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The interaction force between two semi-infinite dielectric media separated by a third one is derived
using a method of Rytov. Comparison is made with Green’s function results of Dzyaloshinskii et al.
Certain limiting procedures of their work are avoided by making a central physical assumption.

The theory of Rytov! was applied by Lifshitz? to the
problem of two media filling half spaces with parallel
plane boundaries separated from one another through
vacuum by a distance /. In what follows we assume
that media “one” and “two” are separated by medium
“three,” medium “two” being at a distance ! from medi-

m “one” along the x axis.

We extend Rytov’s theory to the case in which the
middle medium is an isotropic nonmagnetic dielectric
characterized by its complex dielectric constant €5(w).
We obtain a formula for the force of interaction which
is valid for all T (temperature). Dzyaloshinskii et al.?™®
used temperature dependent quantum field theory meth-
ods and obtained a formula which leads, after an approx-
imate argument, to the T=0 K case. OQOur extension of -
Rytov’s theory not only reproduces the results of
Dzyaloshinskii ef al., which are assumed in all discus-
sions of this problem in the literature, **2 but gives
physical insight on the nature of the approximations in-
volved. Maxwell’s stress tensor for medium 3 is ob-
tained after stating a central physical assumption. This
was considered not to be possible within Rytov’s theory
and was the main motivation for using temperature de-
pendent Green functions.® The somewhat obscure
limiting processes necessary with the latter technique
lead, in part, to results contained in Rytov’s theory.

We present first Rytov’s method, develop an expression
for the electromagnetic field amplitudes for the geome-
try discussed above, calculate the force and discuss
conditions of validity and applications.

I. GENERAL IDEAS AND BOUNDARY CONDITIONS

The theory of Rytov1 is based on two fundamental as-
sumptions:

(1) The existence of spontaneous electric K, and
magnetic L, random fluctuating field sources as a re-
sult of fluctuations in the position and motion of the
charges in matter.

(2) The linearity of the fluctuational processes.
Hypothesis 2, permits us to expand any fluctuating mag-

nitude in Fourier components. For instance:
j

K(r, )= [ K,(rexp(- iwt) dw , (I.1)
with
K,(r)= f_: g.&exp(ik -r)dk , . 1.2)
and
1 - .
g.)= s f _ K,(rexp(-ik-)dx . (1. 3)

To describe the fluctuations, without going into the mo-
lecular world, Rytov introduces K and L into Maxwell’s
equations, which acquire the following form in an iso-
tropic nonmagnetic medium, our case).

rot(E) = - —i— —g—:l )
(1.4)
€ 8 1
rot(H)—E o1 (E+? K) ,

which when written in Fourier components of the fields,
acquire the following form:

rot(E,) =iwH /c,

rot(H,) =~ iw(eE,,,+ % Kw)/c ,

where €(w)=¢€'(w)+ie’'(w). The fundamental character-
istic of the random sources is the correlation function,

determining the average value of the product of K com-
ponents at two different points in space, namely'™;

(1.5)

(KilKlfz)w =2h—611551{6(r2 rl)coth<:;> (I- 6)

and for the Fourier components of g, (k)

giw(k)gl(w’(k,)
= —zj-{-g oth(lzm;,) €8 plw+w)ok+k’) . 1.7

The solution of equations of the same type as (I.5) for
x <0 were given by Rytov in his book (p.41) and were
slightly modified by Lifshitz.? We will adopt Lifshitz’s
form, namely

E,.= f_: {a,(k) cos(k, x) + b, (k) sin(k, x) Jexp(iq - r) d k + f_: ui(@)expliq * r —isyx)dq ,

le::cf [@xay + %1 xby)cos(k, x) + i(AXby +k,nxa,) sin(k, x) Jexpliq - T) d k

+—§f (g Xy, —s,nxu,) expliq - r ~is,; x) , {(1.8)
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with

- 1 7(‘,_)2 p _ ( . )_kzg n]
a’l_m[? 161~ a9\ ° 81, x5 1x ’

b -1 ( ) ] (1.9
ERPRTR- R Sy X *

1 €l(k -—w €1/C) [nq glr +qglx »
where q is a two dimensional vector with components
k,, k, which implies ¥*=%k2+4%, n is a unit vector in the
x direction, two-dimensional vectors in the y —z plane
are indicated by the subscript » and

2
1= [ a-¢ (1. 10)
where the sign of the root is to be chosen so that the
imaginary part of s will be positive.? The first terms
in (I.8) represent a solution of the inhomogeneous (1. 5),
and the second ones are solutions of the corresponding
homogeneous equations. The homogeneous equations
require, of course, K, =0 and this in turn implies the
physical condition 8K/8#=0 in the macroscopic Maxwell
equations (I.4). The homogeneous equations fulfill the
requirements div(E) =0, div(H)=0 which yield the con-
dition of transversality of the electric field waves:

(I.11)

In the second medium (x >I), the field E, ,H,  is given
by the same formulas (I.8), (I.9), and (I.11), with the
index 1 changed to 2, cos(k,x), sin(k, x) replaced by
cosfk(x =1)], sin[k,(x —1)] and change in the sign of s.

ulr'q_slulx':o .

