➤ Choose The Right Answer From The Given Options.[1 Marks Each]

[10]

1. Tick (\checkmark) the correct answer the following:

The product of two numbers is $\frac{-16}{35}$. If one of the numbers is $\frac{-15}{14}$ then the other is-

(A)
$$\frac{-2}{5}$$

(B)
$$\frac{8}{15}$$

(C)
$$\frac{32}{75}$$

(D)
$$\frac{-8}{3}$$

Ans.:

c.
$$\frac{32}{75}$$

Solution:

Let x be the required number

Then,

 $=\frac{32}{75}$

$$\frac{-15}{14} \times \mathbf{x} = \frac{-16}{35}$$

$$\Rightarrow \mathbf{x} = \frac{-16}{35} \div \frac{-15}{14}$$

$$\Rightarrow \mathbf{x} = \frac{-16}{35} \times \frac{14}{-15}$$

$$\Rightarrow \frac{-224}{-525} = \frac{224}{525}$$

$$= \frac{224 \div 7}{525 \div 7}$$

2. Which of the following is an example of distributive property of multiplication over addition for rational numbers.

$$\mathsf{(A)} - \tfrac{1}{4} \times \left\{ \tfrac{2}{3} + \left(\tfrac{-4}{7} \right) \right\} = \left[-\tfrac{1}{4} \times \tfrac{2}{3} \right] + \left[-\tfrac{1}{4} \times \left(\tfrac{-4}{7} \right) \right]$$

(B)
$$-\frac{1}{4} imes \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[\frac{1}{4} imes \frac{2}{3} \right] - \left(\frac{-4}{7} \right)$$

(C)
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \frac{2}{3} + \left(-\frac{1}{4} \right) \times \frac{-4}{7}$$

(D)
$$-\frac{1}{4} imes \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} - \frac{1}{4}$$

Ans.:

a.
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$$

Solution:

We know that, the distributive property of multiplication over addition for rational numbers can be expressed as a x (b + c) = ab + ac, where a, b and c are rational numbers.

Here,
$$-\frac{1}{4} \times \left\{ \frac{2}{3} + \left(\frac{-4}{7} \right) \right\} = \left[-\frac{1}{4} \times \frac{2}{3} \right] + \left[-\frac{1}{4} \times \left(\frac{-4}{7} \right) \right]$$

Is the example of distributive property of multiplication over addition for rational numbers.

- 3. One (1) is:
 - (A) The identity for addition of rational numbers.

- (B) The identity for subtraction of rational numbers.
- (C) The identity for multiplication of rational numbers.
- (D) The identity for division of rational numbers.

Ans.:

c. The identity for multiplication of rational numbers.

Solution:

One (1) is the identity for multiplication of rational numbers.

That means,

If a is a rational number.

Then, a - 1 = 1 - a = a

Note: One (1) is the multiplication identity for integers and whole number also.

- 4. Which of the following statement is true?
 - (A) The difference of two rational numbers is always a rational number.
 - (B) Addition of two rational numbers is associative.
 - (C) Addition of two rational numbers is commutative.
 - (D) All of the above.

Ans.:

d. All of the above.

Solution:

As we know that difference of two rational numbers is always a rational number.

 $\Rightarrow \frac{4}{9} - \frac{2}{9} = \frac{2}{9}$ (The difference of two rational numbers is always a rational number)

And,
$$-\frac{3}{7} + \frac{1}{3} = \frac{1}{3} + \left(-\frac{3}{7}\right)$$

 $\Rightarrow -\frac{2}{21} = -\frac{2}{21}$ (Addition of two rational numbers is commutative)

Also,
$$\frac{3}{15} \left(\frac{4}{15} + \frac{2}{15} \right) = \left(\frac{3}{15} + \frac{2}{15} \right) + \frac{2}{15}$$

 $\Rightarrow \frac{9}{15} = \frac{9}{15}$ (Addition of two numbers is associative)

There all the given statements are true.

