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INTRODUCTION

The importance of local field fluctuations in biological

systems has been raised by several authors: Weaver and

Astumian (1) presented a calculation of the effects of weak

fields on cells. Procopio and Fornés (2), using the fluc-

tuation–dissipation theorem (FDT), presented a calcula-

tion of the voltage fluctuations across cell membranes.

Protonic fluctuations could be the cause of the dielectric

increment of proteins in solution (3, 4). For fluctuations of

ion distribution in colloid and polyelectrolyte solutions,

see, for instance, (5–9). Local fluctuations can also influ-

ence chemical reactions (10). Oosawa (11) calculated that

the magnitude of fluctuating voltage and field across dif-

ferent points of an electrolyte solution constituted of point

ions using the method of the mode expansion (5, 6, 12–14).

To estimate the electrical fluctuations in small systems,

we have to know the electrical capacitance that emerges as

a consequence of the processes or by the proper interfaces

in the systems (15) e.g., protonation–deprotonation equi-

librium at interfaces and in the bulk, the fluctuation of the

ionic atmosphere surrounding a charged surface or macro-

ion in an electrolyte solution, also the cell and the inner

mitochondrial membranes and the ionic channels, can be

well represented by combinations of resistances and capa-

citances, etc. The electrical capacitance is the link to the

knowledge of the fluctuation of several physical quan-

tities: voltage and field fluctuations, (1, 2, 7–9, 16), dipole

moment, (8, 9, 17), pH, charge, (18), and the polarizabity

and dielectric dispersion of molecular systems (8, 17). In

the present article, we estimate the electrical capacitance

of several small systems and discuss the implication of its

magnitude in the values of several physical fluctuating

quantities.

THE ELECTRICAL CAPACITANCE

The Fluctuation–Dissipation Theorem

The timescale of the mentioned processes is in the ms–ns

range, hence, we can make use of the fluctuation–dis-

sipation theorem (FDT) in the classical limit (kT � h̄o

or o � kTh̄�1 = 4� 1013s�1) (8a,15), namely (see

APPENDIX for demonstration).

D
ðDxÞ2

E1
2
D
ðDf Þ2

E1
2 ¼ kT ð1Þ

where h(Dx)2i12 is the square root of the mean square of

the spontaneous fluctuations of a quantity x, as due to the

action of some random force f senses by the environment,

whose corresponding square root of the mean square of

the fluctuations is h(Df )2i12.

To simplify the notation, we rewrite Eq. 1 as

dx 
 df ¼ kT ð2Þ

This equation shows a constant equilibrium between the

system and the environment, when df increases in the

ambient, the system reacts in such a way as to inhibit the

fluctuation of the corresponding physical quantity x and

vice versa in order to mantain the product constant equal

to kT. We also observe that the product x� f has dimen-

sion of energy.

Capacitance Definition

As an example of Eq. 2, we can consider in a capacitor the

relation between the statistical fluctuation of charge, dq,

and the corresponding fluctuation of potential, dc, sensed

by the environment

dq 
 dc ¼ kT ð3Þ

We can define the capacitance as

C ¼ dq

dc
) dq ¼ C 
 dc ð4Þ

From Eqs. 3 and 4, we obtain the following relations

C ¼ ðdqÞ2

kT
dc ¼ kT

C

� �1
2

dq ¼ ðkT 
CÞ
1
2

ð5Þ

a In this reference, we used the notation x for Dx.
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These relations have already been used by several

authors in various situations (1, 2, 7–9, 16–18).

The SI system of units is employed throughout this

article, namely: eo is the permittivity of vacuum (eo =

8.85� 10�12 C2N�1m�2), e is the dielectric constant of the

medium (e = 80), eo is the proton charge (eo = 1.602

� 10�19 C), k is Boltzmann constant (k = 1.381� 10�23

J/K), T is the absolute temperature.

In Table 1, the relations of Eq. 5 are shown numerically.

From the third and fourth column, we can observe the

increase of potential and field fluctuations with the dec-

rease of the capacitor value and size. The fifth column

shows the diminution of charge fluctuations (number of

elementary charges) with the corresponding decrease of

the capacitor value and size. The minimum capacitance

value at room temperature supporting one elementary

charge fluctuation is

ðeoÞ2

kT
¼ 6:2 aF;

which corresponds to a cubic capacitor in water of side

d = 87 Å. Inside vesicular biological systems in water

with sizes approximately lower than this, charge fluctua-

tions are fractions of one elementary charge (see discus-

sion on this subject in (18)). Biological polyelectrolyte

systems have the property of storing a great amount of

charge in a small volume (great electrical capacitance).

Consequently, the electrical fluctuations are smaller than

the example of the cubic capacitor. For example (8), a

DNA molecule of 7800 Å (4627 charged groups) has an

electrical capacitance of 133 pF (dE = 1687 V m�1).

Next, we analize the capacitance of various capacitors

that appear in polyelectrolytes, and colloidal and vesicular

biological systems and the corresponding influence in the

electrical fluctuations.

ELECTRICAL FLUCTUATIONS AROUND
A CHARGED COLLOID OR MACROION
IN AN ELECTROLYTE

Spherical Charged Colloidal System

In this section, we will derive equations valid for the fol-

lowing two systems:

a. A solution of spherical charged particlesb of radii a

immersed in a symmetrical electrolyte solution of

point ions (Fig. 1A).

b. A symmetrical electrolyte solution whose ions

have a mean radius a (Fig. 1B).

Table 1 Potential, electric field, and charge fluctuations as related to given values and sizes of the capacitors (From Ref. 15)

C d ¼ C=ðeeoÞ dc dE ¼ ðdcÞ=d ðdqÞ=eo

1. pF 1.4 mm 64. mV 46:
mV

m
402.

1. f F 1.4 mm 2. mV 1:4
kV

m
13.

100. aF 1400. Å 6. mV 43:
kV

m
4.

