of rational numbers by taking.

$$x = \frac{-1}{2}, y = \frac{3}{4}, z = \frac{1}{4}$$

 \Rightarrow x = $\frac{-17}{12}$

Ans.: Given, $x = \frac{-1}{2}$, $y = \frac{3}{4}$, $z = \frac{1}{4}$

Now, LHS = $\mathbf{x} \times (\mathbf{y} + \mathbf{z})$

$$= \frac{-1}{2} \times \left(\frac{3}{4} + \frac{1}{4}\right)$$

$$= rac{-1}{2} imes rac{4}{4}$$

$$=\frac{-1}{2}$$

and $RHS = x \times y + x \times z$

$$= \frac{-1}{2} \times \frac{3}{4} + \left(\frac{-1}{4}\right) \times \frac{1}{4}$$

$$= \frac{-3}{8} - \frac{1}{8}$$

$$=\frac{-3-1}{8}$$

$$=\frac{-4}{3}$$

$$=\frac{-1}{2}$$

$$LHS = RHS$$

Hence, $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$

12. Simplify:

$$1 + \frac{-4}{5}$$

Ans.:
$$1 + \frac{-4}{5}$$

The LCM of the denominator 1 and 5 is 5.

Now,

We need to express $\frac{1}{1}$ in the form in which it takes denominator as 5.

$$\frac{1}{1} = \frac{1 \times 5}{1 \times 5} = \frac{5}{5}$$

So

$$\frac{5}{5} + \frac{-4}{5}$$

$$=\frac{5-4}{5}=\frac{1}{5}$$

13.
$$\left(\frac{25}{5} \times \frac{2}{5}\right) - \left(\frac{3}{5} \times \frac{-10}{9}\right)$$

Ans.:
$$\left(\frac{25}{5} \times \frac{2}{5}\right) - \left(\frac{3}{5} \times \frac{-10}{9}\right)$$

$$=\frac{25\times 2}{8\times 5}-\frac{3\times (-10)}{5\times 9}$$

$$= \frac{5 \times 1}{4 \times 1} = \frac{1 \times (-2)}{1 \times 3} = \frac{5}{4} - \frac{-2}{3}$$

$$=\frac{15+8}{12}=\frac{23}{12}$$

14. Fill in blanks:

$$\frac{-7}{9} + \dots = 3$$

Ans.:
$$\frac{-7}{9} + \frac{34}{9} = 3$$

Solution:

Required number = $3 - \left(\frac{-7}{9}\right)$

$$=\frac{3}{1}+\frac{7}{9}$$

$$=\frac{27+7}{9}$$

$$=\frac{34}{9}$$

* Questions With Calculation.[3 Marks Each]

[12]

15. Verify the property $x \times (y + z) = x \times y + x \times z$ of rational numbers by taking.

$$x = \frac{-1}{5}, y = \frac{2}{15}, z = \frac{-3}{10}$$

Ans.: Given,
$$x = \frac{-1}{5}$$
, $y = \frac{2}{15}$, $z = \frac{-3}{10}$

Now, LHS =
$$x \times (y + z)$$

$$= \frac{-1}{5} \times \left(\frac{2}{15} + \frac{-3}{10}\right)$$

$$=\frac{-1}{5} imes\left(rac{2}{15}-rac{3}{10}
ight)$$

$$= \frac{-1}{5} \times \left(\frac{4-9}{30}\right)$$

$$= \frac{-1}{5} \times \frac{-5}{30}$$

$$= \frac{1}{30}$$
and RHS = $x \times y + x \times z$

$$= \frac{-1}{5} \times \frac{2}{15} + \left(\frac{-1}{5}\right) \times \left(\frac{-3}{10}\right)$$

$$= \frac{-2}{75} + \frac{3}{50}$$

$$= \frac{-4+9}{150}$$

$$= \frac{5}{150}$$

$$= \frac{1}{30}$$
LHS = RHS

LHS = RHS Hence, $\mathbf{x} \times (\mathbf{y} + \mathbf{z}) = \mathbf{x} \times \mathbf{y} + \mathbf{x} \times \mathbf{z}$

16. The cost of $2\frac{1}{3}$ m metres of cloth is Rs. $75\frac{1}{4}$ Find the cost of cloth per metre.

Ans.: Cost of
$$2\frac{1}{3}$$
m or $\frac{7}{3}$ m of cloths = Rs. $75\frac{1}{4}$
= Rs. $\frac{301}{4}$
∴ Costof 1m cloth = Rs. $\frac{301}{4} \div \frac{7}{3}$
= Rs. $\frac{301}{4} \times \frac{3}{7} = \text{Rs.} \frac{43 \times 3}{4 \times 1}$
= Rs. $\frac{129}{4} = \text{Rs.} 32\frac{1}{4}$

17.
$$\left(\frac{8}{5} \times \frac{-3}{2}\right) + \left(\frac{-3}{10} \times \frac{11}{16}\right)$$