5. Tick (\checkmark) the correct answer the following:

$$\left(3+\frac{5}{-7}\right) = ?$$

(A)
$$\frac{-16}{7}$$

(B)
$$\frac{16}{7}$$

(C)
$$\frac{-26}{7}$$

(D)
$$\frac{-8}{7}$$

Ans.:

b.
$$\frac{16}{7}$$

Solution:

$$3 + \frac{5}{-7} = \frac{-21+5}{7}$$

$$=\frac{-16}{-7}$$

$$=\frac{16}{7}$$

Here we s	ee 1.25 lies between (0.75 and 1.75.	
8. A number which c	an be expressed as $\frac{p}{q}$ wh	here p and q are integers	and $\mathrm{q} \! \neq \! 0$ is:
(A) Natural numbe	er. (B) Whole numb	er. (C) Integer.	(D) Rational number.
Ans.:			
d. Rational n	umber.		
Solution:	Which can be expers	ssed as P where n and	I q are integers ${ m q}\! eq \! 0$ is a
rational nu		as q, where p are	q are integers q + o is a
9. Mark (✓) against t	he correct answer of the	e following:	
What should be ac	Ided to $\frac{-3}{5}$ get $\frac{-1}{3}$?		
(A) $\frac{4}{5}$	(B) $\frac{8}{15}$	(C) $\frac{4}{15}$	(D) $\frac{2}{5}$
Ans.:			
C. $\frac{4}{15}$			
Solution:			
Let the nu Then,	mber added be x		
$\frac{-3}{5} + x = \frac{-1}{3}$			
$\Rightarrow \mathbf{x} = \frac{1}{3} - \frac{1}{5}$	3		
\Rightarrow $\mathbf{x} = \frac{-1 \times 5 - 1}{11}$	$(-3)\times 3$		
\Rightarrow x = $\frac{-5+9}{15}$,		
\Rightarrow x = $\frac{4}{15}$			
^{10.} Which of the follow	ving numbers is the sim	plest form of $\frac{3}{4} + \left(\frac{-1}{4}\right) + \left(\frac{-1}{4}\right)$	$\left(\frac{-5}{4}\right)$
(A) $\frac{9}{4}$	(B) $-\frac{3}{4}$	(C) $-\frac{9}{4}$	(D) $\frac{7}{4}$
Ans.:	4	*	**
b. $-\frac{3}{4}$			
Solution:			
$\frac{3}{4} + \left(\frac{-1}{4}\right) +$	$\left(\frac{-5}{4}\right)$		
,			
			Page

(B) Associative law for multiplication

(C) 2.5

(D) Commutative law for multiplication

(D) 1.25

6. $a \times (b \times c) = (a \times b) \times c$ is called: (A) Associative law for addition

Ans.:

(A) 5.0

Ans.:

d. 1.25

Solution:

(C) Commutative law for addition

 $\frac{3}{4} = 0.75$ and $\frac{7}{4} = 1.75$

b. Associative law for multiplication

7. Which of the following numbers lies in the middle of $\frac{3}{4}$ and $\frac{7}{4}$:

(B) 3.0

$$= \frac{3}{4} - \frac{1}{4} - \frac{5}{4}$$

$$= \frac{3-1-5}{4}$$

$$= \frac{3-6}{4}$$

$$-\frac{3}{4}$$

> Questions With Calculation.[2 Marks Each]

[8]

11. Find
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$

Ans.: We have,
$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \left(\frac{5}{22}\right)$$

$$=\frac{198}{462}+\left(\frac{-252}{462}\right)+\left(\frac{-176}{462}\right)+\left(\frac{105}{462}\right)$$
 [: 462 is the LCM of 7, 11, 21 and 22]

$$=\frac{198-252-176+105}{462}$$

$$=\frac{-125}{462}$$

Alternatively: We can also solve it as.