10. aF 140. Å 20. mV 1:4
MV

m
1.3

ðeoÞ2

kT
¼ 6:2 aF

87. Å 26. mV 9:6
MV

m
1

1. aF 14. Å 64. mV 46:
MV

m
0.4

Cubic capacitor: C ¼ ðA=dÞeeo, A = d2, e = 80, aF � atto, F = 10�18F.

b It can also be polyelectrolytes.
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The Debye-Hückel theory (19) for a symmetrical elec-

trolyte of valence z with n ions per m3 gives for the po-

tential, (r) surrounding an spherical particle of charge Q

cðrÞ ¼ Q

4peeo

eka

1 þ ka

e�kr

r
ð6Þ

a is the particle radius and k, called the Debye-Hückel

reciprocal length parameter, is given by

k2 ¼ e2
0

eeokT

X
Zi0z2

i ¼ 2000e2
0NA

eeokT

1

2

X
ciz

2
i

� �
ð7Þ

where Zi0 and ci are the number of ions per m3 and the

concentration in moles/liter of ion specie i far away from

the surface. The quantity

I ¼ 1

2

X
ciz

2
i

quantifies the charge in an electrolyte solution and is called

the ionic strength after Lewis and Randall (20). In case of a

solution of a symmetrical (z–z) electrolyte, we have

k2 ¼ 2ðe0zÞ2

eeokT
n ¼ 2ðe0zÞ2

eeokT
NAc103

¼ 8pz2lBNAc103 ð8Þ

where NA is Avogadro constant, c is the solution concen-

tration in moles/liter, and lB (Bjerrum length) is the dis-

tance at which the Coulombic energy is equal to kT (lB =

7.13 Å at 25�C in water) namely

lB ¼ e2
0

4peeokT
ð9Þ

Eq. 6 is limited to solutions in which the ratio of the

electrical to the thermal energy of the ions is small, namely

ze0cðrÞ
kT

� 1 ð10Þ

At the particle surface, r = a, then

cðaÞ ¼ Q

4peeoa

1

1 þ ka

¼ Q

4peeoa
� Q

4peeo

k
1 þ ka

ð11Þ

The first term on the right-hand side of Eq. 11 is the po-

tential cQ at the surface of the particle solely due to the

charge on the particle itself. The second term is the portion

ccloud of the total potential that is due to the arrangement

of the surrounding ions in the neighborhood of the particle

and is called the potential of the ionic atmosphere. The

contribution of the cloud to the potential can be written as

ccloudðrÞ ¼ Q

4peeor

ekða�rÞ

1 þ ka
� 1

� �
¼ �Q

4peeox
ð12Þ

with x given by

x ¼ rð1 þ kaÞ
1 þ ka � ekða�rÞ ð13Þ

Ionic Cloud Capacitance

The electric charge is distributed in the ionic atmosphere

with charge density r, then each spherical thin shell has

an excess charge dq = r4pr2dr. Because of the spherical

symmetry, we tranformed the ionic atmosphere into a thin

spherical shell with a charge �Q placed at a distance x from

the site of the central ion. In this way, the central particle or

ion and the shell constitute a capacitor, see Fig. 2.

Fig. 1 (A) Spherical charged particles of radii a immersed in a

symmetrical electrolyte solution of point ions. (B) Symmetrical

electrolyte solution of ions having a mean radius a. (From Ref. 7.)
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For calculating the capacitance, we need to compute

the difference of potencial of the ionic atmosphere be-

tween the surface of the particle or ion, x(a), and x(r),

namely

ccloudðaÞ � ccloudðrÞ ¼ �Q

4pee0r

� �1 þ kðr � aÞ þ ekða�rÞ

1 þ ka

� �
ð14Þ

The corresponding ionic cloud capacitance will be

CðrÞ ¼ Q

ccloudðaÞ � ccloudðrÞ
ð15Þ

namely

sphereCDHðrÞ ¼ 4pee0rð1 þ kaÞ
�1 þ kðr � aÞ þ ekða�rÞ ð16Þ

The usefulness of Eq. 16 is that it allows us to esti-

mate the electrical fluctuations of the system as a function

of the distance from the particle.

The ionic cloud capacitance for r ! 1 , is given by

sphereCDH
1 ¼ Q

ccloudðaÞ
¼ 4pee0ða þ k�1Þ ð17Þ

The entire charge of the ionic atmosphere, �Q, given

by Eq. 17, can be considered as it is placed on a thin

spherical shell at a distance x = a +k�1 from the center of

the particle.

In the case that the Debye-Hückel approximation

Eq. 10 is not longer valid, we have to numerically solve

the Poisson-Boltzmann (P-B) equation and use the follow-

ing equation for the spherical ionic cloud capacitance

sphereCðrÞ

¼ Q cPBðrÞ � cPBðaÞ þ
Q

4pee0

1

a
� 1

r

� �� ��1

ð18Þ

with sphereC1 given by

sphereC1 ¼ Q
Q

4pee0a
� cPBðaÞ

� ��1

ð19Þ

For details of the numerical integration of P-B in cy-

lindrical and spherical systems, see Refs. 9, 15.

Relaxation Time

Suspended charged particles

In this case, we deduce the relaxation time as follows: The

central particle practically loses its cloud if it diffuses to a

distance l during relaxation time t of the fluctuation. In

this way, l is given by

l ¼ tuparticle ¼ tmparticledE ð20Þ

where vparticle and mparticle are the velocity and mobility of

the charged particle in solution. The mobility of a particle

of charge Q is given by

mparticle ¼ Q

f
¼ Q

Dparticle

kT

� �
ð21Þ

where f (kg 
 s�1) is the frictional coefficient of the par-

ticle and Dparticle is its diffusion coefficient (m2s�1). For a

sphere, the frictional coefficient is given by (21)

f ¼ 6pZa ð22Þ

As

dE ¼ dc
l

¼ 1

l
kT

C1

� �1
2
;

then from Eq. 20, we have

t ¼ l
mparticledE

¼ l2

mparticle

C1
kT

� �1
2

ð23Þ

Fig. 2 Transformation of the central ion together with its ionic atmosphere into a capacitor. (From Ref. 7.)
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For the case of spherical particles in the D-H approxima-

tion, l = k�1 and C1 ¼ 4pee0ða þ k�1Þ, then Eq. 23,

gives

t ¼ 1

k2mparticle

4pee0ða þ k�1Þ
kT

� �1
2

ð24Þ

Ionic solutions

The ionic relaxation time of the fluctuations can be esti-

mated from the following equation (see, i.e., Reitz and

Milford, 1967 (22))

t ¼ ee0r ð25Þ

with r being the solution electrical resistivity.

For solutions of monovalent electrolytes at concentra-

tions 10–100 mM this time is in the nanoseconds range

(7).

