2.2 Correlation & Regression

2.2.1 Introduction

"If it is proved true that in a large number of instances two variables tend always to fluctuate in the same or in opposite directions, we consider that the fact is established and that a relationship exists. This relationship is called correlation."

- (1) Univariate distribution: These are the distributions in which there is only one variable such as the heights of the students of a class.
- (2) Bivariate distribution: Distribution involving two discrete variable is called a bivariate distribution. For example, the heights and the weights of the students of a class in a school.
- (3) Bivariate frequency distribution: Let x and y be two variables. Suppose x takes the values x_1, x_2, \ldots, x_n and y takes the values y_1, y_2, \ldots, y_n , then we record our observations in the form of ordered pairs (x_1, y_1) , where $1 \le i \le n, 1 \le j \le n$. If a certain pair occurs f_{ij} times, we say that its frequency is f_{ij} .

The function which assigns the frequencies f_{ij} 's to the pairs (x_i, y_j) is known as a bivariate frequency distribution.

Example: 1 The following table shows the frequency distribution of age (x) and weight (y) of a group of 60 individuals

x (yrs) y (yrs.)	40 – 45	45 – 50	50 – 55	55 – 60	60 – 65
45 – 50	2	5	8	3	0
50 – 55	1	3	6	10	2
55 – 60	0	2	5	12	1

Then find the marginal frequency distribution for x and y.

Solution: Marginal frequency distribution for x

X	40 – 45	45 – 50	50 – 55	55 – 60	60 – 65
f	3	10	19	25	3

Marginal frequency distribution for y

y	45 – 50	50 – 55	55 – 60		
f	18	22	20		

2.2.2 Covariance

Let (x_1, x_i) ; i = 1, 2,, n be a bivariate distribution, where $x_1, x_2,, x_n$ are the values of variable x and $y_1, y_2,, y_n$ those of y. Then the covariance Cov(x, y) between x and y is given by

$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) \text{ or } Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} (x_i y_i - \overline{x} \overline{y}) \text{ where, } \overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \text{ and } \overline{y} = \frac{1}{n} \sum_{i=1}^{n} y_i \text{ are means of variables } x \text{ and } y \text{ respectively.}$$

Covariance is not affected by the change of origin, but it is affected by the change of scale.

Example: 2 Covariance
$$(x, y)$$
 between x and y , if $\sum x = 15$, $\sum y = 40$, $\sum x \cdot y = 110$ $n = 5$ is

(a) 22

(b) 2

(c) - 2

(d) None of these

Solution: (c)

Given,
$$\sum x = 15, \sum y = 40$$

 $\sum x.y = 110, n = 15$

We know that,
$$Cov(x,y) = \frac{1}{n} \sum_{i=1}^{n} x_i \cdot y_i - \left(\frac{1}{n} \sum_{i=1}^{n} x_i\right) \left(\frac{1}{n} \sum_{i=1}^{n} y_i\right) = \frac{1}{n} \sum x \cdot y - \left(\frac{1}{n} \sum x\right) \left(\frac{1}{n} \sum y\right)$$
$$= \frac{1}{5} (110 - \left(\frac{15}{5}\right) \left(\frac{40}{5}\right) = 22 - 3 \times 8 = -2.$$

2.2.3 Correlation

The relationship between two variables such that a change in one variable results in a positive or negative change in the other variable is known as correlation.

- (1) Types of correlation
- (i) Perfect correlation: If the two variables vary in such a manner that their ratio is always constant, then the correlation is said to be perfect.
- (ii) Positive or direct correlation: If an increase or decrease in one variable corresponds to an increase or decrease in the other, the correlation is said to be positive.
- (iii) Negative or indirect correlation: If an increase or decrease in one variable corresponds to a decrease or increase in the other, the correlation is said to be negative.
- (2) Karl Pearson's coefficient of correlation: The correlation coefficient r(x, y), between two

variable x and y is given by, $r(x, y) = \frac{Cov(x, y)}{\sqrt{Vax(x)}\sqrt{Vax(y)}} \text{ or } \frac{Cov(x, y)}{\sigma_x \sigma_y}$,

$$r(x,y) = \frac{n\left(\sum_{i=1}^{n} x_{i} y_{i}\right) - \left(\sum_{i=1}^{n} x_{i}\right) \left(\sum_{i=1}^{n} y_{i}\right)}{\sqrt{n\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} \sqrt{n\sum_{i=1}^{n} y_{i}^{2} - \left(\sum_{i=1}^{n} y_{i}\right)^{2}}}$$

$$r = \frac{\sum (x - \overline{x})(y - \overline{y})}{\sqrt{\sum (x - \overline{x})^2} \sqrt{\sum (y - \overline{y})^2}} = \frac{\sum dxdy}{\sqrt{\sum dx^2} \sqrt{\sum dy^2}}.$$

(3) Modified formula : $r = \frac{\sum dx dy - \frac{\sum dx \sum dy}{n}}{\sqrt{\left\{\sum dx^2 - \frac{\left(\sum dx\right)^2}{n}\right\} \left\{\sum dy^2 - \frac{\left(\sum dy\right)^2}{n}\right\}}}$, where $dx = x - \bar{x}$; $dy = y - \bar{y}$

Also
$$r_{xy} = \frac{Cov(x, y)}{\sigma_x \sigma_y} = \frac{Cov(x, y)}{\sqrt{var(x).var(y)}}$$
.

Example: 3 For the data

The Karl Pearson's coefficient is

[Kerala

(Engg.) 2002]

(a)	63
(a)	$\sqrt{94\times66}$

(c)
$$\frac{63}{\sqrt{94}}$$

(d)
$$\frac{63}{\sqrt{66}}$$

Solution: (a) Take A=5, B=5

X _i	y_i	$u_i = x_i - 5$	$v_i = y_i - 5$	u_i^2	v_i^2	$u_i v_i$
4	5	- 1	0	1	0	0
7	8	2	3	9	9	6
8	6	3	1	1	1	3
3	3	- 2	- 2	4	4	4
4	5	- 1	0	0	0	0
Total		$\sum u_i = 1$	$\sum v_i = 2$	$\sum u_i^2 = 19$	$\sum v_i^2 = 14$	$\sum u_i v_i = 13$

$$\Theta \qquad r(x,y) = \frac{\sum u_i v_i - \frac{1}{n} \sum u_i \sum v_i}{\sqrt{\sum u_i^2 - \frac{1}{n} (\sum u_i)^2} \sqrt{\sum v_i - \frac{1}{n} (\sum v_i)^2}} = \frac{13 - \frac{1 \times 2}{5}}{\sqrt{19 - \frac{1^2}{5}} \sqrt{14 - \frac{2^2}{5}}} = \frac{63}{\sqrt{94}\sqrt{66}}.$$

Example: 4 Coefficient of correlation between observations (1, 6),(2, 5),(3, 4), (4, 3), (5, 2), (6, 1) is

[Pb. CET 1997; Him. CET 2001; DCE 2002]

(a) 1

(b) -1

(c) 0

(d) None of these

Solution: (b) Since there is a linear relationship between x and y, i.e. x+y=7

 \therefore Coefficient of correlation = -1.

