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Received May 21, 1996; accepted October 2, 1996

(a) A solution of spherical charged particles1 of radii a
A method is developed in order to determine the natural electri- immersed in a symmetrical electrolyte solution of puntual

cal thermal fluctuations and its spectral distribution across two ions, Fig. 1a.
points of a solution of ions or spherical charged particles immersed (b) A symmetrical electrolyte solution which ions have
in an ionic solution. The electrical equivalent between two points

a mean radius a , Fig. 1b.of a solution is considered as a capacitor and a resistor in parallel.
In both cases are estimated the electrical fluctuations andThe method is applied within the Debye–Hückel approximation

their spectral distributions.( linearized Poisson–Boltzmann equation) , although it is valid in
general. Among the results is the diminution of electrical fluctua-

II. ELECTRICAL FLUCTUATIONS IN SOLUTIONStions as particle sizes increase; as a consequence, large particles
produce electrical stabilization in their neighborhood. It can also

The Debye–Hückel theory (13) for a symmetrical electro-be observed that fluctuations are not quite sensitive to ionic concen-
lyte of valence z with n ions per m3 gives for the potentialtrations for large particles. When the size of the particles become

negligible we obtain similar results with the already obtained using c(r) surrounding an spherical ion of charge Q Å ze0 :
the method of the mode expansion. q 1997 Academic Press

Key Words: electrical fluctuations; colloid fluctuations; ionic
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The SI system of units was employed throughout, in Eq. [1]
I. INTRODUCTION e0 is the permittivity of vacuum (e0 Å 8.85 1 10012 C2 N01

m02) , e is the dielectric constant of the medium, e0 the
The importance of local field fluctuations in biological electron charge (e0 Å 1.602 1 10019 C), a is the distance

systems was raised by several authors: Weaver and Astumian of closest approach equal to the sum of the radii of oppositely
(1) have presented a calculation of the effects of weak fields charged ions in contact (see Fig. 2) and k, called the Debye-
upon cells. Procopio and Fornés (2) , using the fluctuation– Hückel reciprocal length parameter, is given by:
dissipation theorem (FDT), have presented a calculation
of the voltage fluctuations across cell membranes. Protonic

k 2 Å e 2
0

ee0kT
∑ hi 0z

2
i Å

2000e 2
0NA

ee0kT F1
2

∑ ciz
2
i G . [2]fluctuations could be the cause of the dielectric increment

of proteins in solution (3, 4) . For fluctuations of ion distribu-
tion in polyelectrolyte solutions see, for instance Refs. (5)

The quantity I Å 1
2 ( ciz

2
i quantifies the charge in an electro-and (6). Also local fluctuations can influence chemical reac-

lyte solution and is called the ionic strength after Lewis andtions (7) . Oosawa (8) has calculated the magnitude of fluc-
Randall (15). In case of a solution of a symmetrical (z 0tuating voltage and field across different points of an electro-
z) electrolyte we havelyte solution constituted of puntual ions using the method

of the mode expansion (5, 6, 9–11).
We develop a method which uses results of FDT (see k 2 Å 2(e0z)2

e0ekT
n Å 2(e0z)2

e0ekT
NAc103, [3]

(2) and (12)) to determine the natural electrical thermal
fluctuations and its spectral distribution across two points of

where k is the Boltzmann constant (k Å 1.381 1 10023 J /a solution of ions or electrical charged particles immersed
K), T is the absolute temperature, NA is the Avogadro con-in an ionic solution. We consider the solution path as a
stant, and c the solution concentration in moles/ liter.capacitor and a resistor in parallel.

The equations derived in the present work are valid for
1 It can also be polyelectrolytes.the following two cases:
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91ELECTRICAL FLUCTUATIONS IN SOLUTIONS

FIG. 1. (a) Spherical charged particles of radii a immersed in a symmet-
rical electrolyte solution of puntual ions. (b) Symmetrical electrolyte solu-
tion of ions having a mean radius a .

In Figs. 3a and 3b are shown k and k01 versus c in mM
for z Å 1 and z Å 2. In case we have an spherical particle
immersed in a solution of puntual ions Eq. [1] remains the
same, Q being the charge on the particle and a its radius
(see for instance (14)) .