Method

The method to estimate the electrical fluctuations around

a colloidal or polyelectrolyte system in solution, was de-

veloped in Ref. 7 and the procedure is as follows:

1. Identification of the molecular-ionic capacitor of

the system. The capacitance CðrÞ given by Eq. 15.

2. The voltage and field mean square fluctuations are

given byD
ðccloudðrÞ � ccloudðaÞÞ

2
E

¼ kT

CðrÞ ð26Þ

D
ðErðrÞÞ2

E
¼

D
ðccloudðrÞ � ccloudðaÞÞ

2
E

r2
ð27Þ

3. The spectral density of the mean square of the

fluctuational potential and field are given by

ðccloudðrÞ � ccloudðaÞÞ
2

h i
o

¼ 2tkT

CðrÞ 1 þ ðotÞ2
h i ð28Þ

To center the spectrum in

o0 ¼ 2p
t
;

we have to replace o ! o�o0 in Eq. 28

ðErðrÞÞ2
h i

o
¼

ðccloudðrÞ � ccloudðaÞÞ
2

h i
o

r2
ð29Þ

4. The mean square of the fluctuational potential and

field averaged in a time, Dt, are given by

tD
ðccloudðrÞ � ccloudðaÞÞ

2
E

¼ kT

CðrÞ
t
D t

h i�
1 � e

Dt
t

�
ð30Þ

tD
ðErðrÞÞ2

E ¼

tD
ðccloudðrÞ � ccloudðaÞÞ

2
E

r2
ð31Þ

Ionic Solutions

The electrical mean square fluctuations

Applying Eqs. 16 and 26, we obtain the mean square of the

fluctuating potential difference in the DH approximationD
ðccloudðrÞ � ccloudðaÞÞ

2
E

¼
kT �1 þ kðr � aÞ þ ekða�rÞ
 �

4pee0rð1 þ kaÞ ð32Þ

The mean square of the field averaged over the distance r

is, Eq. 27,

D
ðErðrÞÞ2

E
¼

kT �1 þ kðr � aÞ þ ekða�rÞ
 �
4pee0r3ð1 þ kaÞ ð33Þ

Equations for long distances and planar geometry were

developed in (7).

The spectral density fluctuations

From Eqs. 16, 25, and 28; we get the spectral density of

the mean square of the fluctuational potential

ðccloudðrÞ � ccloudðaÞÞ
2

h i
o

¼ kTr

1 þ ðee0roÞ2

�1 þ kðr � aÞ þ ekða�rÞ

2prð1 þ kaÞ ð34Þ

Correspondingly, the spectral density of the mean square

of the fluctuational electric field is given by Eq. 29

ðErðrÞÞ2
h i

o
¼ kTr

1 þ ðee0roÞ2

��1 þ kðr � aÞ þ ekða�rÞ

2pr3ð1 þ kaÞ ð35Þ

The results of these two former equations are a substantial

diminution and broadening of the spectrum with increas-

1708 Electrical Fluctuations in Small Systems



ing concentration and the corresponding diminution of the

relaxation time of the fluctuations. Also, an effect of

electrical stabilization can be observed, capacitive effect,

a diminution of the amplitude of the fluctuations with

increasing particle size, see spectra in Ref. 7 for a KCl

solution.

Spherical Particles

In Fig. 3A and 3B we can observe the mean potential and

field fluctuations for different particle sizes immersed in

1-1, 100 mM electrolyte, obtained from Runge-Kutta nu-

merical solution of the P-B equation. The existence of

substantial increase in voltage fluctuations is observed

with increasing d. We can also observe the capacitive ef-

fect, when large particles produce electrical stabilization

in their neighborhood. Another result, (7, 9) is that fluc-

tuations are not very sensitive to ionic concentrations for

large particles.

Cylindrical Charged Colloidal Particle

We consider a rigid rodlike polyelectrolyte or particule of

radius a, with N charged groups and length L � a, so that

end effects may be neglected, then b = L/N is the linear

charge spacing. The charge Q is distributed uniformly

over the surface, with an electrical surface potential c0.

The particle is immersed in a solution of pointlike ions of a

symmetrical electrolyte of valence z with n ions per m3.

The contribution of the ionic cloud to the electrostatic

potential will be (9)

ccloudðrÞ ¼ cðrÞ þ 2kTx
e0

lnðrÞ ð36Þ

where x = lB/b is the dimensionless ratio called the re-

duced linear charge density (i.e., a B-DNA molecule has

two negative phosphate charges each at a helical spacing

of 3.37 Å, then x = lB/b = 7.13� (2/3.37) = 4.23).

Eq. 36 is valid for distances not very far away from the

rod surface, r � L.

Then the ionic cloud capacitance, Eq. 15, is

rodCðrÞ ¼ L

lB
e0x cPBðrÞ � cPBðaÞ þ

2kTx
e0

ln
r

a

� 
� ��1

ð37Þ
where x is the reduced linear charge density over the rod

surface (9). In this case, the DH approximation (Eq. 10) is

valid, then Eq. 37 can be written as

rodCDHðxÞ

¼ 2pLee0
K0ðxÞ � K0ðx0Þ

x0K1ðx0Þ
þ ln

x

x0

� �� ��1

ð38Þ

with rodCDH
1 given by (15, 17)

rodCDH
1 ¼ Q

ccloudðx0Þ

¼ 2pLee0
K0ðx0Þ

x0K1ðx0Þ
þ lnðx0Þ

� ��1

ð39Þ

In general, rodC1, is given by

rodC1 ¼ Q

ccloudðx0Þ
¼ 4pLee0x

yðx0Þ þ 2zx lnðx0Þ
ð40Þ

where y(x0) = e0c(x0)/kT and x0 = ka are the dimen-

sionless potential and distance.

Fig. 3 Mean potential (A) and field fluctuations (B) for spherical particles with different sizes immersed in 100 mM 1-1 electrolyte in

water, obtained from Runge-Kutta numerical solution of the P-B equation, d is the distance from particle surface.

E
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The thermal electrical fluctuations around charged col-

loidal cylinders in electrolyte solutions were estimated

(9). It was determined that large particles produce electri-

cal stabilization in their neighborhood (capacitive effect).

Voltage fluctuations run from 1 to 12 mV, with the cor-

responding field fluctuations spanning a range of 10 to 400

mV Å�1.