With respect to medium 3, we make now our funda-
‘mental hypothesis, namely: 8K;/8t is negligible in
comparison with 9K,/8¢ and 9K,/a¢ for long waves fluc-
tuations. This is a physically logical hypothesis: these
fluctuating field waves have a much shorter distance
to travel in medium 3 than in media 1 and 2 and hence
they do not have time for being harmonically modulated
as waves in media 1 and 2. In this way we can consider
K, as a constant when compared with K; and X,. Our
hypothesis then implies that we can consider Eq. (I.4),
in medium 3 with 8Ky/9¢=0, namely,

1 oH
= — 08
rot(E,) e
. oE (1.12)
- —3 73
rot(Hs) o Tar
which is mathematically equivalent to put K;,=01in (1.5)
but the physical meaning resides in (I.4). For the
Fourier components in medium 3 we have
rot(Es ) =iwH; /c ,
(I.13)

rot(Hs ) = ~ iwesEg /c .

The general solution for these homogeneous equations is
E, = f_ : [v(@)explipx) + w(g)exp(~ ipx) Jexpliq - r)dq »
Hy = f f [@xv+pnxv) explipx)

+{@Xw - pnxw) exp(-ipx)] expliq-r)dq ,
(1.14)

with
wz 2
p: —-2—6 €s—q (1.15)

From div(E) =0 we obtain the transversality require-
ment

v, q+pv,=0, W,"q-pw,=0. (1.16)
Applying the boundary conditions in x=0, nXE; =nX Esw,
nXH, =nxH; we obtain

f_: a,dk+uy, =V, +W, , 1.17)

L: (— qa1x+kxblr) dkx - qulx - Slu!,r
(1.18)

The conditions at the plane x =1 differ in having s, a,,
b,, v, wreplaced by —s,, a,, b,, vexpl(ipl),
w exp(-ipl), respectively.

==—q,+w,) +plv,-w,) .

Il. DETERMINATION OF THE FLUCTUATING
ELECTROMAGNETIC FIELD AMPLITUDES IN
MEDIUM 3

For a given value of q, we resolve v, and w, along
the mutually perpendicular unit vectors q/¢ and nxXq/q
which we choose as y and z axes, respectively. From
{t.11) we get u,,=u, -q/s, putting this value in (I. 18) and
after projecting along g we obtain

il 2
(- qaalx"'kxblr.q) dk, -, q) Z +85;

=— v, +w,) +p(v,-W,) . 1)

Projecting (I.17) along q we get u,,*q after putting this
value in (II. 1) we obtain

w0 2
f [—qzal,,+qk,b1,+q(—z— +sl)a1y] dk,

2
=q (—Z— +si>(vy+wy) - rw,) +pqlvy-w,) . (L 2)
1

From (I.16) we get

q _q
V== S0y, Wy="W,y.

P p?
Putting (11. 3) in (I. 2) and dividing by ¢ we obtain

(sl+p —:i-)vy—(sl—p—:-:-)wy

2 e 2
= -c—i—z— %;1—7 - [— a1,q+b1yk,+ah,<%)2— -:—i—)] dk, .
(11. 4)
We have to take account from expressions (I.9) the com-
ponents of a, and by, namely,

(11. 3)

- wle,/c® - K2
LN % (@?/cHe,] 81x 5

(w2/62)€1 - qz
€K~ (wi/ch e,] Bv°

a1y =

B (w¥ e €
Ne= e - (wz/cl)fel] £1e 5
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b = , kxg e & b.=0. (11.5)
1x~ = y
€[k - (w*/c%)e,
k.q Putting the corresponding expressions (II.5) in (II. 4)
by =— P g exp on .9} in (I.4) we
1y Pwl/de] S obtain
|

- rep D oys (s1mp By [ [l g st b, (1.6)

€3 €3 o LEg[B% — (0?/cP)e,]