Ans.:
$$\left(\frac{8}{5} \times \frac{-3}{2}\right) + \left(\frac{-3}{10} \times \frac{11}{16}\right)$$

$$= \frac{8 \times (-30}{5 \times 2} + \frac{-3 \times 11}{10 \times 16}$$

$$= \frac{4 \times (-3)}{5 \times 1} + \frac{-3 \times 11}{10 \times 16}$$

$$= \frac{-12}{5} + \frac{-33}{160}$$

$$= \frac{-384 - 33}{160} = \frac{-417}{160}$$

18. (i) If
$$x = 6, y = \frac{1}{9}, z = 0$$
 (ii) If $x = \frac{4}{5}, y = \frac{-9}{10}, z = \frac{43}{15}$

Then, verify the following properties and name them

(a)
$$x \times (y+z) = x \times y + x \times z$$

(b)
$$x \times (y \times z) = (x \times y) \times z$$

(c)
$$x \times y = y \times x$$

(d)
$$x \times (y-z) = x \times y - x \times z$$

Ans.: (i) For
$$x = 6, y = \frac{1}{9}$$
 and $z = 0$

(a)
$$x \times (y+z) = x \times y + x \times z$$

This statement follow distributive property over addition.

$$\mathsf{LHS} = x imes (y+z) = 6 imes \left(rac{1}{9} + 0
ight) = 6 imes rac{1}{9} = rac{2}{3}$$

RHS =
$$x \times y + x \times z = 6 \times \frac{1}{9} + 6 \times 0 = \frac{2}{3} + 0 = \frac{2}{3}$$

(b)
$$x \times (y \times z) = (x \times y) \times z$$

This statement follow associative property under multiplication

LHS =
$$x \times (y \times z) = 6 \times (\frac{1}{9} \times 0) = 6 \times 0 = 0$$

$$RHS = (x \times y) \times z = \left(6 \times \frac{1}{9}\right) \times 0 = \frac{2}{3} \times 0 = 0$$

(c)
$$x \times y = y \times x$$

This statement follow commutative property under multiplication.

LHS =
$$x \times y = 6 \times \frac{1}{9} = \frac{2}{3}$$

$$RHS = y \times x = \frac{1}{9} \times 6 = \frac{2}{3}$$

(d)
$$x \times (y-z) = x \times y - x \times z$$

This statement follow distributive property over subtraction.

$$LHS = x imes (y-z) = 6 imes \left(rac{1}{9} - 0
ight) = 6 imes rac{1}{9} = rac{2}{3}$$

$$RHS = x \times y - x \times z = 6 \times \frac{1}{9} - 6 \times 0$$

$$=\frac{2}{3}-0=\frac{2}{3}$$

(ii)
$$x = \frac{4}{5}, y = \frac{-9}{10}, z = \frac{43}{15}$$

(a)
$$x \times (y+z) = x \times y + x \times z$$

This statement follow distributive property over addition.

$$LHS = x imes (y+z) = rac{4}{5} imes \left(rac{-9}{10} + rac{43}{15}
ight)$$

$$=\frac{4}{5} \times \frac{(-27+86)}{30} = \frac{4}{5} \times \frac{59}{30} = \frac{118}{75}$$

$$RHS = x imes y + x imes z = rac{4}{5} imes \left(rac{-9}{10}
ight) + rac{4}{5} imes rac{43}{15}$$

$$=-\frac{18}{25}+\frac{172}{75}=\frac{-54+172}{75}=\frac{118}{75}$$

(b)
$$x \times (y \times z) = (x \times y) \times z$$

This statement follow associative property under multiplication.

$$\mathsf{LHS} = x \times (y \times z)$$

$$=\frac{4}{5} \times \left\{ \left(\frac{-9}{10} \right) \times \frac{43}{15} \right\} = \frac{4}{5} \times \left(\frac{-129}{50} \right) = -\frac{516}{250}$$

$$\mathsf{RHS} = (x imes y) imes z$$

$$= \left\{ \frac{4}{5} \times \left(\frac{-9}{10} \right) \right\} \times \frac{43}{15} = \frac{-18}{25} \times \frac{43}{15}$$

$$= \frac{-258}{125} = \frac{-516}{250}$$

(c)
$$x \times y = y \times x$$

This statement follow commutative property under multiplication.

LHS
$$= x imes y = rac{4}{5} imes \left(rac{-9}{10}
ight) = rac{-18}{25}$$

RHS =
$$y \times x = \frac{-9}{10} \times \frac{4}{5} = \frac{-18}{25}$$

(d)
$$x \times (y-z) = x \times y - x \times z$$

This statement follow distributive property under subtraction.

LHS
$$x imes (y-z) = rac{4}{5} imes \left(rac{-9}{10} - rac{43}{15}
ight) = rac{4}{5} imes \left(rac{-27-86}{30}
ight)$$

$$= \frac{4}{5} \times \left(-\frac{113}{30}\right) = \frac{-226}{75}$$

$$RHS = x \times y - x \times z$$

$$= \frac{4}{5} \times \frac{-9}{10} - \frac{4}{5} \times \frac{43}{15} = \frac{-18}{25} - \frac{172}{75}$$

$$= \frac{-54 - 172}{75} = \frac{-226}{75}$$
