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Secondary minimum analysis in the DLVO-theory 

J. A. FornSs 

Instituto de Matem~tica e Ffsica, Universidade Federal de Goi~is, Goiania (Brazil) 

Abstract: A simple method for determining the secondary minimum distance and energy 
for two parallel plane surfaces interacting with constant potential and constant surface 
charge density in a symmetrical electrolyte solution is presented. Both cases are treated, 
namely, non-retarded and retarded interaction. Two graphics which provide a quick sur- 
vey for determining the secondary minimum are reported. 
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I n t r o d u c t i o n  

One of the characteristic features of the DLVO 
theory [1, 2] is the presence of a secondary minimum 
in the curves of potential energy versus the interacting 
surfaces' distance. If this minimum is moderately deep 
in relation to kT ,  it could give rise to a form of lax floc- 
culation, easily reversible. Von Burzagh [3, 4], Van den 
Tempel [5] and Schenkel and Kitchener [6] provided 
experimental evidence in favour of the existence of sec- 
ondary minima. Curtis [7, 8, 9] discussed the possibil- 
ity of describing a certain class of cell adhesion in terms 
of this minima. Pethica [10] has attempted to put real 
values into the equations for the repulsive and attrac- 
tive energies, with the result that stable contacts be- 
tween ceils separated by 100-200 A as suggested by 
Curtis seem most unlikely energetically. Gingell and 
Forn& [11] studying the interaction of red blood cells 
with a polarized electrode also gave some experimen- 
tal evidence of the existence of this minimum. For a 
discussion of secondary minima and their possibilities 
in cell contact see also Weiss [12]. 

2. C o n s t a n t  potent ia l  interact ion  

We consider two plane surfaces, with surface poten- 
tials tP 1 and gt 2 immersed in a solution ofa symmetri- 
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cal (v - v) electrolyte with r] ions per cm 3. Following 
the notation of Verwey and Overbeek [2] we have 

vegt  vegti  (i = 1,2);  x 2 8rgr]e2P2 
Y =  k T  ; Z~ - k T  - e k T  

and ~ = )cX 

where e is the electron charge, ~ the electrical poten- 
cial at any point between the surfaces, k is Boltzmann's 
constant, T is the absolute temperature, e is the di- 
electric constant of the medium, x is called the Debye- 
Htickel reciprocal length parameter, Zi and y are called 
the reduced potentials of the surfaces and the solution 
respectively, X is the distance between the surfaces. 

For Zi arbitrary and large values of {, Verwey and 
Overbeek (ref. [2], eq. (10)) showed that the reduced 
potential in the solution as a f-unction of the distance 
from one plane surface is given by 

exp(Zi/2) - 1 (1) 
y = 47iexp(-~) with yi = exp(ZJ2) + 1 

This is the starting point for the linear superposition 
approximation (LSA) which leads to the equations: 

P~ -= 64rlkTyly2exp(-  ~) (2) 
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Fig. 1. Representation of equation (10) 

Vr = 6417kTy~Y2exp(- ~) (3) 
X 

where P ,  Vr are the electrostatic repulsive force and 
energy per unit area respectively between the two 
parallel plane surfaces. The main advantage of these 
expressions is that they coincide with exact calcula- 
tions for ~ > 3. We have performed exact calculations 
for V,. in this range of ~ following Derjaguin [13] for 
different values of Zi and concentrations, and the dif- 
ference between the results and those obtained apply- 
ing equation (3) is less than 3 %. Gregory [14] showed 
some curves comparing the exact results of Devereux 
and Bruyn [15] where we can see that values calculated 
using equation (3) almost coincide with exact calcula- 
tions for { = 3. It is precisely this range of { > 3 where 
the secondary minimum appears. 

The attractive force and energy per unit area are 
given by 

A~r 3 
P~ - 6jr~3 (4) 

A x  2 
g a - 

12;c~ 2 

where A is the Hamaker constant [16]. 
The total force and energy per unit area are 

P = 64r lkTyly2exp(-  ~) 
A x  3 

6 :r{ 3 

V = 64r lkTyly2exp(-  ~) Ax2 
x 12 J2"~ 2 (7) 

The condition for minimal energy is P = 0, which 
leads to 

a x  3 

~ exp( -  G) = 584 nr l k ry l y  2 (8) 

where G is the value of ~ at the secondary minimum. 
Replacing q = N~c/1000 where c is the concentra- 

tion in moles per cm 3 and Na is the Avogadro number, 
e = 80, T = 300 ~ we have x = 0.32459 x 108vlQ - 
(cm-'), and calling the right hand side of equation (8) 
"E", the equation becomes 

1.14425 x 10 ~2 AI/c-v 3 
E = (9) 

YlY2 

Then equation (8) is 

r G) = E (10) 

The advantage of equation (10) is that on one side 
(5) we have a function only of gs and on the other a func- 

tion which depends on characteristics of the surfaces 
and medium, thus simplifying the calculations. The 
function f(g) = g3exp(- {) has a maximum in ~ = 3 
with f(3) = 1.3442. Any value of E < [(3) with ~ > 3 
implies the existence of a secondary minimum. The 

(6) representation of equation (10) is sl~own in figure 1. 
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Fig. 2. Representation of equation (16) 

Replacing (8) in (7) we obtain for the secondary 
minimum energy Vs: 

A x  2 
Vs = 6 ~ -  (~s3 - 0.5 x ~22) 

= 5.5895 x 1013 Av2c({s  3 -  0.5 x ~s 2) (11) 

When retardation effects are necessary, equations 
(4), (5), (8) - (11) are transformed respectively into 

B x  4 
Pa = - 

B x  4 

V a --  3~3 

B ~  4 

~4exp(- ~s) -- 64rlkT YlY2 

F = 
7.0 x 102~ 4 

YlY2 

~4exp( - ~s) = F 

Vs = B x  3 424 

= 3.4198 x 1022Bv3c 3/2 4 2 4 -  

The function f(~) = ~4exp(- ~) has a maximum in 
= 4 with f(4) = 4.6888. Any value o f f  < f(4) with ~ > 
4 implies the existence of a secondary minimum. 

The representation of equation (16) is shown in 
figure 2. 

Both graphics, figures I and 2, are quick surveys for 
determining the secondary minimum at constant 
potential. 

where B is the retarded Hamaker constant. 

3. Constant  charge interaction 

(12) It is well known that the interaction between 
charged colloidal particles can be very different 
depending on whether the condition is of constant sur- 

(13) face potential or constant surface charge density 
[17,18]. For constant charge interaction, the surface 
potentials of the particles can reach very high values, 

(14) even though the potentials of the isolated particles may 
be quite small. Consequently the linear Poisson-Boltz- 
mann expression is not appropriate in the constant 

(15) charge case. Rigorous nonlinear treatments were given 
by Ohshima [19, 20]. Equations (77), (78) of Ohshima 

(16) (19) valid for large values of ~ state for the repulsive 
force and energy of the interaction per unit area 

(2; 2} 
Pr = 64r/kT 1 + d l  loll 

(17) 

x 1 + ]o~l exp ( - g )  (18) 
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We observe that formulas (18), (19) are similar to (2), 
(3), just carrying out the substitution 

y~-, 1 + Io;I 

, v e  4 z o i  and oi the surface charge density, With oi - k T  e k T  

formulas (9) - (11) and (15) - (17) continue to be valid 
with substitution (20), and also figures 1, 2. 
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