In x=1 we have

. € . € “
exp(ipl) (— Sy+p ::—) v,+exp(—ipl}{s,+p ?:— wy> :Iw[m (saqg2x+s§g2y)] dk, . a.m

Expressions (II. 6) and (II. 7) form a system of two linear equations with two unknowns, namely v, and w,, with dis-
criminant A given by

A= (s —pt )s—p—g—€ explipl) - { 5, +p~L)(s,+p—2 ) exp(~ipl) . (11. 8)
€3 €3 Es €3
Then
”v=f 2 Sy sz+p—€—a— exp(- ipl) qgl" SE +5; ;f)—el——s1 Q8 ax+ Sof, dk, ,
o A€ €3 Ry~ sy €3 k- sy
(I. 9)

w,,=f £ sy (s2- P2 exp(ipl)-—q‘g“g—:-—sg—lg—IJL — 5y (541 Bzt Sa8a | »
o Agg €3 kS —s% €] k

where we have used

2
- S eskiost . _ (1. 10)

We will now determine v, and w,. From (I. 17) and (I. 18) after having projected along the unit vector nxq/q and
taking account that this vector is orthogonal to q, we obtain

[ by )R, s 0y, = pl0,~w,) , (1. 11)

f_: as dl +uy,=v,+w, . (1. 12)
Taking account that b, =0 from (II.5), we solve (II.11) for %,,, and after re-emplacing in (II. 12) we get
(sy+D)v,+ (84— plw, =5, f_: a,,dk, .

Inx=!
(~s,+p) explipl) v, + (s, +p) exp(~ip) w,=-s, f_: ay,dk, . (11.13)
We have again a system of two linear equations with two unknowns, namely v,, w,, with discriminant A’ given by
A'=(s; = p)(sy - p) explipl) — (sy +)(s, + D) exp(-ipl) . (II. 14)
Then

© 2
ve= [ =2 [ =51 (sprp)expl=iph)—5M—p 5,5, - p) 52~ | a, »
o C°A kx-sl kx_sa

(I1. 15)
- 2
wz=f _Ezc'up_[sl(sz plexp(ipl) —Eglb'LT - Sz S1+P)_5g‘;r]dk: ’
-0 2
where we used (II.5) and (II.11).
, [
9
11t. CALCULATION OF THE FORCE OF INTERACTION f dm B = fle(T)dsx s (1. 1)
We know from classical electrodynamics that the hi ; lent to
time rate variation of the density of electromagnetic which is equivalen
momentum is equal to the divergency of Maxwell’s ten- f om enda= f n-Tda > (1IL. 2)
sor, namely, s 9t s
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where m = u€/4nc(ExH) is the field-momentum density
and T is Maxwell’s stress tensor, with elements

1
T;;=-— [€E,E;+ pH;H, - (3)5,,(eE* + uH®)] . (1. 3)

4T

The two previous relations, (II.1) and (1. 2), are
equivalent to .

2! aiv(T (1. 4)
a9t

om h=+
n —5—t——n T (I11. 5)

The left side of Eq. (IIL. 5) with minus sign, is just

the force per unit area transmitted across surface S

in the direction n, this can be easily calculated by the
right side of Eq. (II1.5). In thermodynamical equilibri-
um this force (or normal flow of momentum per unit
area) cannot depend on the coordinate along which it is
being calculated (in our case x). Otherwise there would
exist sources of momentum creation, and Eqs. (III.4)
and (T. 5) would have different values in different re-
gions of space. We will show that using antecedence
[e(i£) > 0] this invariance condition is fulfilled.!® We
then calculate the Fourier component of the force F,,

formula

Fw=n-¥w=T,xw'n ) (1. 6)

where n is the outward normal to the surface, which
gives (¢ =1 in our case),

Foog- B H - B -IF),. (. 7)
The dash over the symbols signifies a statistical aver-
aging, to which the Fourier components g of the random
field sources must be subjected taking account of (I.7).
Quantities g, and g,, referring to different media, are
statistically independent, so that the average of their
products gives zero. Taking into account Eqs. (I.15)
and the fact that for imaginary frequencies we can de-
fine a real variable p(i£) because €(if) >0 (see below),
then

3 I N ((ERRRATARE

pic? 2 2
+ @, ¥+ |w, |®| d&, 2nqdq , (Im1. 8)

where we have used [Z....dq=/;...2ngdg, and sub-
stituted in place of v, w, the expressions in the inte-
grands of Egs. (I.3), (II.9) and (11.15).