Example: 5 The value of co-variance of two variables x and y is $-\frac{148}{3}$ and the variance of x is $\frac{272}{3}$ and the variance of

y is $\frac{131}{3}$. The coefficient of correlation is

(a) 0.48

(b) 0.78

(c) 0.87

(d) None of these

Solution : (d) We know that coefficient of correlation = $\frac{Cov(x,y)}{\sigma_x \cdot \sigma_y}$

Since the covariance is - ive.

: Correlation coefficient must be - ive. Hence (d) is the correct answer.

Example: 6 The coefficient of correlation between two variables x and y is 0.5, their covariance is 16. If the S.D of x is 4, then the S.D. of y is equal to [AMU 1988, 89, 90]

(a) 4

(h) 8

(c) 16

(d) 64

Solution: (b) We have, $r_{xy} = 0.5$, Co(x, y) = 16. S.D of x i.e., $\sigma_x = 4$, $\sigma_y = ?$

We know that, $r(x, y) = \frac{Cov(x, y)}{\sigma_{x} \sigma_{y}}$

$$0.5 = \frac{16}{4.\sigma_x}$$
; $\sigma_y = 8$.

Example: 7 For a bivariate distribution (x, y) if $\sum x = 50$, $\sum y = 60$, $\sum xy = 350$, x = 5, y = 6 variance of x = 5, where x = 5 variance of y = 5, where x = 5 variance of y = 5 variance of y = 5.

Pb. CET 1998; DCE 1998]

(a) 5/6

(b) 5/36

(c) 11/3

(d) 11/18

Solution: (a) $x = \frac{\sum x}{n} \Rightarrow 5 = \frac{50}{n} \Rightarrow n = 10$.

$$\therefore Cov(x,y) = \frac{\sum_{n}^{xy} - - \sum_{n}^{y} 350}{n} - (5)(6) = 5.$$

$$\therefore r(x,y) = \frac{Cou(x,y)}{\sigma_x \cdot \sigma_y} = \frac{5}{\sqrt{4} \cdot \sqrt{9}} = \frac{5}{6}.$$

Example: 8 A, B, C, D are non-zero constants, such that

(i) both A and C are negative.

(ii)

A and C are of opposite sign.

If coefficient of correlation between x and y is r, then that between AX+B and CY+D is

$$(b) - i$$

(c)
$$\frac{A}{C}r$$

(d)
$$-\frac{A}{C}r$$

Solution: (a,b) (i) Both A and C are negative.

Now Cov(AX+B,CY+D) = ACCov(X,Y)

$$\sigma_{AX+B} = |A| \sigma_x$$
 and $\sigma_{CY+D} = |C| \sigma_y$

Hence
$$\rho(AX+B,CY+D) = \frac{ACCov(X,Y)}{(|A|\sigma_v)(|C|\sigma_v)} = \frac{AC}{|AC|}\rho(X,Y) = \rho(X,Y) = r, \quad (\Theta AC>0)$$

(ii)
$$\rho(AX + BCY + D) = \frac{AC}{|AC|}\rho(X, Y), \quad (\Theta AC < 0)$$

$$= \frac{AC}{-AC}\rho(X, Y) = -\rho(X, Y) = -r.$$

2.2.4 Rank Correlation

by

Let us suppose that a group of n individuals is arranged in order of merit or proficiency in possession of two characteristics A and B.

These rank in two characteristics will, in general, be different.

For example, if we consider the relation between intelligence and beauty, it is not necessary that a beautiful individual is intelligent also.

Rank Correlation : $\rho = 1 - \frac{6\sum d^2}{n(n^2 - 1)}$, which is the Spearman's formulae for rank correlation coefficient.

Where $\sum d^2$ = sum of the squares of the difference of two ranks and n is the number of pairs of observations.

Note:
$$\square$$
 We always have, $\sum d_i = \sum (x_i - y_i) = \sum x_i - \sum y_i = n(\overline{x}) - n(\overline{y}) = 0$, $(\Theta \overline{x} = \overline{y})$

If all ds are zero, then r=1, which shows that there is perfect rank correlation between the variable and which is maximum value of r.

 \Box If however some values of x_i are equal, then the coefficient of rank correlation is given

$$r = 1 - \frac{6\left[\sum d^2 + \left(\frac{1}{12}\right)(m^3 - m)\right]}{n(n^2 - 1)}$$

where m is the number of times a particular x_i is repeated.

Positive and Negative rank correlation coefficients

Let r be the rank correlation coefficient then, if

• r>0, it means that if the rank of one characteristic is high, then that of the other is also high or if the rank of one characteristic is low, then that of the other is also low. e.g., if the two characteristics be height and weight of persons, then r>0 means that the tall persons are also heavy in weight.

- r=1, it means that there is perfect correlation in the two characteristics *i.e.*, every individual is getting the same ranks in the two characteristics. Here the ranks are of the type $(1, 1), (2, 2), \ldots, (n, n)$.
- r < 1, it means that if the rank of one characteristics is high, then that of the other is low or if the rank of one characteristics is low, then that of the other is high. *e.g.*, if the two characteristics be richness and slimness in person, then r < 0 means that the rich persons are not slim.
- r=-1, it means that there is perfect negative correlation in the two characteristics *i.e.*, an individual getting highest rank in one characteristic is getting the lowest rank in the second characteristic. Here the rank, in the two characteristics in a group of n individuals are of the type (1, n), (2, n-1),....,(n, 1).
- r=0, it means that no relation can be established between the two characteristics.

Important Tips

- ${}^{\circ}$ If r=0, the variable x and y are said to be uncorrelated or independent.
- \mathcal{F} If r = -1, the correlation is said to be negative and perfect.
- ${}^{\circ}$ If r=+1, the correlation is said to be positive and perfect.
- Correlation is a pure number and hence unitless.
- Correlation coefficient is not affected by change of origin and scale.
- Fig. 1. If two variate are connected by the linear relation x+y=K, then x, y are in perfect indirect correlation. Here r=-1.
- For If x, y are two independent variables, then $\rho(x+y,x-y) = \frac{\sigma_x^2 \sigma_y^2}{\sigma_x^2 + \sigma_v^2}$.

$$\mathscr{F} \quad r(x,y) = \frac{\sum u_{i}v_{i} - \frac{1}{n}\sum u_{i} \sum v_{i}}{\sqrt{\sum u_{i}^{2} - \frac{1}{n}(\sum u_{i})^{2}} \sqrt{\sum v_{i}^{2} - \frac{1}{n}(\sum v_{i})^{2}}}, \text{ where } u_{i} = x_{i} - A, v_{i} = y_{i} - B.$$

Example: 9 Two numbers within the bracket denote the ranks of 10 students of a class in two subjects

(1, 10), (2, 9), (3, 8), (4, 7), (5, 6), (6, 5), (7, 4), (8, 3), (9, 2), (10, 1). The rank of correlation coefficient is

[MP PET 1996]

(4) 0 !

Solution: (b) Rank correlation coefficient is $r = 1 - 6 \cdot \frac{\sum_{i=1}^{\infty} d^2}{n(n^2 - 1)}$, Where d = y - x for pair (x, y)

$$\therefore \quad \sum d^2 = 9^2 + 7^2 + 5^2 + 3^2 + 1^2 + (-1)^2 + (-3)^2 + (-5)^2 + (-7)^2 + (-9)^2 = 330$$

Also
$$n=10$$
; : $r=1-\frac{6\times 330}{10(100-1)}=-1$.