Equation [1] is limited to solutions in which the ratio of

FIG. 3. (a, b) k and k01 for mono- and bivalent symmetrical electrolyte
solution.

the electrical to the thermal energy of the ions is very small,
namely:2

ze0c(r)
kT

! 1. [4]

2 This condition comes to approximate sinh(ze0c(r) /kT ) É ze0c(r) /kT
in the Poisson–Boltzmann equation.FIG. 2. Representation of a , the distance of closest approach.
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92 JOSÉ A. FORNÉS

As the potential decreases quite rapidly from the surface of
the particle and in order that the former Eq. (3) be valid in
the neighborhood of it, we can consider the inequality on
the particle surface, namely:

ze0c(a)
kT

Å ze0Q

4pee0kT(1 / ka)a
! 1. [5]

A good approximation is to consider the former equation
equal to 1001 and obtain an upper limit to the charge on
the particle, Qup , for a given value of a and k. This value
of Qup will satisfy the condition given by Eq. [4 ] in
the neighborhood solution surrounding the particle,
namely:

Qup Å 1001(ze0)014pee0kT(1 / ka)a . [6]

Of course the actual charge on the particle has to fulfill the
condition

ze0 £ Q £ Qup . [7]

In Fig. 4 is represented Eq. [6] for some particle sizes and
electrolyte valence. In this way the following formulas are
only valid preventing the validity of the inequality Eq. [5]
or Eq. [6] and Eq. [7] . At the distance of closest approach,
r Å a , then

c(a) Å Q

4pee0a

1
1 / ka

Å Q

4pee0a
0 Q

4pee0

k

1 / ka
. [8]

The first term on the right-hand side of Eq. [8] is the poten-
tial ci at the surface of the ion due solely to the charge on
the ion itself. The second term is the portion ca of the total
potential that is due to the arrangement of the surrounding
ions in the neighborhood of the central ion and is called the
potential of the ionic atmosphere. The contribution of the
cloud to the potential at the site of the central ion or particle
can be written as

ca(r) Å Q

4pee0r
F ek(a0r )

1 / ka
0 1G Å 0Q

4pee0x
, [9]

with x given by:
FIG. 4. Representation of Eq. (6): (a, b) for mono- and bivalent sym-

metrical electrolyte solution.

x Å r(1 / ka)
1 / ka 0 ek(a0r ) . [10]

Because of the spherical symmetry we have transformed the a capacitor, see Fig. 5. For calculating the capacitance we
need to compute the potential difference of the ionic atmo-ionic atmosphere into a thin spherical shell with a charge

0Q placed at a distance x from the site of the central ion, sphere between the surface of the particle or ion, x(a) , and
x(r) , namely:in this way the central particle or ion and the shell constitute
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93ELECTRICAL FLUCTUATIONS IN SOLUTIONS

[(ca(r) 0 ca(a))2]v Å 2R(r)kT . [15]

Consequently:

»(ca(r) 0 ca(a))2
… Å 1

p *
w/Dv

w

2R(r)kTdv

FIG. 5. Transformation of the central ion together with its ionic atmo- Å 2
p

R(r)kTDv Å 4R(r)kTD f , [16]sphere into a capacitor.

where v Å 2pf , with f the frequency and the region corre-
ca(a) 0 ca(r) Å 0Q

4pee0r
sponds to the ‘‘white’’ noise. Equation [16] constitutes the
so-called Nyquist theorem (16).

Applying Eqs. [12] and [14] we get for the mean square
1 F01 / k(r 0 a) / ek(a0r )

1 / ka G . [11] of the fluctuating potential difference

»(ca(r) 0 ca(a))2
…The corresponding capacitance will be:

Å kT[01 / k(r 0 a) / ek(a0r ) ]
4pee0r(1 / ka)

. [17]
C(r) Å 0Q

ca(a) 0 ca(r)

The mean square of the field averaged over the distance r ,
Å 4pee0r(1 / ka)
01 / k(r 0 a) / ek(a0r ) . [12]

»(Er(r))2
… Å »(ca(r) 0 ca(a))2

… ú r02 (see ref. (3) , Eqs.
[22] and [23]):

III. CALCULATION OF THE ELECTRICAL MEAN
»(Er(r))2

… Å »(Çt rc(r))2
…SQUARES FLUCTUATIONS

In order to calculate the voltage thermal fluctuations, Å kT[01 / k(r 0 a) / ek(a0r ) ]
4pee0r