Using the following identities:

acting on a unit area of the surface of body 2 with the pls+s¥) =3[ |s+p|?- |s~p|?], (Im1. 9)
J
2
plg+|s |Ds +5%) = —2“;—3 [ s+—§—2 z_s‘_—‘ﬂ 2] €5, if € is real (II1. 10)
3 8

ls1+61/&p|zlsz+ez/espllzgll£sz—&/53p|2|§: €;/€3p 1% - exp(ipl)(sl—fl/esp)(sz—ejl/esp) +iice., (mLil)

la+blzlsg+Plle—"Iasl—Plzlsz—plz _ exp(ipl)(f1A~’P)(sa—P) iircc s (. 12)

- de, in _oac? (s+s*) 1

. RZ_si? " Tsi¥s~s%)  20f Is1T €7’ (tr. 13)
it is easily shown that

Fw=-z—coth _@QJ' qdq(p)[ eXP(lpl)(Sx,"P)(Sz"P) N explipl)(s; — €,/¢€;p)(s; ~ €5/ €3 p) +1] +c.oe.s (III. 14)

8n 2T JJy -A -4A

where c.c. denotes the complex conjugate expression. In calculating the force F(I) we have to integrate F between
the limits — ©-+%, Following Lifshitz’s criterion we take twice the integral between 0—co,

F@)=2 [ F,do

(Im1. 15)

it must be emphasized that expression (III. 14) is valid only on the imaginary frequency axis, hence the use of the

following integral:

F(l)=2 fo” Fdt .

(111. 16)

Taking into account that p(i&) =7V §;7cz€(i55 +g° we define p’ as equal to —ic/& fe_s p, keeping in mind the variation
of q,0= g<, which implies that 1=p’<=. We define s’ as equal to —ic/£V €, —s, and taking account of gdg = - pdp,

we obtain:

f. . .dwfpzdps %gﬁglz &”dgfpzdp s

where in the right side expression we have put the generic variable p’ equal to p. The constant 1 in the curly brac-
kets of expression (III. 14) does not give an I-dependent contribution to the force and it should be dropped out accord-

ing to Lifschitz.? We then have

o .o (TE\[ (s, +p)(s,+p)
F)= 5y f jl [£5(E)P s’ﬁzcoth\zT>[<Tf ~Ga=p)

(21 1) '
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. [ (s, +p€,/€5)(s,+p€s/€5) .

(51— 1€,/ €3)(s5 - pEs/€3)

where s =V 6763 +p2 -1 and the temperature 7T is given in units of Boltzmann’s constant 2. The expression for the
force (III. 17) is a most general one for all T and yields directly, for 7=0 Eq. (4.14) of Dzyaloshinskii et al. One

does not need the following step which yields a good approximation for low 7. The function coth(%w/27) has an in-
finite number of poles, located on the imaginary axis, and equal to

-1
xp<3”—il—‘/5~>-1] dedp 5 (WI1.17)

. 2nT
W,=tkn = 5 n

Making the integration over £ in (II1.17), we arrive at?

F(l)=—£3—§'[es(ig)]3/2£?, fl” pz{[ (s, +p)(sz+p) exp(zpﬁ,,l ‘/?8)_1]-1

(sy=P)sz~P) c

(s, +pe€r/€5)(s,+pEp/ €5) 2pt,l -1
+[(31-P€1/€3)(82—pez/es) XP( c V?)-l] dp . (I1.18)

Formula (II1. 18) is identical to Eq. (4.13) of Dzyaloshinskii et al.® The prime on the summation sign means that the
term with z = 0 should be taken with a factor of 5. Several limiting cases can be obtained in a standard fashion from
these formulas related to, short or intermediate distances, inclusion or exclusion of retardation effects, derivation

of Hamaker constants, many-body vs two-body interactions, London forces, elc.

1V. DISCUSSION

Several authors have discussed forces between mac-
roscopic bodies. A central role in these discussions is
played by the fluctuation-dissipation theorem of Callen
and Welton!* and Matsubara’s temperature dependent
Green’s functions as used by Dzyaloshinskii and Pitaev -
skii and applied to the problem of van der Waals forces
by Dzyaloshinskii, Lifshitz and Pitaevskii.3"

Several attempts have been made in the literature in
order to obtain the results of Refs. 3 and 5 in a more
elementary way. Of particular interest is McLachlan’s
derivation making use of the fluctuation-dissipation the-
orem and the method of images.® He treats explicitly
the empty gap case at zero temperature via surface
sheet of dipoles. This method was further applied by
Israelachvilil® who considered multiple reflections within
a gap filled with a dielectric medium. It fails to give
complete agreement for retarded forces for large values
of the dielectric constants. Retardation effects are ob-
servable experimentally and hence must be accounted
for properly. Langbein® compares Lifshitz’s results
with semiclassical ones, originated by Casimir,'® and
obtained by van Kampen et al.? as well as with his own
finite boundary condition method. Van Kampen’'s meth-
od was later extended by several authors, 1Y

Lifshitz had treated the interaction between solid
bodies separated by a narrow empty gap. He used Ry~
tov’s results for the correlation of electromagnetic fluc-
tuations, well described elsewhere. 18 These results
are a specialization of the fluctuation dissipation the-
orem, they lead to an explicit solution of the field equa-
tions within a semi-infinite body in the presence of
fluctuations.