$$\frac{3}{7} + \left(\frac{-6}{11}\right) + \left(\frac{-8}{21}\right) + \frac{5}{22}$$

$$= \left\lceil \frac{3}{7} + \left(\frac{-8}{21} \right) \right\rceil + \left\lceil \frac{-6}{11} + \frac{5}{22} \right\rceil$$

$$=\left[\frac{9+(-8)}{21}\right]+\left[\frac{-12+5}{22}\right]$$
 [::LCM of 7 and 21 is 21; LCM of 11 and 22 is 22]

$$=\frac{1}{21}+\left(\frac{-7}{22}\right)$$

$$=rac{22-147}{462}$$

$$=\frac{-125}{469}$$

12.
$$\left(\frac{-4}{3} \times \frac{12}{-5}\right) + \left(\frac{3}{7} \times \frac{21}{15}\right)$$

Ans.:
$$\left(\frac{-4}{3} \times \frac{12}{-5}\right) + \left(\frac{3}{7} \times \frac{21}{15}\right) = \frac{-4 \times 12}{3 \times (-5)} + \frac{3 \times 21}{7 \times 15} = \frac{-4 \times 4}{1 \times (-5)} + \frac{1 \times 3}{1 \times 5} = \frac{-16}{-5} + \frac{3}{5} = \frac{16}{5} + \frac{3}{5} = \frac{16+3}{5} = \frac{19}{5}$$

13. The cost of $7\frac{2}{3}$ metres of rope is Rs $12\frac{3}{4}$ Find its cost per metre.

Ans.: Cost of $7\frac{2}{3}$ m of rope = Rs. $12\frac{3}{4}$ or cost of $\frac{23}{3}$ m of rope = Rs. $\frac{51}{4}$ \therefore Cost of 1m of rope = Rs. $\frac{51}{4} \div \frac{23}{3} = \text{Rs} \cdot \frac{51}{4} \times \frac{3}{23} = \text{Rs} \cdot \frac{153}{92} = \text{Rs} \cdot 1\frac{61}{92}$

14. Simplify:

$$\left(\frac{13}{9} \times \frac{-15}{2}\right) + \left(\frac{7}{3} \times \frac{8}{5}\right) + \left(\frac{3}{5} \times \frac{1}{2}\right)$$

Ans.:
$$\left(\frac{13}{9} \times \frac{-15}{2}\right) + \left(\frac{7}{3} \times \frac{8}{5}\right) + \left(\frac{3}{5} \times \frac{1}{2}\right) = \frac{-13 \times 5}{6} + \frac{7 \times 8}{15} + \frac{3}{10} = \frac{-65}{6} + \frac{56}{15} + \frac{3}{10} = \frac{-65 \times 5 + 56 \times 2 + 3 \times 3}{30} = \frac{-204}{30} = \frac{-34}{5}$$

➤ Questions With Calculation.[3 Marks Each]

[12]

15. Verify associativity of addition of rational numbers i.e., (x + y) + z = x + (y + z), when:

$$x = -2, y = \frac{3}{5}, z = \frac{-4}{3}$$

Ans.:
$$x = -2, y = \frac{3}{5}, z = \frac{-4}{3}$$
 So, $(x + y) + z = \left(-2 + \frac{3}{5}\right) + \frac{-4}{3} = \left(\frac{-10}{5} + \frac{3}{5}\right) + \frac{-4}{3} = \frac{-7}{5} + \frac{-4}{3}$ $= \frac{-21}{15} + \frac{-20}{15} = \frac{-21-20}{15} = \frac{-41}{15}$ $x (y + z) = -2 + \left(\frac{3}{5} + \frac{-4}{3}\right) = \frac{-2}{1} + \left(\frac{9}{15} + \frac{-20}{15}\right) = \frac{-2}{1} + \frac{-11}{15} = \frac{-30}{15} + \frac{-11}{15}$ $= \frac{-30-11}{15} = \frac{-41}{15}$ $\therefore \left(-2 + \frac{3}{5}\right) + \frac{-4}{3} = -2 + \left(\frac{3}{5} + \frac{-4}{3}\right)$

16. Amit earns Rs. 32000 per month. He spends $\frac{1}{4}$ of his income of food; $\frac{3}{10}$ of the remainder on house rent and $\frac{5}{21}$ of the remainder on the education of children. How much money is still left with him?