3(1 / ka)
. [18]

»(ca(r) 0 ca(a))2
… , and its spectral distribution across two

points of the solution, [(ca(r) 0 ca(a))2]v , we resemble
For long distances Eqs. [17] and [18] transform tothe solution path between the two points as an R(r)C(r)

circuit in parallel (R(r) is the solution electrical resistance
at the distance r from the site of the central ion and C(r)

»(ca(r) 0 ca(a))2
… Å kTk

4pee0(1 / ka)
[19]is the corresponding capacitance) . The spectral density of

the mean square of the fluctuational potential is (see ref.
»(Er(r))2

… Å »(Çt rc(r))2
…(2))

Å kTk

4pee0r
2(1 / ka)

. [20]
[(ca(r) 0 ca(a))2]v Å

2R(r)kT

1 / [vR(r)C(r)] 2 , [13]

For a solution of negligible ions size, we can consider a Å
and the corresponding mean square of the fluctuating poten- 0 in the Eqs. [17] and [18], giving:
tial will be:

»(ca(r) 0 ca(0))2
… Å kT(01 / kr / e0kr)

4pee0r
[21]

»(ca(r) 0 ca(a))2
… Å 1

p *
`

0

[(ca(r) 0 ca(a))2]vdv

»(Er(r))2
… Å »(Çt rc(r))2

…

Å kT

C(r)
. [14]

Å kT(01 / kr / e0kr)
4pee0r

3 . [22]

For v ! 2p /t, with t Å RC , the spectral density is practi-
cally independent of v; thus, for relatively low frequencies, Equations [21] and [22] differ by a factor of 2 from those

already given by Oosawa (8).we have a ‘‘white’’ spectrum and Eq. [13] transforms:
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94 JOSÉ A. FORNÉS

In case we have small potentials and a flat double layer,
Eq. [1] transforms into the following (see ref. (14)):

c(r) Å c0e0kx . [23]

It is well-known from electrostatics that s Å Q/S is

s Å 0ee0
Ìc(r)
Ìx Z

xÅ0

. [24]

From Eqs. [23] and [24] we get

c(x) Å Q

ee0kS
e0kx . [25]

The potential profile due solely to the charge on the surfaces
is

cs(x) Å 0 Q

ee0S
x . [26]

Then the potential of the ionic atmosphere will be

FIG. 6. Representation of Eqs. [12] and [33] for the resistance andca(x) Å c(x) 0 cs(x) Å Q

ee0S F e0kx

k
/ xG . [27]

capacitance of the solution as a function of the distance from the particle
surface. rKCl Å 0.8 Vm was calculated from Eq. [A7] (see parameters on
the figure) .Correspondingly the capacitance formed by the surface and

ionic atmosphere will be

Equations [29] and [30] coincide with those given by Oo-
sawa (8).C(x) Å 0Q

ca(0) 0 ca(x) For long distances we can consider the value of the bracket
in Eqs. [29] and [30] to be equal to the unit.

Å ee0S

xF1 0 1
kx

(1 0 e0kx)G . [28]

IV. CALCULATION OF THE SPECTRAL DENSITY
FLUCTUATIONS

Then from Eq. [14] we get for the mean square of the
In order to calculate the spectral density of the mean

fluctuating potential
square of the fluctuational potential difference using Eq. [13]
we need to know the electrical resistance, R(r) , between

»(ca(x) 0 c0(a))2
… the surface of the particle or ion and a point r inside the

solution. Its relation with the capacitance of the equivalent
Å kT

ee0S
xF1 0 1

kx
(1 0 e0kx)G , [29] electrostatic problem is (see for instance Reitz and Milford

(1967) (17)):

and for the mean square of the field averaged over the dis-
tance x , we have R(r) Å ee0r

C(r)
, [31]

»(Ex(x))2
… Å »(Çt xc(x))2

…

with r being the solution electrical resistivity.
In Fig. 6 are represented C(d) and R(d) , (d Å r 0 a) ,Å kT

ee0S

1
x F1 0 1

kx
(1 0 e0kx)G . [30]

from Eqs. [12] and [31] for a 100 mM KCl solution. Corre-
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95ELECTRICAL FLUCTUATIONS IN SOLUTIONS