It was stated that the generalization of this method to
the case where the gap is filled with some medium was
difficult because there were no formulae for the stress
tensor in a variable field of absorbing media, thus mak-
ing necessary the field theoretical methods of Ref. 4.

In this paper such a generalization is presented.

The fundamental assumption made in this derivation,
that K; is not modulated in the long wave length limit,
and which leads to Eqs. (I.12) allows the use of Rytov’s
explicit solutions of the inhomogeneous Eq. (I. 9) outside
the gap.

It is to be noted that in order to obtain meaningful
quantities in the field theoretical method, the long wave
length limit is invoked also.®® It is simpler, we be-
lieve, to apply it directly at the classical field equations
level and to extend with no difficulty to other geometries
and conditions.

As a referee pointed out, Eq. (III.15) involves a subtle
point. Lifshitz criterion is not entirely consistent,
though it yields the results taken as a standard in the
literature. The difficulty was well discussed by Lang-
bein.® The use of surface modes may be objectionable
also.'® This formal problem will be discussed else-
where.

ACKNOWLEDGMENTS

We thank Prof. P. P. Lbwdin for his interest in this
problem, Prof. H. Jehle for drawing our attention to the
biological aspects of macroscopic forces, and Dr. O.
Tapia for his critical reading of the manuscript.

*Supported by Consejo Nacional de Investigaciones Cientificas
y Técnicas, Argentina.

TPermanent address: Dept. de Fisica, Universidad Nacional
de la Plata, Box 67, La Plata, Argentina.

3r'Support;ed by Swedish Natural Sciences Research Council.

1S. M. Rytov, Theory of Electvical Fluctuations and Thermal
Radiation (Publishing House, Academy of Sciences, USSR,
1953).

2E. M. Lifshitz, Sov. Phys. JETP 2, 73 (1956).

31, E. Dzyaloshinskii, E. M. Lifshitz, and L, P. Pitaevskii,
Adv. Phys. 10, 165 (1961).

4, E. Dzyaloshinskii and L. P. Pitaevskii, Sov. Phys. JETP
9, 1282 (1959), ‘

51, E. Dzyaloshinskii, E. M, Lifshitz, and L. P. Pitaevskii,
Sov. Phys. JETP 10, 161 (1960).

J. Chem. Phys., Vol. 61, No. 7, 1 October 1974

Downloaded 27 Feb 2005 to 200.137.205.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



J. A. Fornés and O. Goscinski: Electromagnetic interactions between macroscopic bodies 2665

®D. Langbein, J. Chem. Phys. 58, 4476 (1973),

'D. Langbein, Phys. Rev. 32, 3371 (1970).

8D, Langbein, J. Phys. A 6 1149 (1973).

SA. D. McLachlan, Proc. R. Soc. Lond. A 274, 80 (1964),
103, N. Israelachvili, Proc R, Soc. Lond. A 331, 39 (1972).
115, N. Israelachvili and D, Tabor, Proc. R, Soc, Lond.

A 331, 19 (1972).

12N, G. Van Kampen, B. R. A, Nijboer, and K. Schram, Phys.

Lett. 26A, 307 (1963).

131 ifshitz puts the extra condition of calculating the Maxwell’ s
stress tensor at x=0,

143, B. Callen and T. A. Welton, Phys, Rev. 83, 34 (1951).

154, B, G, Casimir, Helv. Phys., Acta, 33, 855 (1960).

18P, Richmond and B. W. Ninham, J. Phys. C 4, 1988 (1971).

I"E, Gerlach, Phys, Rev. B 4, 393 (1971).

87, landau and E. M. Lifshitz, Electrodynamics of Continuous
Media (Pergamon, London, 1960).

19, Schram, Phys. Lett. 43A, 282 (1973),

J. Chem. Phys., Vol. 61, No. 7, 1 October 1974

Downloaded 27 Feb 2005 to 200.137.205.154. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