Example: 10 Let $x_1, x_2, x_3,, x_n$ be the rank of n individuals according to character A and $y_1, y_2,, y_n$ the ranks of same individuals according to other character B such that $x_i + y_i = n+1$ for i = 1, 2, 3,, n. Then the coefficient of rank correlation between the characters A and B is

$$(c) - 1$$

(d) None of these

Solution: (c) $x_i + y_i = n +$

$$x_i + y_i = n+1$$
 for all $i = 1, 2, 3,, n$

Let $x_i - y_i = d_i$. Then, $2x_i = n+1+d_i \implies d_i = 2x_i - (n+1)$

$$\therefore \sum_{i=1}^{n} d_i^2 = \sum_{i=1}^{n} [2x_i - (n+1)]^2 = \sum_{i=1}^{n} [4x_i^2 + (n+1)^2 - 4x_i(n+1)]$$

$$\sum_{i=1}^{n} d_i^2 = 4 \sum_{i=1}^{n} x_i^2 + (n)(n+1)^2 - 4(n+1) \sum_{i=1}^{n} x_i = 4 \frac{n(n+1)(2n+1)}{6} + (n)(n+1)^2 - 4(n+1) \frac{n(n+1)}{2}$$

$$\sum_{i=1}^{n} d_i^2 = \frac{n(n^2-1)}{3}.$$

$$\therefore r = 1 - \frac{6\sum_{i} d_{i}^{2}}{n(n^{2} - 1)} = 1 - \frac{6(n)(n^{2} - 1)}{3(n)(n^{2} - 1)} \text{ i.e., } r = -1.$$

Regression

2.2.5 Linear Regression

If a relation between two variates x and y exists, then the dots of the scatter diagram will more or less be concentrated around a curve which is called the curve of regression. If this curve be a straight line, then it is known as line of regression and the regression is called linear regression.

Line of regression: The line of regression is the straight line which in the least square sense gives the best fit to the given frequency.

2.2.6 Equations of lines of Regression

(1) Regression line of y on x: If value of x is known, then value of y can be found as

$$y-y=\frac{Cov(x,y)}{\sigma_x^2}(x-x)$$
 or $y-y=r\frac{\sigma_y}{\sigma_x}(x-x)$

(2) Regression line of x on y: It estimates x for the given value of y as

$$x-x=\frac{Cov(x,y)}{\sigma_v^2}(y-y)$$
 or $x-x=r\frac{\sigma_x}{\sigma_v}(y-y)$

- (3) Regression coefficient: (i) Regression coefficient of y on x is $b_{yx} = \frac{r\sigma_y}{\sigma_x} = \frac{Cov(x, y)}{\sigma_x^2}$
- (ii) Regression coefficient of x on y is $b_{xy} = \frac{r\sigma_x}{\sigma_y} = \frac{Cov(x, y)}{\sigma_y^2}$.

2.2.7 Angle between Two lines of Regression

Equation of the two lines of regression are $y - \bar{y} = b_{xx}(x - \bar{x})$ and $x - \bar{x} = b_{xy}(y - \bar{y})$

We have, $m_1 =$ slope of the line of regression of y on $x = b_{yx} = r \cdot \frac{\sigma_y}{\sigma_x}$

 m_2 = Slope of line of regression of x on $y = \frac{1}{b_{xy}} = \frac{\sigma_y}{r.\sigma_x}$

$$\therefore \tan\theta = \pm \frac{m_2 - m_1}{1 + m_1 m_2} = \pm \frac{\frac{\sigma_y}{r\sigma_x} - \frac{r\sigma_y}{\sigma_x}}{1 + \frac{r\sigma_y}{\sigma_x} \cdot \frac{\sigma_y}{r\sigma_x}} = \pm \frac{(\sigma_y - r^2\sigma_y)\sigma_x}{r\sigma_x^2 + r\sigma_y^2} = \pm \frac{(1 - r^2)\sigma_x\sigma_y}{r(\sigma_x^2 + \sigma_y^2)}.$$

Here the positive sign gives the acute angle θ , because $r^2 \le 1$ and σ_x, σ_y are positive.

$$\therefore \quad \tan\theta = \frac{1 - r^2}{r} \cdot \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2} \qquad \dots (i)$$

Note: \square If r=0, from (i) we conclude $\tan\theta = \infty$ or $\theta = \pi/2$ *i.e.*, two regression lines are at right angels.

 \Box If $r=\pm 1$, $\tan \theta=0$ *i.e.*, $\theta=0$, since θ is acute *i.e.*, two regression lines coincide.

2.2.8 Important points about Regression coefficients b_{xy} and b_{yx}

- (1) $r = \sqrt{b_{yx} \cdot b_{xy}}$ i.e. the coefficient of correlation is the geometric mean of the coefficient of regression.
- (2) If $b_{yx} > 1$, then $b_{xy} < 1$ i.e. if one of the regression coefficient is greater than unity, the other will be less than unity.
- (3) If the correlation between the variable is not perfect, then the regression lines intersect at (\bar{x},\bar{y}) .
- (4) b_{yx} is called the slope of regression line y on x and $\frac{1}{b_{yy}}$ is called the slope of regression line x on v.
- (5) $b_{yx} + b_{xy} > 2\sqrt{b_{yx}b_{xy}}$ or $b_{yx} + b_{xy} > 2r$, *i.e.* the arithmetic mean of the regression coefficient is greater than the correlation coefficient.
 - (6) Regression coefficients are independent of change of origin but not of scale.
 - (7) The product of lines of regression's gradients is given by $\frac{\sigma_y^2}{2}$.
 - (8) If both the lines of regression coincide, then correlation will be perfect linear.
- (9) If both b_{yx} and b_{xy} are positive, the r will be positive and if both b_{yx} and b_{xy} are negative, the r will be negative.

Important Tips

- If r = 0, then $tan\theta$ is not defined i.e. $\theta = \frac{\pi}{2}$. Thus the regression lines are perpendicular.
- If r = +1 or -1, then $\tan \theta = 0$ i.e. $\theta = 0$. Thus the regression lines are coincident.
- If regression lines are y = ax + b and x = cy + d, then $x = \frac{bc + d}{1 ac}$ and $y = \frac{ad + b}{1 ac}$.
- If b_{yx} , b_{xy} and $r \ge 0$ then $\frac{1}{2}(b_{xy} + b_{yx}) \ge r$ and if b_{xy} , b_{yx} and $r \le 0$ then $\frac{1}{2}(b_{xy} + b_{yx}) \le r$.
- Correlation measures the relationship between variables while regression measures only the cause and effect of relationship between the variables.
- If line of regression of y on x makes an angle α , with the +ive direction of X-axis, then $an \alpha = b_{ux}$.
- If line of regression of x on y makes an angle β , with the +ive direction of X-axis, then $\cot \beta = b_{xv}$.
- The two lines of regression are 2x-7y+6=0 and 7x-2y+1=0. The correlation coefficient between x and Example: 11 y is

[DCE 1999]

- (c) 4/49
- (d) None of these
- The two lines of regression are 2x-7y+6=0(i) and 7x-2y+1=0Solution: (b) If (i) is regression equation of y on x, then (ii) is regression equation of x on y.