Ans.:

Total amount eamed by Amit = Rs. 32000

Amount spent on food $=\frac{1}{4}$ of Rs. 32000

$$=\frac{1}{4} \times \text{Rs. } 32000 - \text{Rs. } 8000$$

Balance = Rs. 32000 - Rs. 8000

= Rs. 24000

Amount spent on house rent = $\frac{3}{10}$ of Rs. 24000

$$=\frac{3}{10} imes \mathrm{Rs.}\ 24000$$

$$= 3 \times \text{Rs. } 2400$$

$$= Rs. 7200$$

Amount left = Rs. 24000 - Rs. 37200

= Rs. 16800

Amount spent on education of children $=\frac{5}{21}$ of Rs. 16800

$$=\frac{5}{21} \times \text{Rs. } 16800$$

$$= \text{Rs. } 5 \times 800$$

$$= Rs. 4000$$

Amount left = Rs. 16800 - Rs. 4000

17. Arrange the following rational numbers in descending order:

$$\frac{-3}{10}$$
, $\frac{7}{-15}$, $\frac{-11}{20}$, $\frac{17}{-30}$

Ans.: Among $\frac{-3}{10}, \frac{7}{-15}, \frac{-11}{20}, \frac{17}{-30}$ Making their denominator of $\frac{7}{-15}$ and $\frac{17}{-30}$, as positive then $\frac{-3}{10}, \frac{-7}{15}, \frac{-11}{20}, \frac{-17}{30}$ Now, LCM of 10, 15, 20, 30 = 60 $\therefore \frac{-3}{10} = \frac{-3 \times 6}{10 \times 6} = \frac{-18}{60}$ $\frac{-7}{15} = \frac{-7 \times 4}{15 \times 4} = \frac{-28}{60}$ $\frac{-11}{20} = \frac{-11 \times 3}{20 \times 3} = \frac{-33}{60}$ $\frac{-17}{30} = \frac{-17 \times 2}{30 \times 2} = \frac{-34}{60}$ Now, writing them in descending orders, We get, $\frac{18}{60} > \frac{-28}{60} > \frac{-33}{60} > \frac{-34}{60}$

Or
$$\frac{-3}{10} > \frac{-7}{15} > \frac{-11}{20} > \frac{-17}{30} = \frac{-3}{10} > \frac{-7}{-15} > \frac{-11}{20} > \frac{17}{-30}$$

18. Find three rational numbers between $\frac{2}{3}$ and $\frac{3}{4}$.

Ans.: First rational number between $\frac{2}{3}$ and $\frac{3}{4} = \frac{1}{2} \left[\frac{2}{3} + \frac{3}{4} \right] = \frac{1}{2} \left[\frac{8+9}{12} \right] = \frac{1}{2} \times \frac{17}{12} = \frac{17}{24}$ $\therefore \frac{2}{3} < \frac{17}{24} < \frac{3}{4}$

Second rational number between $\frac{2}{3}$ and $\frac{17}{24}$

$$= \frac{1}{2} \left[\frac{2}{3} + \frac{17}{24} \right] = \frac{1}{2} \left[\frac{16+17}{24} \right] = \frac{1}{2} \times \frac{33}{24} = \frac{33}{48}$$

	mber between $\frac{17}{24}$ and $\frac{3}{4}$. Paguired three rational
	$= \frac{1}{2} \times \frac{35}{24} = \frac{35}{48} : \frac{2}{3} < \frac{33}{48} < \frac{17}{24} < \frac{35}{48} < \frac{3}{4}$	kequired tillee rational
numbers $\frac{33}{48}, \frac{17}{24}, \frac{35}{48}$		