[(ca(r) 0 ca(a))2]v

Å 2kTr

1 / (4pee0vr)2

01 / k(r 0 a) / ek(a0r )

r(1 / ka)
. [35]

Correspondingly the spectral density of the mean square of
the fluctuational electric field will be given by

[(Er(r))2]v

Å 2kTr

1 / (4pee0vr)2

01 / k(r 0 a) / ek(a0r )

r 3(1 / ka)
. [36]

In Fig. 8(a) is shown the spectral density of the mean square
of the fluctuational potential versus the radial frequency of
the fluctuations for a KCl solution for given values of con-
centrations. We can observe a substantial diminution and
broaden of the spectrum with increasing concentration with
the corresponding diminution of the relaxation time of the
fluctuations.

In Fig. 8(b) is shown the spectral density of the mean
square of the fluctuational potential as a function of the
particle size, we can observe an effect of electrical stabiliza-
tion, diminution of the amplitude of the fluctuations, withFIG. 7. Relaxation time of the fluctuations, t, as a function of the

concentration for a KCl solution, it was calculated using Eqs. [32 ] and increasing particle size.
[A7] .

V. CALCULATION OF THE MEAN SQUARES
TEMPORAL AVERAGESspondingly the relaxation time, t, of the electrical fluctua-

tions will be given by:
We can characterize the time correlation of a physical

quantity, x( t) , by the mean value of the product »x(0)x( t) …
t Å ee0r. [32]

which is related to the spectral resolution, (x 2)v , by:

In Fig. 7, t is represented as a function of concentration for
a KCl solution, using Eq. [A7] for r. We can observe a »x(0)x( t) … Å 1

2p *
`

0`

(x 2)ve0ivt dv . [37]
diminution of the relaxation time with concentration because
to the corresponding diminution of the electrical resistivity.

In particular, »x(0)2
… is the mean square of the fluctuatingFrom Eqs. [12] and [31] we get:

quantity:

R(r) Å r
01 / k(r 0 a) / ek(a0r )

4pr(1 / ka)
. [33]

»x(0)2
… Å 1

2p *
`

0`

(x 2)vdv . [38]

In case we have a flat double layer from [28] and [31], we
have: In order to compare the fluctuating quantity with the corre-

sponding to a physical event elapsed in a time Dt it is neces-
sary to know the mean square of the fluctuating quantity

R(x) Å r

S
xF1 0 1

kx
(1 0 e0kx)G . [34] averaged in this time interval Dt , namely:

In case of lack of experimental data on r we can calculate t

»x(0)x( t) …
Å 1

Dt *
D t

0

»x(0)x( t) …dt . [39]
it from Eq. [A1] together with Eqs. [A7] and [A8], see
Appendix. From Eqs. [13], [31], and [33] we obtain the
following for the spectral density of the mean square of the In our case x å ca(r) 0 ca(a) and from Eq. [13] »x(0)2

…

Å kT /C(r) and from Eqs. [13] and [31]:fluctuational potential:
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96 JOSÉ A. FORNÉS

Then from Eqs. [35] and [38] and adapting the notation to
our case, »x(0)x( t) … Å »(ca(r) 0 ca(a))2

… ( to condense
notation), we have

»(ca(r) 0 ca(a))2
… Å kT

C(r)pt *
`

0`

e0ivtdv

(v 0 i /t)(v / i /t)

Å kT

C(r)
e0t /t . [41]

Applying Eq. [37] to our case we have:

t

»(ca(r) 0 ca(a))2
…
Å 1

Dt *
D t

0

»(ca(r) 0 ca(a))2
…dt

Å kT

C(r) F t

DtG [1 0 e0Dt /t] . [42]

Analogously for the field fluctuations:

t

»(Er(r))2
…
Å kT

r 2C(r) F t

DtG [1 0 e0Dt /t] . [43]

VI. RESULTS

In Fig. 9(a–d) are shown voltage and field fluctuations
as a function of the Debye–Hückel reciprocal length, k01 ,
for given values of particle sizes at a distance d Å 100 Å
from the particle surface. This figures have to be observed
together with Fig. 3a and 3b which give k01 vs c for mono-
and bivalent electrolytes.