Fig. 4 shows the local electrical fluctuations for cylin-

drical polyeletrolytes immersed in 100 mM 1-1 electrolyte

in water, the voltage fluctuations (A) are in the range

(0–3) mV and the corresponding field fluctuations in the

(0–40)mV/Å. Eqs. 26, 27, and 37 were used.

Global Electrical Fluctuations

We are sometimes interested in calculating the fluctua-

tions, not as a function of the distance from the particle or

ion, but rather the global fluctuations, produced by the

whole dissipation of the ionic cloud. This is quite useful

when estimating the dielectric relaxation of the system,

(8, 17). We have already given an introduction of this

when we estimated the relaxation time of suspended

charge particles.

In order to estimate the fluctuations of the electric field

and dipole moment, we use the derived equations (8, 15).

The voltage fluctuation is given by

dc ¼ kT

C

� �1
2

ð41Þ

and the field fluctuation by

dE ¼ 1

l
kT

C

� �1
2

ð42Þ

Correspondingly, the dipole moment fluctuation and the

polarizability at zero frequency (a(0) = dp/dE) are given

by

dp ¼ kT

dE
að0Þ ¼ Cl2 ð43Þ

with l being the average displacement of the ions under

the influence of the thermal fluctuating field, given by

Eq. 23

l2 ¼ tm
kT

C

� �1
2

ð44Þ

where C ¼ C1 in the case of global fluctuations of the

ionic cloud surrounding a particle or can also be the capa-

citance Cbound of the ‘‘bound’’ ions in a polyelectrolyte.

The corresponding global spectral density of the mean

square of the fluctuational potential and field are given by

ðdcÞ2
h i

o
¼ 2tkT

CðrÞ 1 þ ðotÞ2
h i ð45Þ

ðdEÞ2
h i

o
¼

ðdcÞ2
h i

o

l2
ð46Þ

As an example, we will estimate the global electrical

fluctuations of suspended spherical vesicles

Spherical vesicles

Fig. 5 shows a schematic depiction of the system. Table 2

shows the external global fluctuational quantities, obtain-

ed by numerically solving the P-B equation, for different

sizes bilayer lipid vesicles immersed in 100 mM symmet-

Fig. 4 Mean potential (A) and field fluctuations. (B) Numerical solutions of the P-B equation for different radii cylindrical

polyelectrolytes immersed in 100 mM 1-1 electrolyte in water, d is the radial distance from the cylinder surface.
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rical monovalent electrolyte (k�1 = 9.63 Å), mantaining

the degree of dissociation constant a = 0.3 with the in-

terfacial pK given by (23)

pK i
a ¼ pH þ 0:434ys � log10

a
1 � a

ð47Þ

with the reduced interfacial potential

ys ¼ e0cs

kT

and pH = 7.4, S = 70 Å2/charged group, correspondingly

s ¼ � e0

S

� 

a ¼ �ðe0=70A2Þ � 0:3

¼ �6:87 � 10�2 C:m�2:

We can observe that the obtained values of pKa
i are in the

order of magnitude of the corresponding value of pKa
i for

the group COO � of the lipid phosphatidylserine.

Fig. 6A and 6B show, for this example, the potential

mean squares global fluctuations, Eq. 45, mantaining the

concentration of the electrolyte and size of the particles

constant, respectively, in both cases s is constant. We also

observe the broadening and diminution of the spectra as

particle sizes and concentration increase.

For solving the P-B equation in the interior of the ve-

sicle, we can approximate the surface charge density in the

interior surface, sin, by a variation of the formula given by

Israelachvili (24)

sin ¼ sout
RoutðRin � k�1

in Þ
RinðRout � k�1

outÞ
ð48Þ

where �out is the known surface charge density on the outer

surface, Rin, and Rout are the internal and external radii of

the vesicle, and kin and kout are the Debye-Hückel

reciprocal length parameters of the internal and external

bathing solutions.

Reverse micelle

In Table 3, nsg = 4p a2/S is the number of surface groups;

S = 55 Å2 is the head groups mean area; n + = ansg, in

order to preserve the charge neutrality in the microcavite

(25, 26), is the number of positive charges in the solution,

n_ = 0., a = 3 vwW0/S is the micellar radius (27), vw =

30 Å3 is the mean volume of water molecule in the bulk,

W0 ¼ ½H2O�
½AOT�

is the molar ratio water:detergent, AOT is the nomencla-

ture for the sodium-di-2ethylhexyl sulphosuccinate; and

c = (n + /NAVm), where

Vm ¼ 4

3
pa3

is the micellar volume.

Fig. 5 Schematic draw on approximate scale of a unilamellar

vesicle with one membrane fluorescent probe. (From Ref. 18.)

Table 2 Parameters and external global fluctuational quantities for bilayer vesicles in solution

a Qs C1 cs m dc dE ta

Å aC aF ys mV mm2s�1V�1 mV mV/Å dq/e0 dp/pH2O
ps pKa

i

100. � 86. 99. � 4.61 � 119. 0.46 6.47 671. 4.0 185. 313. 5.77

200. � 345. 187. � 5.27 � 136. 0.91 4.70 488. 5.5 254. 215. 5.48

300. � 776. 274. � 5.58 � 144. 1.37 3.88 403. 6.6 308. 174. 5.35

400. � 1381. 362. � 5.75 � 149. 1.83 3.38 351. 7.6 354. 150. 5.27

500. � 2157. 449. � 5.87 � 152. 2.29 3.03 315. 8.5 394. 133. 5.22

aWe have approximated the cloud average fluctuational displacement l = k�1 in Eq. 23.
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The overall charge, dc ¼ ðkTCÞ
1
2, voltage,

dc ¼ kT

C

� �1
2

;

and field,

dE ¼ 1

a

kT

C

� �1
2
;

fluctuations (7, 11) in the micelle, in the reported range

of the parameters, are shown in the three last colums of

Table 3. C was calculated in accordance with the follow-

ing equation

C ¼ Qe0

kT

1

ycloudðaÞ

¼ Qe0

kT

1

½ybareðaÞ � ðyð0Þ � yðaÞÞ� ð49Þ

We performed forward integration of the P-B equation,

starting at the center of the micelle, with the initial con-

ditions: y = y(0) and y’(0) = 0., varying y(0) until we ob-

tained the value for the first derivative of the reduced

potential on the internal surface of the micelle y’(a) = se0 /

(kTee0k).