We write these as $y = \frac{2}{7}x + \frac{6}{7}$ and $x = \frac{2}{7}y - \frac{1}{7}$

- $\therefore b_{yx} = \frac{2}{7}, b_{xy} = \frac{2}{7}; \therefore b_{yx} \cdot b_{xy} = \frac{4}{49} < 1, \text{ So our choice is valid.}$
- $\therefore r^2 = \frac{4}{49} \Rightarrow r = \frac{2}{7}.$ [\text{\text{\text{0}}} \ \begin{align*} \begi
- Example: 12 Given that the regression coefficients are - 1.5 and 0.5, the value of the square of correlation coefficient is

(a) 0.75

(b) 0.7

(c) - 0.75

- (d) 0.5
- Solution: (c) Correlation coefficient is given by $r^2 = b_{yx} \cdot b_{xy} = (-1.5)(0.5) = -0.75$.
- Example: 13 In a bivariate data $\sum x = 30$, $\sum y = 400$, $\sum x^2 = 196$, $\sum xy = 850$ and n = 10. The regression coefficient of y on x is

[Kerala (Engg.) 2002]

(a) -3.1

(b) -3.2

(c) - 3.3

(d) - 3.4

Solution: (c) $Cov(x, y) = \frac{1}{n} \sum xy - \frac{1}{n^2} \sum x \sum y = \frac{1}{10} (850 - \frac{1}{100})(30)(400) = -35$

 $Vax(x) = \sigma_x^2 = \frac{1}{n} \sum x^2 - \left(\frac{\sum x}{n}\right)^2 = \frac{196}{10} - \left(\frac{30}{10}\right)^2 = 10.6$

 $b_{yx} = \frac{Cov(x, y)}{Var(x)} = \frac{-35}{10.6} = -3.3.$

Example: 14 If two lines of regression are 8x-10y+66=0 and 40x-18y=214, then (\bar{x},\bar{y}) is

(a) (17, 13)

- (b) (13, 17)
- (c) (- 17, 13)
- (d) (-13, -17)
- Solution: (b) Since lines of regression pass through (\bar{x},\bar{y}) , hence the equation will be $8\bar{x}-10\bar{y}+66=0$ and $40\bar{x}-18\bar{y}=214$

On solving the above equations, we get the required answer $\bar{x} = 13$, $\bar{y} = 17$.

Example: 15 The regression coefficient of y on x is $\frac{2}{3}$ and of x on y is $\frac{4}{3}$. If the acute angle between the regression line

is θ , then $an\!\theta\!=\!$

[DCE 1995]

(a) $\frac{1}{18}$

(b) $\frac{1}{9}$

- (c) $\frac{2}{6}$
- (d) None of these

Solution: (a) $b_{yx} = \frac{2}{3}, b_{xy} = \frac{4}{3}$. Therefore, $\tan \theta = \begin{vmatrix} b_{xy} - \frac{1}{b_{yx}} \\ 1 + \frac{b_{xy}}{b_{yy}} \end{vmatrix} = \begin{vmatrix} \frac{4}{3} - \frac{3}{2} \\ 1 + \frac{4/3}{2/3} \end{vmatrix} = \frac{1}{18}$.

Example: 16 If the lines of regression of y on x and x on y make angles 30° and 60° respectively with the positive direction of X-axis, then the correlation coefficient between x and y is

(a) $\frac{1}{\sqrt{2}}$

(b) -

(c) $\frac{1}{\sqrt{3}}$

(d) $\frac{1}{2}$

Solution: (c) Slope of regression line of y on $x = b_{yx} = \tan 30^{\circ} = \frac{1}{\sqrt{2}}$

Slope of regression line of x on $y = \frac{1}{b_{yy}} = \tan 60^{\circ} = \sqrt{3}$

 $\Rightarrow b_{xy} = \frac{1}{\sqrt{3}} \text{ . Hence, } r = \sqrt{b_{xy} \cdot b_{yx}} = \sqrt{\left(\frac{1}{\sqrt{3}}\right) \left(\frac{1}{\sqrt{3}}\right)} = \frac{1}{\sqrt{3}} \text{ .}$

Example: 17 If two random variables x and y, are connected by relationship 2x+y=3, then $r_{xy}=$

(a) 1

(b) -

- (c) 2
- (d) 3

Solution: (b) Since 2x + y = 3

 \therefore $2\overline{x} + \overline{y} = 3$; \therefore $y - \overline{y} = -2(x - \overline{x})$. So, $b_{yx} = -2$

Also
$$x - \overline{x} = -\frac{1}{2}(y - \overline{y})$$
, \therefore $b_{xy} = -\frac{1}{2}$

$$\therefore r_{xy}^2 = b_{yx} \cdot b_{xy} = (-2) \left(-\frac{1}{2} \right) = 1 \implies r_{xy} = -1.$$

(Θ both b_{yx}, b_{xy} are -ive)

2.2.9 Standard error and Probable error

(1) Standard error of prediction : The deviation of the predicted value from the observed value is known as the standard error prediction and is defined as $S_y = \sqrt{\frac{\sum (y-y_p)^2}{n}}$

where y is actual value and y_p is predicted value.

In relation to coefficient of correlation, it is given by

- (i) Standard error of estimate of x is $S_x = \sigma_x \sqrt{1-r^2}$ (ii) Standard error of estimate of y is $S_y = \sigma_y \sqrt{1-r^2}$.
- (2) Relation between probable error and standard error : If r is the correlation coefficient in a sample of n pairs of observations, then its standard error S.E. (r) = $\frac{1-r^2}{\sqrt{n}}$ and probable error P.E. (r) =

0.6745 (S.E.)= 0.6745 $\left(\frac{1-r^2}{\sqrt{n}}\right)$. The probable error or the standard error are used for interpreting the coefficient of correlation.

- (i) If r < P.E(r), there is no evidence of correlation.
- (ii) If r > 6P.E(r), the existence of correlation is certain.

The square of the coefficient of correlation for a bivariate distribution is known as the "Coefficient of determination".

Example: 18 If $Vat(x) = \frac{21}{4}$ and Vat(y) = 21 and r = 1, then standard error of y is

- (a) (
- (b) $\frac{1}{2}$
- (c) $\frac{1}{4}$
- (d) 1

Solution: (a) $S_v = \sigma_v \sqrt{1-r^2} = \sigma_v \sqrt{1-1} = 0$.