Examination of Fig. 9 indicates that the fluctuations di-
minish as particle sizes increase; as a consequence large
particles produce electrical stabilization in their neighbor-
hood.

It can also be observed that fluctuations are not quite
sensitive to ionic concentrations for large particles. Voltage
fluctuations, for our range of k01 ( this range covers most of
the current biological and physical chemistry systems), run
from tenth of a mV to about 20 mV, with the corresponding
field fluctuations spanning a range of mV Å01 to mV Å01 .

In Fig. 9(e–h) are also shown voltage and field fluctua-
tions as a function of the distance d from the particle surface
for different values of k01 and particle sizes. It can be ob-FIG. 8. (a) Spectral density of the mean square of the fluctuational

potential as a function of the fluctuational frequency v for a pure KCl served the existence of substantial increase in voltage fluc-
solution (see parameters on the figure) . (b) Ditto as a function of particle tuations with increasing d , especially for small particles, and
size. up to a limiting value given by Eq. [19]. For these small

particles it can also be observed a maximum in the field
fluctuations at a distance of the order of k01 . The effect of[(ca(r) 0 ca(a))2]v
electrical stabilization with increasing of particle size also
becomes apparent here.Å kT

C(r)
2

t(v 0 i /t)(v / i /t)
. [40]

In Fig. 10(a–d) are plotted voltage and field fluctuations
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FIG. 9. Voltage and field fluctuations as a function of k01 and the distance d from the particle surface.
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98 JOSÉ A. FORNÉS

FIG. 10. Voltage and field fluctuations: (a, b) ionic solution of puntual ions; (c, d) two plates of area S Å 1 cm2 and separation x immersed in an
ionic solution of puntual ions.

for the two extreme cases: (1) an ionic solution of punctual (1) Identification of the molecular–ionic capacitor of the
system. The capacitance is given by:or small ions (Figs. 10(a) and 10(b)) and (2) two plates

of area S Å 1 cm2 and separation x immersed in an ionic
solution of punctual ions (Figs. 10(c) and 10(d)) . In case C(r) Å Z Q

ca(r) 0 ca(a) Z ,
(1) voltage fluctuations remain between 1 and 20 mV, con-
verging to the limiting value given by Eq. [19] for long
distances; the corresponding field fluctuations stay in the with Q the charge on the particle or molecule and ca(r) the
range of a few mV Å01 decreasing with distance. potential of the ionic atmosphere, a the distance from the

In case (2) voltage fluctuations increases with distance center to the surface of the particle or molecule and r the
and are in the two-digit nV range. Corresponding electric distance from the center to a point inside the surrounding
field fluctuations decrease with distance are in the tenth of solution.
nV Å01 range. (2) Estimation of the resistance R(r) or the electrical

resistivity r of the path associated with the capacitance (elec-
VII. CONCLUSION trical path) . The relaxation time, t, is then

We have developed a simple method to estimate the elec- t Å R(r)C(r) Å ee0r.
trical fluctuations in colloids and ionic solutions. The steps
to perform in order to determine these fluctuations can be (3) The voltage and field mean square fluctuations are

given bysummarized as follows:
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99ELECTRICAL FLUCTUATIONS IN SOLUTIONS

APPENDIX: THEORETICAL CALCULATION
»(ca(r) 0 ca(a))2

… Å kT

C(r)
, OF THE ELECTRICAL RESISTIVITY

When we have highly charged particles or polyelectrolytes
»(Er(r))2

… Å »(ca(r) 0 ca(a))2
…

r 2 .
immersed in a symmetrical electrolyte solution, another path
of electric conduction can be open through this particles or
polyelectrolytes and the electrical conductivity s Å r01 of

(4) The spectral density of the mean square of the fluctu- the solution can be written as:
ational potential and field are given by

r01 Å r01
i / r01

p , [A1]

[(ca(r) 0 ca(a))2]v Å
2R(r)kT

1 / [vt]2 , where ri and rp are the contributions to the total electrical
resistivity of the ions and particles, respectively. The relation

[(Er(r))2]v Å
[(ca(r) 0 ca(a))2]v

r 2 . between the electrical resistivity, ri , and the equivalent con-
ductance L is given by:

(5) The mean square of the fluctuational potential and
ri Å

NA

nzL
. [A2]field averaged in a time Dt are given by

According to Debye and Hückel (13) and Onsager (18)t

»(ca(r) 0 ca(a))2
…
Å kT

C(r) F t

DtG [1 0 e0Dt /t] , interionic attractions and repulsions lead to two effects, both
of which result in the lowering of the equivalent conductance
with increasing ion concentrations; correspondingly it can
be decomposed in three terms (see ref. (19) for a goodt

»(Er(r))2
…
Å [ t / »(ca(r) 0 ca(a))2

…]
r 2 .

treatise on this subject) :

L Å L0 0 Le 0 Lt , [A3]Voltage fluctuations at a molecular scale cannot be measured
due both to unavailability of microscopic probes and to re-

where L0 is the equivalent conductance at infinite dilutionsponse limitation of measuring electronics. Measurement of
and is given by:these fluctuating voltages is also inherently elusive due to

the thermal noise of electronic apparatuses. Molecular sys-
tems, on the other hand, are sufficiently small and fast as to L0 Å

ze 2
0NA

kT
(D/

0 / D0
0 ) [A4]

both sense and respond to local fluctuating electrical fields
(20, 21) or for an efficient processing of information in the
form of fast conformational changes (22). In order to ex- where D{

0 are the diffusion constants.
plain any possible mechanism at molecular level, which in- Le is the contribution of the electrophoretic effect and
volves an electric process, these fluctuations have to be con- tends to diminish L0 and is given by:
sidered.

The above described fluctuations are one of the factors
Le Å

2ze 2
0kNA

6ph(1 / kai )
, [A5]that cause the dielectric increment De of polyelectrolyte

solutions; Oosawa (5) related the field fluctuations to De,
having obtained a good agreement with the experimental where h is the viscosity of the solution and ai is the mean
data of Takashima (27). ion radius.

Fluctuations with very long relaxation times appear in or
Lt is called the time of relaxation effect and is the other

around particles. The lowest relaxation time of fluctuations mechanism tending to decrease the equivalent conductance,
in counterion density around a long rod-like polyelectrolyte namely:
was found to be in the range of 1003 to 1004 s (6, 27, 28).

We suggest the application of the present formalism to
the determination of the field fluctuations in long rodlike Lt Å

(e0z)2k

24pee0kT

√
2

1 /
√
2
L0 . [A6]

polyelectrolyte solutions in order to estimate the dielectric
increment, De, and compare with the existent experimental
data on this kind of systems. From Eqs. [A2–A6], we get for the ion electrical resistivity:
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£ Å j4pee0

6ph
f (kap)E , [A10]ri Å 1YHn(ze0) 2FF1 0 (ze0) 2k

24pee0kT

√
2

1 /
√
2
G

where the j potential is given by1 (D/
0 / D0

0 )
kT

0 k

3ph(1 / kai ) GJ [A7]

j Å Q

4pee0ap

1
1 / kap

. [A11]
In Fig. A1 is represented Eq. [A7] for a KCl solution as a
function of concentration. The electrical resistivity corre-
sponding to the particles, rp , is given by: Henry (24 ) introduced a correction for the surface con-

ductance, Ks , considering that the mobility of the particle
would be reduced on account of the distortion of the

rpÅ 6phap(1/ kap)YFnpQ
2S1/ Ksri

ap
D f (kap)G [A8] spherical symmetry of the electrical double layer, relax-

ation effect. Also, the applied field would be modified in
the vicinity of the particle by the electrical conductivitywhere np is the number of particles per m3, Q is the net
of the double layer.charge on the particle, ap the radius of the particle, and

f (kap) is called Henry’s function (23); it varies between
1.0 and 1.5 as kap goes from zero to infinity, and Ks is the jcorr Å jS1 / Ksri

ap
D . [A12]

surface conductance of the particle.
In deriving Eq. [A8] we have used the relation between

The surface conductance of the particle can be evaluatedthe current density J (amperes/m2) and the external applied
using equations due to Street (26).field E , namely:

The relaxation effect may be neglected when (a) the val-
ues for j potential are far below 25 mV and (b) values for

J Å npQ£ Å 1
rp

E , [A9] kap are small ( less than 1) or when kap @ 1 (25).
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