Cylindrical polyelectrolyte

As an example of global electrical fluctuations, we chose

the molecule of DNA. The dielectric dispersion of this

molecule, produced by the ionic atmosphere relaxation,

was already studied (17). In this case, the relaxation time

was approximated by that of the cloud without the poly-

electrolyte, t = ee0r. In Table 4, the relaxation times were

estimated by Eq. 23, which considered the presence of the

polyelectrolyte. We can observe that these times are

greater than those previously seen (17), because the ions

are tighter to the polyion, showing that the approximation

l = k�1 is a better one.

Fig. 7 shows the potential mean square global fluc-

tuations, Eq. 45 for B-DNA immersed in NaCl solutions in

water. We can observe the broadening and diminution of

the spectrum with increasing NaCl concentration.

Table 3 Reverse micelle parameters and results from P-B calculations

c a s C dq .e0
�1 dc dE

a nsg n+ mM Wo Å C m�2 y(0) y(a) aF ± mV mV Å�1

0.20 30 6.00 1384 8 13.1 � 0.058 0.806 � 0.586 16.9 1.65 15.6 1.19

0.25 74 18.5 1153 12 19.6 � 0.073 1.194 � 0.897 23.2 1.93 13.4 0.68

0.30 138 41.4 1038 16 26.2 � 0.087 1.538 � 1.186 29.0 2.16 11.9 0.46

Fig. 6 Potential mean squares global fluctuations obtained from Eq. 45 and by solving the P-B for the exterior of bilayer vesicles

immersed in NaCl in water, maintaining the concentration of the electrolyte (A) and size of the particles (B) constant, respectively. In

both cases (A) and (B), the surface charge density is maintained constant.

1712 Electrical Fluctuations in Small Systems



ELECTRICAL FLUCTUATIONS ALONG
A CHARGED COLLOIDAL CYLINDER
IN AN ELECTROLYTE

These fluctuations emerge in rodlike polyelectrolytes in

ionic solutions exhibiting longitudinal polarization caused

by the ions that, according to a Boltzmann distribution, are

more or less trapped on the surface of the polyelectrolyte

and form the fraction of the ‘‘bound’’ ions. Although they

are radially fixed, they still have a certain freedom to move

in the longitudinal direction of the molecule. The corres-

ponding capacitance was estimated (8), namely

C ¼ n2 ðze0Þ2

kT
¼ gL

b

� �
e2

0

kT
ð50Þ

where n is the number of ‘‘bound’’ ions, and g = zn/N is

the degree of association of the counterions, z is the va-

lence of the ‘‘bound’’ ions, b = L/N is the linear charge

spacing, N is the total number of charged polymer sites,

and L is the length of the rodlike molecule.

The average displacement l of the ‘‘bound’’ ions is

given (8, 29) by,

l2 ¼ L2

12n
ð51Þ

The corresponding relaxation time of these fluctuations is

t ¼ ze0L2

12mkT
ð52Þ

with m being the mean mobility of the ions along the

polymer framework. The lowest relaxation time of fluc-

tuations in counterion density around a long rodlike po-

lyelectrolyte was found to be in the range of 10�3 to 10�4

sec (Schwarzs (4); Oosawa (6); Takashima (28); Mandel

(29).

As an example, we consider DNA molecule with L =

7800 Å, z = 1, association degree g = 1. This molecule

has two phosphate negative charges per unit, each with a

helical spacing of 3.37 Å, then b = 3.37 Å/2 = 1.68 Å,

consequently N = L/b = n = 4643.

From Eq. 52 and from the experimental value for t =

10�3 s of Takashima (28), we estimate the mobility m of

the ‘‘bound’’ ions as m = 1.96� 10�9 m2s�1V�1, which is

26 times smaller than the mobility of Na ions in water,

mNa
+ = 5.19� 10�8 m2s�1V�1, showing that these ions are

more or less trapped.

Table 4 External global fluctuational parameters for B-DNA in NaCl solution in water. (x0 = 4.23, a = 0.4, a = 12.5 Å, L = 1000

Å, da = � 0.237� e0 Å�1, s = � 4.84� 10�2 C.m�2, and m = 0.349 mm2s�1V�1)

c k�1 C1 cs dc dE

dq/e0

tb

mM Å aF ys mV mV mV/Å dp/pH2O
ns pKa

i

10 30 516 � 5.86 � 152 2.83 93 9.1 1335 9.4 5.00

25 19 640 � 3.76 � 97 2.54 132 10.2 941 4.2 5.94

50 14 590 � 2.78 � 72 2.65 194 9.8 639 2.0 6.37

75 11 538 � 2.34 � 60 2.77 249 9.3 498 1.3 6.56

100 10 484 � 2.07 � 53 2.88 299 9.0 415 0.7 6.68

aLinear charge density.
bWe have approximated the cloud average fluctuational displacement l = k�1 in Eq. 23.

Fig. 7 Potential mean square global fluctuations for B-DNA

immersed in NaCl in water. Eq. 45 and P-B numerical solution

(Table 4).
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From Eq. 50, the ‘‘bound’’ ions’ capacitance is in the

order of 134 pF, the corresponding value of l � 33 Å.

The ratio dp:pH2O
� 4� 105 and dE � 1681 V/m, with

pH2O
being the permanent dipole moment of water mo-

lecule (1.84 D). The relaxation time of these fluctuations

are in the order of the ms, which give a dissipated power

P ¼ kT

2

1

10�3
� 2:� 10�18J=s:

This power is in the order of magnitude of that involved in

molecular motors (30–33).

ELECTRICAL FLUCTUATIONS
IN MEMBRANE SYSTEMS

Biological Ionic Channel

Biological ionic channels are microscopic entities capable

of transferring ions at a great rate. Most ion channels exist

in one of two basic configurations, namely open or closed.

Transitions between channel configurations are mediated

by a specialized region of the channel, the gate. Gates can

be modulated by chemicals, voltage, or just by being in-

sensitive. In either case, transitions between the various

configurations (open, closed, and intermediate states) dis-

play a stochastic component, whose nature is poorly un-

derstood (Hille (34); DeFelice (35); Lauger (36)).

Cell membranes, on the other hand, are the substratum

on which channels insert. Because the membrane matrix is

basically electrically insulating and separates two electro-

lytical media, it acts as an electrical capacitor. Channels,

inserted alongside the matrix, can then be viewed as leaks

on the membrane dielectric, which leads to the parallel RC

equivalent for the channel–membrane system (Finkelstein

and Mauro (37); De Felice (35)).