ASSIGNMENT

1. For the bivariate frequency table for x and y

y	0 – 10	10 – 20	20 – 30	30 – 40	Sum
0 – 10	3	2	4	2	11
10 – 20	-	1	3	1	5
20 - 30	3	2	-	-	5
30 - 40	-	6	7	-	13
Sum	6	11	14	3	34

Then the marginal frequency distribution for y is given by

- (a) 0 6 10 - 11 20 - 11 30 - 14 30 - 3 40
- (b) 0 11 10 - 5 20 - 5 30 - 13 40
- (c) 0 10 10 10 - 12 20 20 - 11 30 - 1 40
- (d) None of these
- 2. The variables x and y represent height in cm and weight in gm respectively. The correlation between x and y has the

[MP PET 2003]

(a) *gm*

(b) *cm*

- (c) gm.cm
- (d) None of these

3. The value of $\sum_{x} [(x-x)(y-y)]$ is

	(a) $n.r_{xy}.\sigma_x\sigma_y$	(b) $\mathbf{r}_{xy} \sigma_x^2 \sigma_y^2$	(c)	$r_{xy}\sqrt{\sigma_x\sigma_y}$	(d)	None of these
4.	Karl Pearson's coefficien	nt of correlation is dependent				[MP PET 1993]
	(a) Only on the change o and not on the chang	f origin and not on the change of e of origin	scal	e (b)	On	ly on the change of scale
	_	of origin and the change of scale	(d)	Neither on the change	of so	cale nor on the change of
5 .	•	nt variable, then correlation coeff	ficien	nt is		
	(a) 1	(b) - 1	(c)	$\frac{1}{2}$	(d)	0
6.	The value of the correlati	on coefficient between two varial	ole li	es between		[Kurukshetra CEE 1998]
	(a) 0 and 1	(b) - 1 and 1	(c)	0 and ∞	(d)	$-\infty$ and 0
7 .	The coefficient of correla	tion between two variables $m{x}$ and	y is	given by		
	(a) $r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{2\sigma_x\sigma_y}$	(b) $r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{2\sigma_x\sigma_y}$	(c)	$r = \frac{\sigma_x^2 + \sigma_y^2 + \sigma_{x-y}^2}{\sigma_x \sigma_y}$	(d)	$r = \frac{\sigma_x^2 + \sigma_y^2 - \sigma_{x-y}^2}{\sigma_x \sigma_y}$
8.	If r is the correlation coeff 1995]	fficient between two variables, th	en			[MP PET 1995; Pb. CET
	(a) $r \ge 1$	(b) <i>r</i> ≤1	(c)	<i>r</i> ≤1	(d)	<i>r</i> ≥ 1
9.	When the correlation bet	ween two variables is perfect,the	en th	e value of coefficient of c	corre	lation <i>r</i> is
	(a) -1	(b) +1	(c)			± 1
10.	If correlation between x a	and y is r , then between y and x c	orrel	ation will be		
	(a) <i>-r</i>	(b) $\frac{1}{r}$	(c)	v	(d)	1- <i>r</i>
	(a) -1	$\frac{r}{r}$	(C)	1	(u)	1-7
11.	If r is the coefficient of co	orrelation and $Y = a + bX$, then $ r $	=			
	(a) $\frac{a}{b}$	(b) $\frac{b}{a}$	(c)	1	(d)	None of these
12 .		on between the variables $m{x}$ and $m{y}$ i				
	(a) Variables x and y have		(b)	y decreases as x increas		
1 4	(c) y increases as x incre	eases		(d)	The	ere may be a relation
0etw 13.	een <i>x</i> and <i>y</i> When the origin is change	ed, then the coefficient of correla	ation			
13.	(a) Becomes zero			Remains fixed	(d)	None of these
14.	If $r = -0.97$, then	(b) varies	(C)	Kemams naeu	(u)	None of these
	(a) Correlation is negative	ve and curved	(b)	Correlation is linear and	d neg	gative
	(c) Correlation is in third	d and fourth quadrant	(d)	None of these		
15.	In a scatter diagram, if p there exists a	lotted points form a straight line	runi	ning from the lower left t	o the	e upper right corner, then
	(a) High degree of positi	ve correlation	(b)	Perfect positive correlat	tion	
	(c) Perfect negative corre	elation		(d)	No	ne of these
16.	If the two variables x and	$oldsymbol{y}$ of a bivariate distribution have	a pe	erfect correlation, they m	ay be	e connected by [Kurukshetra CEE
	(a) <i>xy</i> =1	(b) $\frac{a}{x} + \frac{b}{y} = 1$	(c)	$\frac{x}{a} + \frac{y}{b} = 1$	(d)	None of these
17 .	If x and y are related as y	y-4x=3, then the nature of corr	elatio	on between x and y is		[AMU 1998]
	(a) Perfect positive	(b) Perfect negative	(c)	No correlation	(d)	None of these
18.	If $\sum x = 15$, $\sum y = 36$,	$\sum xy = 110, \ n = 5 \ \text{then} \ \textit{Cov}(x, y) \text{ eq}$	quals	3		[AI CBSE 1991]
	(a) $\frac{1}{5}$	(b) $\frac{-1}{5}$	(c)	<u>2</u> 5	(A)	$-\frac{2}{5}$
	5	5	(6)	5	(u)	5

19.	9. For a bivariable distribution (x, y) , if $\sum xy = 350 \sum x = 50 \sum y = 60, x = 5, y = 6$, then $Co(x)$	x, y) e	equal	s			
40001		[Pt	ь. С	ET	1997,	AMU	
1992]	-	28					
20.		20			ΓΔΜΙΊ	1989]	
20.		(b) Any number in one and any number in the other					
	(c) Equal (d) None of these	IIuII	iioei i	111 1111	omei		
21.					ΓΔΜΙΊ	1994]	
21.						1774]	
	(a) $Cov(x, y) = 1$ (b) $Cov(x, y) = -1$ (c) $Cov(x, y) = 0$	Co	o ((x , y)	$=\pm\frac{1}{2}$	2		
22.	2. If						
	x: 3 4 8 6 2 1						
	y: 5 3 9 6 9 2						
	then the coefficient of correlation will be approximately			[A	I CBSE	1990]	
	(a) 0.49 (b) 0.40 (c) -0.49 (d)	- 0	. 40				
23 .	3. The coefficient of correlation for the following data						
	x 20 25 30 35 40 45						
	v 16 10 8 20 5 10						
	will be			ſΔ	I CBSE	10881	
		No	ne of			1900]	
24.		140	nie oi	liles	C		
	x: 1 2 3 4 5 v: 2 5 7 8 10						
	$y\colon 2$ 5 7 8 10 will be		ineei	E 106	9 AI	CDSE	
1991]			ופפען	E 196	33, AI	СВЗЕ	
	•	No	ne of	thes	e		
25 .							
	x: 15						
	y: 12 17 15 16 12 15 11						
		DSSI	E 197	79, 8	1; AI	CBSE	
1990]	•	•					
0.0		- 0					
26 .	6. Karl Pearson's coefficient of correlation between x and y for the following data		[A]	ISSE	1983, 8	35, 90]	
	x: 3 4 8 9 6 2 1						
	y: 5 3 7 6 9 2						
	(a) 0.480 (b) -0.480 (c) 0.408 (d)	0	. 408	2			
27 .		- 0	. 400	•			
21.	7. The coefficient of correlation for the following data						
	x: 1 2 3 4 5 6 7 8 9 10						
	y: 3 10 5 1 2 9 4 8 7 6						
	will be		[AISS	E	1986,	
1990]	990]		·			Í	
	(a) 0. 224 (b) 0. 240 (c) 0. 30 (d)	No	ne of	thes	e		
28 .	8. Karl Pearson's coefficient of correlation between the marks in English and Mathematics by	ten s	stude	nts			
	Marks in 20 13 18 21 11 12 17 14 19 15						
	English						

