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Secondary minimum analysis in the DLVO-theory
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Abstract: A simple method for determining the secondary minimum distance and energy
for two parallel plane surfaces interacting with constant potential and constant surface
charge density in a symmetrical electrolyte solution is presented. Both cases are treated,
namely, non-retarded and retarded interaction. Two graphics which provide a quick sur-
vey for determining the secondary minimum are reported.
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Introduction

One of the characteristic features of the DLVO
theory [1,2] is the presence of a secondary minimum
in the curves of potential energy versus the interacting
surfaces® distance. If this minimum is moderately deep
in relation to kT, it could give rise to a form of lax floc-
culation, easily reversible. Von Burzagh [3, 4], Vanden
Tempel [5] and Schenkel and Kitchener [6] provided
experimental evidence in favour of the existence of sec-
ondary minima. Curtis [7, 8,9] discussed the possibil-
ity of describinga certain class of cell adhesion in terms
of this minima. Pethica [10] has attempted to put real
values into the equations for the repulsive and attrac-
tive energies, with the result that stable contacts be-
tween cells separated by 100-200 A as suggested by
Curtis seem most unlikely energetically. Gingell and
Fornés [11] studying the interaction of red blood cells
with a polarized electrode also gave some experimen-
tal evidence of the existence of this minimum. For a
discussion of secondary minima and their possibilities
in cell contact see also Weiss [12].

2. Constant potential interaction

We consider two plane surfaces, with surface poten-
tials ¥, and ¥, immersed in a solution of a symmetri-
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cal (v —v) electrolyte with 7 ions per cm’. Following
the notation of Verwey and Overbeek [2] we have

_ve¥ _ veWi . ., 8mney’
s A
and & = xX

where e is the electron charge, ¥ the electrical poten-
cial at any point between the surfaces, k18 Boltzmann’s
constant, T' is the absolute temperature, ¢ is the di-
electric constant of the medium, % is called the Debye-
Hiickel reciprocal length parameter, Z; and y are called
the reduced potentials of the surfaces and the solution
respectively, X is the distance between the surfaces.

For Z; arbitrary and large values of &, Verwey and
Overbeek (ref. [2], eq. (10)) showed that the reduced
potential in the solution as a function of the distance
from one plane surface is given by

exp(Z,/2) —1

y = 4p,exp(— &) with p; = exp(Z,/2) 71 )

This is the starting point for the linear superposition
approximation (LSA) which leads to the equations:

P, = 641kTy pexp(— &) 2
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64nkT —
Vv, = nkTyy,exp(—¢) (3) V- 64nkTyp.exp(—=§) Ax® 7)
x x 12 71£2

where P,, V, are the electrostatic repulsive force and
energy per unit area respectively between the two
parallel plane surfaces. The main advantage of these
expressions 1s that they coincide with exact calcula-
tions for & > 3. We have performed exact calculations
for V, in this range of ¢ following Derjaguin [13] for
different values of Z; and concentrations, and the dif-
ference between the results and those obtained apply-
ing equation (3) is less than 3 %. Gregory [14] showed
some curves comparing the exact results of Devereux
and Bruyn [15] where we can see that values calculated
using equation (3) almost coincide with exact calcula-
tions for ¢ = 3. It is precisely this range of ¢ >3 where
the secondary minimum appears.

The attractive force and energy per unit area are
given by

Ao’

P,=— 67763 (4)
Ax?

Vo=~ o7 )

where A is the Hamaker constant [16].
The total force and energy per unit area are
P = 6ankTy,pexp(— &) — 2% (6)
w2 6 7753

The condition for minimal energy is P = 0, which
leads to

A’

&) = 384 nnRTyp,

&5 exp(— (&)

where &, is the value of ¢ at the secondary minimum.

Replacing 7 =N, c/lOOO where ¢ 1s the concentra-
tion in moles per cm’ and N, is the Avogadro number,
£=80, T = 300 °K, we have x = 0.32459 x 1osvf

(cm™), and calling the right hand side of equation (8)
“E”, the equation becomes

114425 x 102 Ayc v®

E = 9
Vb2 ®

Then equation (8) is

Gexp(— &) = (10)

The advantage of equation (10) is that on one side
we have a function only of & and on the other a func-
tion which depends on characteristics of the surfaces
and medium, thus simplifying the calculations. The
function f(&) = &exp(— &) has a2 maximum in ¢ = 3
with f(3) =1.3442. Any value of E < f(3) with & >3
implies the existence of a secondary minimum. The
representation of equation (10) is shown in figure 1.
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Replacing (8) in (7) we obtain for the secondary
minimum energy V:

2
vV, = ’2” 305 x &2

= 5.5895 x 10" Av?c(¢r3 — 0.5 x &2) (11)

When retardation effects are necessary, equations
4), (5), (8) — (11) are transformed respectively into

Bx*
Po=— (12)
Byx*
Ve=—3e5 (13)
B&t
A v s AT (14)
20 2..4
_ 7.0 x 10°"Bcy (15)
YiV2
Elexp(—&) = F (16)
, §3>
34 S5s
V.= Bx (és 3
63
= 3.4198 x 10%?By3c3? (é;“ — ?S) (17)

where B is the retarded Hamaker constant.
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Fig. 2. Representation of equation (16)

The function f(¢) = &*exp(— &) hasa maximumin &
=4 with f(4) =4.6888. Any value of F < f(4) with £ >
4 implies the existence of a secondary minimum.

The representation of equation (16) is shown in
figure 2.

Both graphics, figures 1 and 2, are quick surveys for
determining the secondary minimum at constant
potential.

3. Constant charge interaction

It is well known that the interaction between
charged colloidal particles can be very different
depending on whether the condition is of constant sur-
face potential or constant surface charge density
[17,18]. For constant charge interaction, the surface
potentials of the particles can reach very high values,
even though the potentials of the isolated particles may
be quite small. Consequently the linear Poisson- Bolez-
mann expression is not appropriate in the constant
charge case. Rigorous nonlinear treatments were given
by Ohshima [19, 20]. Equations (77), (78) of Ohshima
(19) valid for large values of & state for the repulsive
force and energy of the interaction per unit area
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P, = 64nkT
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(19)

We observe thatformulas (18), (19) are similar to (2),
(3), just carrying out the substitution

2y 2
yi— |1+ (a) ~ o (20)
With g} = _k% %% and o, the surface charge density,

formulas (9) - (11) and (15) - (17) continue to be valid
with substitution (20), and also figures 1, 2.
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