In order to determine the voltage fluctuations across cell

membranes, the theory of generalized susceptibility was

applied (2) to a system consisting of a capacitor and a

resistor in parallel, resembling a fragment of biological cell

membrane harboring an ionic channel. It appears that for

lower channel conductivities, high amplitude voltage fluc-

tuations fall in the range of typical gating response times. It

was proposed that voltage fluctuations may be included

among the many mechanisms influencing gating beha-

viour. This model was improved by (38), including solute

fluctuations in the cytoplasm due to the movement of ion

pairs across the membrane, which affects the frequency

spectrum of the electric field but not its mean value.

Noise analysis

The objective of noise analysis is to relate macroscopic

observables, such as the mean ionic current I(t) and the

current variance sI(t)
2, to microscopic parameters, such

as the single-channel current i, the number of functional

channels in the membrane N, and the probability that the

channels be in the conducting state p.

The experimental data from n current records are

IðtÞ ¼ 1

n

Xn

k¼1

ykðtÞ ð53Þ

sIðtÞ2 ¼ 1

n � 1

Xn

k¼1

½ykðtÞ � IðtÞ�2 ð54Þ

where yk(t) is the kth membrane current record. For an

homogenous population of statistically independent chan-

nels, I(t) and sI(t)
2 are related (Ehrenstein, Lecar, and

Nossal (39); Begenisich and Stevens (40).

IðtÞ ¼ NipðtÞ ð55Þ

sIðtÞ2 ¼ Ni2pðtÞ½1 � pðtÞ� ð56Þ

Eliminating p(t) from Eqs. 55 and 56: gives the expres-

sion, introduced by Sigworth (41), that is fitted to the

experimental data to yield values for i and N

sIðtÞ2 ¼ iI � I2

N
ð57Þ

For instance, i = 0.3 pA, and N = 43,000 for the

sodium channels in a node of Ranvier. Also, for another

important reference on this subject, see Neher and

Sakmann (42, 43).

Protonic Fluctuations in Unilamellar Vesicles

Artificial unilamellar vesicles (UV) constitute models in

which many transport problems have been studied in re-

cent years (44). The so-called small unilamellar vesicles

(SUV) and large unilamellar vesicles (LUV) have been

extensively employed to obtain information concerning

the passage of different compounds through the cell mem-

brane, such as fatty acids (FA), and have served as vehicles

for transport of pharmaceutically relevant substances and,

more recently, for genetic materials.

In a recent article (18), we estimated the pH fluctuations

in small unilamellar vesicles (SUV) and it was determined

that these fluctuations are dependent on such macroscopic

variables as pH, pKa
i, number of buffer groups, ni, and

surface electrical reduced potential ys. An equation was

derived that relates the pH fluctuation and the buffer

capacitance Cbuffer, namely

dpH ¼ e0

2:3ðkTCbufferÞ
1
2

ð58Þ

1714 Electrical Fluctuations in Small Systems



with Cbuffer given by

Cbuffer ¼ ðdqÞ2

kT

¼ e2
0

kT

X
i

ni

2 þ eys 10ðpH�pKi
aÞ þ e�ys 10ðpKi

a�pHÞ

ð59Þ

where ni is the number of buffer groups of type i in the

lipid. The relation of (dq)2 with ys = 0 coincides with that

given by Kirkwood and Schumaker (45), obtained in-

dependently using mechanical statistical methods, when

they calculated the forces between protein molecules in

solution arising from fluctuations in proton charge and

configuration.

From our results it was inferred that measurement of pH

in small systems has to be performed near the pK of the

buffer groups in order that the fluctuational errors be mi-

nimized. We showed that pH fluctuations diminish with

the increasing size of the SUV and the predicted pH fluc-

tuations decrease as the surface potential becomes less ne-

gative as a consequence of decreasing density of charged

groups in the inner vesicular surface. It was also predicted

that measurable effects will appear on the fluorescence

detection due to protonic fluctuations close to the pH-

sensing region of the probes.

As an example of the protonic equilibrium at the vesicle

surface (AH > A� + H + ) we will continue using the

example of unilamellar vesicles mentioned in a previous

section where we estimated the electrical fluctuations

emerging from thermal fluctuations of the external ionic

atmosphere surrounding the particle in Table 2. We need

to estimate Cbuffer given by Eq. 59, because it is the link to

the knowlege of the electrical thermal fluctuations

emerging from this process, as detailed in the following

table, Table 5, where Dr is the radial distance between the

plates of the equivalent capacitor whose capacitance is

Cbuffer, namely

Dr ¼ 4pee0a2

Cbuffer � 4pee0a
ð60Þ

The superficial Cbuffer (Table 5) is greater than C1 pro-

duced by the ionic atmosphere and the charged surface

(Table 2). In calculating Dr, we used the dielectric con-

stant of water e = 80, although water molecules are rather

ordered near the surface so that e can be lower, and, con-

sequently, Dr can also be lower.

Electrical Fluctuations in Molecular Motors

F1-ATPase

The synthesis of ATP in eukariotic cells occurs at the

expense of proton flow driven by the proton-motive force

(EPMF) across ATP synthase molecules inserted in the

inner mitochondrial membrane (IMM). This enzyme is

composed of a membrane-embedded, proton-conducting

portion, F0, and a protruding portion, F1 (Fig. 8). This

system constitute a highly efficient molecular motor that

rotates with discrete 120� steps, (46, 47). Proton gradients

as high as 1 pH unit can occur at that location (48) and

superposition with electrical potential difference can lead

to EPMF’s attaining the 200 mV mark.

Because the intermembrane space in most of its traject

has a width of only about 10–20 nm, this dimension limits

a region of molecular proportions where fluctuations in

thermodynamic parameters may become an important part

of the forces acting on the molecular machines inserted

alongside the inner mitochondrial membrane, see Fig. 8.

The intermembrane mitochondrial space (IMMS) is

delimited by the inner and outer mitochondrial membranes

and defines a region of molecular dimension where fluc-

tuations of the number of free protons and of transmem-

brane voltage can give rise to fluctuations in the proton–

electromotive force (EPMF) across the inner mitochondrial

membrane (IMM).