Marks

in

	Maths																
	will be		1				!	I	ı	11					IAICC	C 1070 8	01
	(a) 0.75			(b)	- 0. 75				(c)	0. 57			(d)	None o	_	E 1979, 8	Zj
29 .	Coefficie	nt of co	rrelat				or tl	he fallawi	` '				(u)	None o	i illese		
			, reidi	ion oct	1		<u> </u>		ng uu								
	X -	-3 -2	2 -1	l 0	1 2	3	4										
	4	0 4	1		1 1		16	-									
	y 16	9 4	1	0	1 4	9	16										
	will be											[Mathen	natic	s Olym	piad 19	981; DSS	Ε
1980]	(a) 1			(b)	1				(a)	0			(4)	None	f thasa		
30.	(a) 1 If the varia	ancoe o	of turo	(b)		d ware	roc	nactivaly	(c)		their c	ovarianco		None o		officient e	۰f
30.	correlation		n iwo	variaui	es x all	u y ale	162	pectively	9 allu	10 anu	men c	ovariance	15 0	, men i	nen coe	enicient (Л
															[MP	PET 199	8]
	(a) $\frac{2}{3}$			(b)	8				(a)	9			(d)	2			
	$\frac{(a)}{3}$			(0)	$\frac{8}{3\sqrt{2}}$				(C)	$\frac{9}{8\sqrt{2}}$			(u)	9			
31.	If the co-e				n betw	een <i>x</i> a	nd	<i>y</i> is 0. 28	, cova	riance b	etween	x and y i	s 7.	6 and th	ne varia	nce of x	is
	9, then the	e S.D.	of ys		10.1					0.05			/ 1 \	10.05			
00	(a) 9.8	` ^ .			10. 1				(c)	9.05			(d)	10. 05	_		٠.
32 .	If Cov(x, y) = 0, 1	then /	<i>⊙(x,y</i>) e	quals										l	AMU 199	3]
	(a) 0			(b)	1				(c)	- 1			(d)	$\pm \frac{1}{2}$			
33 .	Karl Pears		oeffici	ient of	correlat	tion be	twe	en the he	ights	(in inche	es) of te	eachers a	nd s	tudents	corresp	onding 1	Ю.
	the given (data															
	Height o	f teach	ers x	66 6	67 68	69	70										
	:																
	Height of	f stude:	nts <i>y</i>	68 6	66 69	72	70										
	:																
	is														[MP	PET 199	3]
	(a) $\frac{1}{\sqrt{2}}$			(b)	$\sqrt{2}$				(c)	$-\frac{1}{\sqrt{2}}$			(d)	0			
34.	The coeffi				betwee	n <i>x</i> and	d <i>y</i>	is 0.6, th	en cov	variance	is 16.	Standard	dev	iation o	f <i>x</i> is 4,	, then th	e
	(a) 5			(b)	10				(c)	20/3			(d)	None o	f these		
35 .	If Co(u, v)	$=$ 3, σ_u^2	= 4.5	$\sigma_{v}^{2}=5.$	5, then	ρ (ц v)	is								[AMU 198	8]
	(a) 0.121				0.603				(c)	0.07			(d)	0.347			
36.	Given n=	10, \sum	<i>x</i> = 4,	$\sum y = 3$	$3, \sum x^2$	= 8 , \(\)] y ²	= 9 and]	$\sum xy =$	= 3, then 1	the coe	fficient of	cor	relation	is [Pb.	CET 199	9]
	(a) $\frac{1}{4}$			(b)	$\frac{7}{19}$				(c)	$\frac{15}{4}$			(d)	$\frac{14}{3}$			
	-		· ·		12					4	76 11			J			
37 .	Let r_{xy} be													multip	nea by	s and th	e
	variable y	is incre	eased			correla	tion	ı coefficie				ariables is		N.T.	c 11		
	(a) r_{xy}			(b)	$3r_{xy}$				(c)	$3r_{xy} + 2$			(d)	None o	these		
38.	Coefficien	t of co	rrelati	on betu	veen the	e two va	aria	tes <i>X</i> and	Yis								
	X	1	2	3	4	5											

(c) 1

The coefficient of correlation between two variables X and Y is 0.5, their covariance is 15 and $\sigma_x = 6$, then $\sigma_y = [AMU\ 1998]$

(d) None of these

39.

(b) -1

	(a) 5		(b)	10				(c)	20			(d) 6	
40.	Karl Pearson's c Chemistry in a cla					ion bet	ween	the r	anks o	btain	ed by	ten students in Mat	hematics and
	Rank Mathematics :	in	1	2 3	4	5	6	7	8	9	10		
	Rank in Chemis	stry	3 1	10 5	1	2	9	4	8	7	6		
	is												[AISSE 1990]
	(a) 0.224		(b)	0.204				(c)	0.240			(d) None of th	ese
41.	The sum of square 150, then the co-							ained	in Phy	sics a	nd Che	emistry by 10 studen	nts in a test is
	(a) 0.909		(b)	0.091				(c)	0.849			(d) None of th	ese
42 .	If <i>a</i> , <i>b</i> , <i>h</i> , <i>k</i> are co	onstants	s, whil	e <i>U</i> and	l Vare	$U = \frac{X - X}{h}$	- <u>a</u> , V	$=\frac{Y-}{k}$	<u>b</u> , ther	1			[DCE 1999]
	(a) $Cov(X, Y) =$	Cov (U	, V)						(b)			Cov(X, Y) = h	k Cov (U, V)
	(c) $Cov(X, Y) =$	ab Cov	(<i>U</i> , <i>V</i>)				(d)	Cov (I	IJ, U) =	hk Co	ov (X, Y)	
43.	Let X , Y be two very $2X$, $V = 3Y$, then				tion co	efficien	t ρ(X ,	Y) an	d varia	bles <i>l</i>	^y , Vbe	related to X , Y by th	e relation <i>U</i> = [AMU 1999]
	(a) $\rho(X, Y)$		(b)	6 ρ(X , 1	Y)			(c)	$\sqrt{6}\rho(X)$	K, Y)		(d) $\frac{3}{2}\rho(X,Y)$	
44.	If X and Y are two	uncor	relate	d variab	oles and	d if <i>u</i> =.	X + Y ,	v = X	√- Y , tl	hen <i>r</i> (<i>u</i> , <i>v</i>) is	equal to	[DCE 1998]
	$(a) \frac{\sigma_x^2 + \sigma_y^2}{\sigma_x^2 - \sigma_y^2}$		(b)	$\frac{\sigma_{x}^{2} - \sigma}{\sigma_{x}^{2} + \sigma}$.2 y .2 y			(c)	$\frac{\sigma_{x}^{2} + \sigma_{x}^{2}}{\sigma_{x}\sigma_{y}}$	$\frac{\nabla_y^2}{y}$		(d) None of th	ese
45 .	If $\overline{x} = \overline{y} = 0$, $\sum x_i y_i = 0$	= 12, σ_{x}	$=$ 2 , σ	_y = 3 an	nd <i>n</i> = 1	10, then	the c	oeffic	ient of	corre	lation i	s	[MP PET 1999]
	(a) 0.4		(b)	0.3				(c)	0.2			(d) 0.1	
46.	Let X and Y be two Then $Cov(U, V)$ is			with the	e same	varianc	e and	<i>U</i> and	d Vbe	two v	ariable	s such that $U = X +$	$Y, \ V = X - Y.$
	(a) Cov (X, Y)		(b)	0				(c)	1			(d) –	
47 .	If there exists a li	inear st	tatistic	cal relat	tionship	p betwe	en two	o varia	ables <i>x</i>	and j	y, then	the regression coeffi	cient of <i>y</i> on <i>x</i> [MP PET 1998]
	(a) $\frac{cot(x,y)}{\sigma_x \cdot \sigma_y}$												
	(b) $\frac{cot(x,y)}{\sigma_y^2}$												
	(c) $\frac{cot(x,y)}{\sigma_x^2}$												
	(d) $\frac{cot(x,y)}{\sigma_x}$, whe	ere σ_{x} ,	$\sigma_{\it y}$ are	standa	rd devi	ations o	of <i>x</i> an	ıd <i>y</i> re	spectiv	ely.			
48 .	If $ax + by + c = 0$ is	s a line	of reg	ression	of y on	x and	a ₁ x +	b ₁ y + c	$\mathbf{t_1} = 0 \ \mathbf{t}$	hat of	x on y,	then	
	(a) $a_1b \leq ab_1$		(b)	$aa_1 = b$	þ			(c)	ab _l ≤ a	4 <i>b</i>		(d) None of th	ese
49 .	Least square lines	s of reg	ressio	n give b	est pos	ssible es	stimat	es, wl	hen $\rho(X)$	<i>Y</i> , <i>Y</i>) is	6		[DCE 1996]
	(a) <1		(b)	> -1				(c)	-1 or 1	1		(d) None of th	ese

50 .	Which of the following	statement is correct		[Kurukshetra CEE 1995]
	(a) Correlation coeffic	ient is the arithmetic mean of th	ne regression coefficient	
	(b) Correlation coeffici	ient is the geometric mean of th	e regression coefficient	
	(c) Correlation coeffici	ient is the harmonic mean of the	e regression coefficient	
	(d) None of these			
51 .	The relationship between	en the correlation coefficient $m{r}$ a	nd the regression coefficients (b_{xy} and b_{yx} is[MP PET 2003; Pb. CET 1
	(a) $r=\frac{1}{2}(\boldsymbol{b}_{xy}+\boldsymbol{b}_{yx})$	(b) $r = \sqrt{b_{xy} \cdot b_{yx}}$	$(c) r = (b_{xy}b_{yx})^2$	(d) $r = b_{xy} + b_{yx}$
52 .	If the coefficient of cor	relation is positive, then the reg	ression coefficients	[Pb. CET 1998; PU CET 2002]
	(a) Both are positive			
	(b) Both are negative			
	(c) One is positive and	l another is negative		
	(d) None of these			
53 .	If b_{yx} and b_{xy} are both	positive (where b_{yx} and b_{xy} are	regression coefficients), then	[MP PET 2001]
	(a) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{2}{r}$		(b) $\frac{1}{b_{yx}} + \frac{1}{b_{xy}} > \frac{2}{r}$	
	$(c) \frac{1}{b_{yx}} + \frac{1}{b_{xy}} < \frac{r}{2}$		(d) None of these	
54 .	If x_1 and x_2 are regres	sion coefficients and r is the co	efficient of correlation, then	
	(a) $x_1 - x_2 > r$	(b) $x_1 + x_2 < r$	(c) $x_1 + x_2 \ge 2r$	(d) None of these
55 .	If one regression coeffic	cient be unity, then the other wi	ll be	
	(a) Greater than unity	(b) Greater than or equal to	unity (c)	Less than or equal to unity (d)
56 .	If one regression coeffic	cient be less than unity, then the	e other will be	
	(a) Less than unity	(b) Equal to unity	(c) Greater than unity	(d) All of the above
57 .	If regression coefficient	of y on x is 2, then the regressi	on coefficient of x on y is	[AMU 1990]
	(a) 2	(b) $\frac{1}{2}$	(c) $\leq \frac{1}{2}$	(d) None of these
58 .	The lines of regression	of <i>x</i> on <i>y</i> estimates		[AMU 1993]
	(a) x for a given value	of $y(b)$ y for a given value of x	(c) x from y and y from x	(d) None of these
59 .	The statistical method of the related variable i		redict the unknown value of one	e variable from the known value [Pb. CET 1995]
	(a) Correlation	(b) Scatter diagram	(c) Regression	(d) Dispersion
60.	The coefficient of corre the regression coefficie		and y is 0.8 while regression c	oefficient of y on x is 0.2. Then [MP PET 1993]
	(a) -3.2	(b) 3.2	(c) 4	(d) 0.16
61.	If the lines of regression	n coincide, then the value of co	rrelation coefficient is	
	(a) 0	(b) 1	(c) 0.5	(d) 0.33
62 .	Two lines of regression	are $3x+4y-7=0$ and $4x+y-5=0$	5 = 0 . Then correlation coefficie	int between x and y is[AI CBSE 1991]
	(a) $\frac{\sqrt{3}}{4}$	(b) $-\frac{\sqrt{3}}{4}$	(-) 3	(1) 3
	$(a) \frac{}{4}$	(b) $-{4}$	(c) $\frac{3}{16}$	(d) $-\frac{3}{16}$
63.	If the two lines of regre	ssion are $4x+3y+7=0$ and $3x$	x+4y+8=0 , then the means of	x and y are [AI CBSE 1990]
	(a) $-\frac{4}{7}, -\frac{11}{7}$	(b) $-\frac{4}{7}, \frac{11}{7}$	(c) $\frac{4}{7}$, $-\frac{11}{7}$	(d) 4, 7
64.	The two regression line	s for a bivariate data are $x+y+$	$50 = 0$ and $2x + 3y + K = 0$. If \bar{x}	$\bar{x} = 0$, then \bar{y} is