We have applied (16) the fluctuation–dissipation theo-

rem (FDT) to an electrical equivalent circuit consisting of

a resistor (Rm) in parallel with a capacitor (Cm) represent-

ing the passive electrical properties of the IMM, in series

with another capacitor (Cb), representing the proton buf-

fering power of the IMMS fluid. An access resistance, Ra,

Table 5 Parameters and surface protonic electrical fluctuations for bilayer vesicles in solution

a Dr Cbuffer dc dE d pH Num.

Å Å f F ys mV mV/Å dq/e0 dp/pH2O
10�2 Buffers pKa

i

100. 3.9 2.33 � 4.61 1.33 343. 19.4 362. 4.5 1795 5.77

200. 3.8 9.37 � 5.27 0.66 175. 38.9 710. 2.2 7181 5.48

300. 3.8 21.0 � 5.58 0.44 117. 58.2 1060. 1.5 16157 5.35

400. 3.8 37.2 � 5.75 0.33 88. 77.4 1412. 1.1 28723 5.27

500. 3.8 58.1 � 5.87 0.27 71. 96.8 1761. 0.9 44880 5.22
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was defined as a link between the capacitor Cb and the

membrane.

Average EPMF fluctuations across the IMM were calcu-

lated for different assumptions concerning the intermem-

brane space dimensions. The calculated average EPMF

fluctuations were in the vicinity of 100 mV for relaxation

times in the few microseconds range. The corresponding

fluctuational protonic free energy is about 10 kJ/mole,

which coincides with the binding energy for protons in

different transporters. This suggests that fluctuations in

EPMF can be of relevance in the universe of forces influ-

encing the molecular machinery embedded in the IMM.

Outer hair cells

As another example, we will estimate the electrical fluc-

tuations of the outer hair cells (OHC) that, in accordance

with conducted experiments (49), demonstrate that OHC

electromotility is driven by a large number of small in-

dependent �4000/mm2 (50, 51) voltage-sensing elemen-

tary motors, closely associated with the plasma membrane,

whose primary mode of action is longitudinal deformation.

It is conceivable that transmembrane voltage gradients

produce conformational changes in protein structures as-

sociated with the cell’s cortex that directly change the

longitudinal length of the elementary motor units. Mam-

malian OHC are slender cylindrical structures of fairly

uniform diameter (�8–10 mm) and their length ranges

from �20–30 mm in the high-frequency cochlear base to

about 80–100 mm in the low-frequency apex. A nonlinear

charge movement, or corresponding voltage-dependent

capacitance, has been observed in this cell and it probably

reflects the activity of the motility voltage sensor (50, 52–

54). In this section, we estimate the electrical fluctuations

in the OHC from the experimental results for the capa-

citance and relaxation times (50). In this case, the expe-

rimental data for the voltage-dependent capacitance and

charge movement associated with the system of membrane

motors are fitted by the following equations

CðuÞ ¼ Qmax
ze0

kT

"
1 þ exp � ze0

kT
ðV � VhÞ

� 
( #2

� exp
ze0

kT
ðV � VhÞ

h i)�1

ð61Þ

QðuÞ ¼ Qmax 1 þ exp
ze0

kT
ðV � VhÞ

h in o�1

ð62Þ

In Fig. 9, these two equations, for given values of the pa-

rameters Qmax, Vh, and z, are represented.

Because of the high values of the capacitance of this

system, the voltage and field fluctuations are not so high,

correspondingly high dipole moment fluctuations (dp =

kT/dE) appear across the OHC’s basolateral membrane

(across the motors), the electrical noise is measurable and

Fig. 8 Diagram showing the mitochondrial membrane and electrical equivalent. (From Ref. 16.)
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pausible of analyzing in order to obtain additional in-

formation which may help reveal mechanisms at a mo-

lecular level (55). It is estimated that OHC motility in the

(16–18)kHz range, where measurements are available, is

about 20% of basilar membrane motion (56). The receptor

potential is attenuated at high frequencies due to the RC(u)

filtering of the cell membrane. Dallos and Evans (56)

proposed that the effective electrical stimulus that powers

the OHC motile response at high frequencies is not the

cell’s own receptor potential, but an extracellular voltage

gradient, established across the hair cell, between the scala

media and intraorgan of Corti fluid spaces; for a 20 mm

(basal) cell, this basolateral membrane voltage is estima-

ted to be �22 mV, producing an electromotile displace-

ment of �0.11 nm at the behavioral threshold. At this

same level, basilar membrane displacement is l � 0.16

nm (57); this means that we have a polarizability, Eq. 43,

að0Þ ¼ Cl2 ¼ 5:1�10�31F m2 for a membrane with a

capacitance of 20 pF, this static polarizability is 3.2� 109

greater than the mean polarizability of water molecule

aH2O ¼ 1:6 � 10�40F m2; correspondingly we have a

mean fluctuational dipole moment across the lateral ba-

sal membrane at room temperature dp = [a(0)kT]1/2 =

4.6� 10�26 C m = 1.48� 104 D, which is 7.5� 103

greater than the permanent dipole moment of a water

molecule (1.84 D). The thermal fluctuating field for this

case is dE = kT/dp = 9� 104 V m�1 = 9 mV Å�1, 10

times smaller than the fluctuational fields surrounding

cylindrical polyelectrolytes immersed in electrolyte solu-

tions (9).

Fig. 10 spans a wide range of potential and charge fluc-

tuations for given values of the membrane applied po-

tential. Modeling the electric circuit associated with the

motor as an RC(u) circuit in parallel (R is the channels

electrical resistance). In this circuit, the relation between

the Fourier components of the spontaneous thermal fluc-

tuational current Io and voltage, Vo is given by (2)

Vo ¼ ZðoÞIo ð63Þ

with Z(o) given by

1

ZðoÞ ¼ 1

R
þ ioCðuÞ ð64Þ

the corresponding spectral density of the mean square of

the fluctuational voltage (V2)o, and current, (I2)o, with re-

laxation time t = RC(u) are given by

ðV2Þo ¼ 2tkT

CðuÞ½1 þ ðot2Þ� ð65Þ

Fig. 10 Potential (- -) and charge fluctuations (-o-) for given

values of the membrane applied potential.

Fig. 9 Representation of Eqs. 61 and 62. (From Ref. 50.)
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and

ðI2Þo ¼ ðV2Þ
jZðoÞj2

¼
2kTCðuÞ

t
ð66Þ

Fig. 11 spans the mean square of the fluctuational vol-

tage, (V2)o, for a given value of the motors capacitance,

C(u) = 20 pF, and three characteristic frequencies. The

dependency of the mean square fluctuational current with

frequency depends of the variation of C(u) with frequency.