				[BCA Delhi Entrance Exam. 1999]
	(a) 50	(b) <i>K</i> -100	(c) - 50	(d) 50+ K
65 .	The two regression lines	are $2x-9y+6=0$ and $x-2y+1=0$	= 0 . What is the correlation	coefficient between x and y(DCE 1999)
	(a) $-\frac{2}{3}$	(b) $\frac{2}{3}$	(c) $\frac{4}{9}$	(d) None of these
66.	If the two regression coe	efficient between x and y are 0.8 a	nd 0.2, then the coefficient o	of correlation between them is[MP PET
	(a) 0.4	(b) 0.6	(c) 0.3	(d) 0.5
67.	The two lines of regressi	ion are given by $3x + 2y = 26$ and	6x + y = 31. The coefficient	of correlation between <i>x</i> and <i>y</i> [DCE 2000]
	$(a) -\frac{1}{3}$	(b) $\frac{1}{3}$	(c) $-\frac{1}{2}$	(d) $\frac{1}{2}$
68.	If the lines of regression	be $x-y=0$ and $4x-y-3=0$ an	ad $\sigma_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{_{$	nt of correlation is
	(a) - 0.5	(b) 0.5	(c) 1.0	(d) -1.0
69.	A student obtained two	regression lines as $L_1 \equiv x - 5y + 7$	$= 0 \text{ and } L_2 \equiv 3x + y - 8 = 0.$	Then the regression line of y on
	(a) L_1	(b) L ₂	(c) Neither of the two	$(\mathbf{d}) \mathbf{x} - 5 \mathbf{y} = 0$
70 .	If b_{yx} and b_{xy} are regrestrue	ssion coefficients of y on x and x	on y respectively, then which	ch of the following statement is
				[Pb. CET 1996]
	(a) $b_{xy} = 1.5, b_{yx} = 1.4$	(b) $b_{xy} = 1.5, b_{yx} = 0.9$	(c) $b_{xy} = 1.5, b_{yx} = 0.8$	(d) $b_{xy} = 1.5, b_{yx} = 0.6$
71 .	Angle between two lines	of regression is given by]	Kurukshetra CEE 2000; DCE 1998]
	(a) $\tan^{-1} \left(\frac{b_{yx} - \frac{1}{b_{xy}}}{1 + \frac{b_{xy}}{b_{yx}}} \right)$	(b) $ an^{-1} \left(\frac{oldsymbol{b}_{yx} - oldsymbol{b}_{xy} - 1}{oldsymbol{b}_{yx} + oldsymbol{b}_{xy}} \right)$	$(c) \tan^{-1} \left(\frac{\boldsymbol{b}_{xy} - \frac{1}{\boldsymbol{b}_{yx}}}{1 + \frac{\boldsymbol{b}_{xy}}{\boldsymbol{b}_{yx}}} \right)$	$(\mathbf{d}) \mathbf{tan}^{-1} \left(\frac{\boldsymbol{b}_{yx} - \boldsymbol{b}_{xy}}{1 + \boldsymbol{b}_{yx} \cdot \boldsymbol{b}_{xy}} \right)$
72 .	If acute angle between th	he two regression lines is $ heta$, then		
	(a) $\sin\theta \ge 1-r^2$	(b) $\tan\theta \ge 1-r^2$	(c) $\sin\theta \le 1-r^2$	(d) $\tan\theta \leq 1-r^2$
73 .	If the angle between the	two lines of regression is 90°, the	n it represents	[DCE 1999]
	(a) Perfect correlation	(b) Perfect negative correlation	n (c) No linear correlation	(d) None of these
74 .	If $2x + y = 7$ and $x + 2y = $	7 are the two regression lines res	spectively, then the correlati	ion co-efficient between $oldsymbol{x}$ and $oldsymbol{y}$
	is			[DCE 1983; AMU 1993]
	(a) + 1	(b) -1	(c) $+\frac{1}{2}$	(d) $-\frac{1}{2}$
7 5.	For a perfect correlation $\rho(\mathbf{x}, \mathbf{y}) =$	n between the variables x and y , t	2	2
				[AMU 1999]
	(a) 0	(b) -1	(c) 1	(d) None of these
76 .	If two random variables correlation coefficient r_x	s X and Y of a bivariate distrib $_{x_y}$ equals	ution are connected by the	relationship $3x+2y=4$, then [AMU 1999]
	(a) 1	(b) -1	(c) 2/3	(d) -2/3
77 .		re related by the linear equation a	ax+by+c=0 . The coefficient	of correlation between the two

(c) a and b both are positive

[DCE 2002]

(d)a and b are of opposite sign

is +1, if

(a) a is positive

(b) **b** is positive

	(a) +1	(b) -1	(c) $-\sqrt{\frac{5}{21}}$	(d) $-\sqrt{\frac{21}{5}}$
79 .	2. The error of prediction of x from the required line of regression is given by,			
	(where ρ is the co-efficient of correlation) [AMU 1992]			
	(a) $\sigma_x(1-\rho^2)$	(b) $n\sigma_x^2(1-\rho^2)$	(c) $\sigma_x^2(1-\rho^2)$	(d) $n\sigma_y^2(1-\rho^2)$
80.	Probable error of r is			
	(a) $0.6745 \frac{1-r^2}{\sqrt{n}}$	(b) $0.6754 \left(\frac{1+r^2}{\sqrt{n}} \right)$	(c) $0.654\sqrt[4]{\frac{1-r^2}{n}}$	(d) $0.6754 \frac{1-r^2}{n}$
81.	For the following data			
		x y		
	Mean	65 67		
	Standard deviation	5.0 2.5		
	Correlation coefficient	0.8		
	Then the equation of line	e of regression of y on x is		
	(a) $y-67=\frac{2}{5}(x-65)$	(b) $y-67=\frac{1}{5}(x-65)$	(c) $x-65=\frac{2}{5}(y-67)$	(d) $x-65=\frac{1}{5}(y-67)$
82 .	If the lines of regression of y on x and that of x on y are $y = kx + 4$ and $x = 4y + 5$ respectively, then			
	(a) $k \leq 0$	(b) k ≥ 0	$(\mathbf{c}) 0 \le \mathbf{k} \le \frac{1}{4}$	(d) $0 \le k \le 1$
83.	From the following obser	rvations $\{(x, y)\} = \{(1,7), (4,5), (7,2), (4,5), (7,2), (4,5), $	(10,6),(13,5)}. The line of regr	ession of y on x is[Al CBSE 1991]
	(a) $7x + 30y - 187 = 0$	(b) $7x - 30y - 187 = 0$	(c) $7x - 30y + 187 = 0$	(d) None of these
84.	If the variance of $x = 9$ and regression equations are $4x-5y+33=0$ and $20x-9y-10=0$, then the coefficient of correlation between x and y and the variance of y respectively are [AMU1997, 2002]			
	(a) 0.6; 16	(b) 0.16; 16	(c) 0.3; 4	(d) 0.6; 4
85 .	If the two lines of regress	sion are $x+4y=3$ and $3x+y=1$	5 , then value of x for $y=3$ is	[DCE 1998]
	(a) 4	(b) -9	(c) -4	(d) None of these
86.	Which of the following two sets of regression lines are the true representative of the information from the bivariate population			
	I. $x+4y=15$ and $y+3x=1$	$=12\bar{x}=3,\bar{y}=3$ II. $3x$	$x + 4y = 9$ and $4x + y = 1, \bar{x} = -\frac{1}{2}$	$\frac{5}{10}$, $\overline{y} = \frac{30}{13}$ [AMU 2000]
	(a) Both I and II	(b) II only	(c) I only	(d) None of these
87 .	Out of the two lines of re	egression given by $x+2y=4$ and	2x+3y-5=0, the regression	n line of $m{x}$ on $m{y}$ is[Kurukshetra CEE 199
	(a) $x+2y=4$		(b) $2x+3y-5=0$	
	(c) The given lines cann	ot be the regression lines	(d) $x+2y=0$	
88.	Regression of savings (S) of a family on income Y may be expressed as $S = a + \frac{Y}{m}$, where a and m are constants. In a			
	random sample of 100 families the variance of savings is one-quarter of the variance of incomes and the correlation coefficient is found to be 0.4 . The value of m is			
	(a) 2	(b) 5	(c) 8	(d) None of these

If the two lines of regression are 5x+3y=55 and 7x+y=45, then the correlation coefficient between x and y is [AMU 1998]

78.