Experimental data on this subject are poor, in one article

(50), a slight variation of the capacitance with frequency in

the low frequency range is reported.

CONCLUSION

We saw that thermal electrical fluctuations in small sys-

tems are the origin of many physical-chemistry phenom-

ena, consequently, they give information of the system

parameters: polarizability of colloids and polyelectrolytes

in ionic solutions, buffering power of solutions, single-

channel current i, and number of functional channels in the

membrane N. For example, from the knowlege of the ex-

perimental data for the spectral density of the mean square

of the fluctuational potential, (V2)o = sV (o)2, and cur-

rent, (I2)o = sI(o)2, we can obtain information of the

system parameters as R and C.

Molecular systems are sufficiently small and fast as to

both sense and respond to local fluctuating electrical fields

(Läuger (36); Hille (34) or for an efficient processing of

information in the form of fast conformational changes

(58). To explain any possible mechanism at the molecular

level, which involves an electric process, fluctuations have

to be considered. How these fluctuations are coupled to the

biological machine remains an open question.
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APPENDIX

FLUCTUATION–DISSIPATION THEOREM

One way of formulating the FDTc is by formally re-

garding the spontaneous fluctuations of a quantity x as

due to the action of some random force f, meaning that the

environment senses the system through the generalized

susceptibility a(o), and responds with a fluctuating force.

The Fourier components xo and fo are related by

xo ¼ aðoÞfo ðA�1Þ

The relation between the generalized impedance Z(o) and

a(o) is

ZðoÞ ¼ � 1

ioaðoÞ ðA�2Þ

with i being the imaginary unit. As xo = x0o e� iot, we

can write

fo ¼ ZðoÞ dxo

dt
ðA�3Þ

The spectral densities of the fluctuation are given by

ðx2Þo ¼ jaðoÞj2ð f 2Þo ðA�4Þ

The results of the FDT are

ðx2Þo ¼ �ha00ðoÞcoth
�ho
2kT

ðA�5Þ

Fig. 11 Spectral density of the mean square of the fluctuational

voltage (V2)o, for a given value of the motors capacitance,

C(n) = 20 pF, and three characteristics frequencies.

c We use x for Dx to simplify the equations.
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Correspondingly

ð f 2Þo ¼ �ha00ðoÞ
jaðoÞj2

coth
�ho
2kT

ðA�6Þ

The mean square of the fluctuating quantity is

<x2> ¼ 1

p

Z 1

0

ðx2Þodo

¼ �h

p

Z 1

0

a00ðoÞcoth
�ho
2kT

do ðA�7Þ

These formulas constitute the FDT, established by Callen

and Welton (59) They relate the fluctuations of physical

quantities to the dissipative properties of the system. At

energies kT � h�o (classical limit o � 4.1013s�1), we

have coth(h�o/2kT) � 2kT/h�o, and |a(o)|2 � |a’(0)|2.

Then Eq. A–7 becomes

<x2> ¼ 2kT

p

Z 1

0

a00ðoÞ
o

do ¼ kT ja0ð0Þj ðA�8Þ

Where we used the Kramers and Kronig’s relations (1927;

60)

Analogously

<f 2> ¼ 1

p

Z 1

0

ð f 2Þodo

¼ 2kT

pja0ð0Þj2
Z 1

0

a00ðoÞ
o

do

¼ kT

ja0ð0Þj ðA�9Þ

From Eqs. A–8 and A–9, we obtain (8)

<x2><f 2> ¼ ðkTÞ2 ðA�10Þ

This is the classical analogy of the Heisenberg uncertainty

principle.

Examples of Eqs. 2 and A-10 are the following relations

dq 
 dc ¼ kT

dp 
 dE ¼ kT

dV 
 dP ¼ kT

dA 
 dP ¼ kT ðA�11Þ

In the first relation of the former, Eq. A-11, dq can be the

statistical fluctuation of charge produced in a capacitor as

due to the action of some random potential c sensed by the

environment whose statistical fluctuation is dc. In the

second relation, p is the dipole moment and E is the elec-

tric field, in the third relation, V is the volume and P is the

pressure, and in the fourth relation, A is the area per mo-

lecule and P is the surface pressure (N 
m�1) in a Lang-

muir-Adam surface balance.

Electric Circuit

As an example, we consider an electric circuit, where the

relation between the Fourier components of the spontan-

eous fluctuational current Io and voltage Vo is given by

Vo ¼ ZðoÞIo ðA�12Þ

Eq. A-1 can be written as

qo ¼ aðoÞVo ðA�13Þ

where qo is the Fourier component of the fluctuational

charge. In case of a RC circuit in serie, we have

ZðoÞ ¼ R þ 1

ioC
ðA�14Þ

Correspondingly, from Eqs. A-2 and A-14, a(o) is given

by

aðoÞ ¼ �C

1 þ ðtoÞ2
þ i

toC

1 þ ðtoÞ2
ðA�15Þ

Then

a0ðoÞ ¼ �C

1 þ ðtoÞ2
; a00ðoÞ ¼ toC

1 þ ðtoÞ2
ðA�16Þ

From Eqs. A-13 and A-16, and considering the classical

limit, we obtain

ðq2Þo ¼ 2kTtC

1 þ ðtoÞ2
ðA�17Þ

and

ðV2Þo ¼ 2kTt

C
�
1 þ ðtoÞ2

� ðA�18Þ

Then, from Eq. A-8

<q2> ¼ 1

p

Z 1

0

ðq2Þo do ¼ kTC ðA�19Þ

Correspondingly, the mean quadratic fluctuation of the

voltage, < V2 > = < q2 > C�2, will be

<V2> ¼ kT

C
ðA�20Þ
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bauer technique. J. Acoust. Soc. Am. 1982, 72, 131–141.

58. Fornés, J.A. Information flow to dissipate an ionic fluc-

tuation through a membrane channel. J. Colloid Interface

Sci. 1996, 177, 411–413.

59. Callen, H.B.; Welton, T.A. Irreversibility and generalized

noise. Phys. Rev. 1951, 83, 34–40.
60. Landau, L.D.; Lifshitz, E.M. Statistical Physics; Pergamon

Press: Oxford, 1988; 387.

E

Electrical Fluctuations in Small Systems 1721


