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The Electrical Capacitance of Small Systems
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The electrical capacitance of several small systems is determined
by using results given by the fluctuation-dissipation theorem in the
classical limit. Estimating the electrical capacitance is important
because it is the link to knowledge of the fluctuation of several
physical quantities, voltage and field fluctuations, dipole moment,
pH, and charge, and also to knowledge of the polarizability and
the dielectric dispersion of colloidal and polyelectrolyte systems.
For small systems appearing in nature ∼(10–1000) Å the electric
capacitance varies in the range∼(10–1000)× 10−18 F with the corre-
sponding field and dipole moment fluctuations in the order of units
of (104−106) V/m and (102− 104) D, respectively. C© 2000 Academic Press

Key Words: charge fluctuation capacitance; small systems; elec-
trical fluctuations.
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I. INTRODUCTION

Several processes or systems are sources of electrica
pacitance in small systems: protonation–deprotonation equ
rium at interfaces and in the bulk, the fluctuation of the io
atmosphere surrounding a charged surface or macroion
electrolyte solution, and also cell and the inner mitochond
membranes and ionic channels can be well represented by
binations of resistances and capacitances, etc. Estimating
trical capacitance is important because it is the link to knowle
of the fluctuation of several physical quantities: voltage and fi
fluctuations (1–6), dipole moment (5–7), pH, and charge (8
is also a link to knowlege of the polarizabity and the dielec
dispersion of molecular systems (5, 7). In the present pape
estimate the electrical capacitance of several small system
discuss the implications of its magnitude in the values of sev
physical quantities.

One of the results of the fluctuation-dissipation theor
(FDT) in the classical limit (kTÀ h̄ω) (5),1 is

〈(1x)2〉1/2〈(1 f )2〉1/2 = kT, [1]

where〈(1x)2〉1/2 is the square root of the mean square of
spontaneous fluctuations of a quantityx, as due to the actio
1 In this reference we used the notationx for 1x.
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of some random forcef sensed by the environment, whos
corresponding square root of the mean square of the fluctua
is 〈(1 f )2〉1/2.

In order to simplify the notation we rewrite Eq. [1] as

δx · δ f = kT. [2]

We observe in Eq. [2] that whenδx diminishsδ f increases
and vice versa in order to mantain the product constant equ
kT; this means a constant equilibrium between the system
the environment. We also observe that the productx× f has the
dimension of energy.

As an example of Eq. [2] we can consider in a capacitor
relation between the statistical fluctuation of charge,δq, and
the corresponding fluctuation of potential,δψ , sensed by the
environment

δq · δψ = kT. [3]

We can define the capacitance as

C = δq

δψ
⇒ δq = C · δψ. [4]

From Eqs. [3] and [4] we obtain the following relations:

C = (δq)2

kT
, δψ =

(
kT

C

)1/2

, δq = (kT · C)1/2. [5]

These relations have already been used by several autho
various situations; see Refs. (1–8).

The SI system of units is employed throughout the p
per; namely,ε0 is the permittivity of the vacuum (ε0= 8.85×
10−12 C2 N−1 m−2), ε is the dielectric constant of the medium
(ε= 80), e0 is the proton charge (e0= 1.602× 10−19 C), k is
the Boltzmann constant (k= 1.381× 10−23 J/K), andT is the
absolute temperature.

In Table 1 the relations of Eq. [5] are shown numerically. Fro
the third and fourth columns we can observe the increase of
tential and field fluctuations with the decrease of the capac
value and size. The fifth column shows the diminution of cha
fluctuations (number of elementary charges) with the co
sponding decrease of the capacitor value and size. The minim
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ELECTRICAL CAPACITAN

TABLE 1
Potential, Electric Field, and Charge Fluctuations as Related

to Given Values and Sizes of the Capacitors

C d=C/εε0 δψ δE= δψ/d δq/e0

1 pF 1.4 mm 64µV 46 (mV/m) 402
1 fF 1.4µm 2 mV 1.4 (kV/m) 13
100 aF 1400 A

a
6 mV 43 (kV/m) 4

10 aF 140 A
a

20 mV 1.4 (MV/m) 1.3
(e0)2/kT= 6.2 aF 87 A

a
26 mV 9.6 (MV/m) 1

1 aF 14 A
a

64 mV 46 (MV/m) 0.4

Note.Cubic capacitor,C= (A/d)εε0; A= d2; ε= 80; aF≡ attoF= 10−18 F.

capacitance value at room temperature supporting one elem
tary charge fluctuation is (e0)2/kT= 6.2 aF, which correspond
to a cubic capacitor in water of sided= 87 Å. Inside vesicular
biological systems in water with sizes approximately lower th
this, charge fluctuations are fractions of one elementary cha

Next we analize the capacitance of various capacitors
appear in polyelectrolytes and colloidal and vesicular biolo
ical systems, and the corresponding influence in the electr
fluctuations.

II. METHOD

A. Spherical Charged Colloidal Particle

The Debye–H¨uckel theory (9) for a symmetrical electrolyt
of valencez with n ions per m3 gives for the potentialψ(r )
surrounding a spherical particle of chargeQ

ψ(r ) = Q

4πεε0

eκa

1+ κa

e−κr

r
. [6]

Here,a is the particle radius andκ, called theDebye–Ḧuckel
reciprocal lengthparameter, is given by

κ2 = e2
0

εε0kT

∑
ηi 0z2

i =
2000e2

0NA

εε0kT

[
1

2

∑
ci z

2
i

]
, [7]

whereNA is the Avogadro constant,ηi 0 andci are the number of
ions per m3 and the concentration in mole/liter of ion speciesi
far away from the surface. The quantityI = (1/2)

∑
ci z2

i quan-
tifies the charge in an electrolyte solution and is called theionic
strengthafter Lewis and Randall (10). In the case of a soluti
of a symmetrical (z− z) electrolyte we have

κ2 = 2(e0z)2

εε0kT
n = 2(e0z)2

εε0kT
NAc103, [8]

wherec the solution concentration in mole/liter.
Equation [6] is limited to solutions in which the ratio of th

electrical to the thermal energy is very small; namely,
ze0ψ(r )

kT
¿ 1. [9]
CE OF SMALL SYSTEMS 173

en-

an
rge.
hat
g-
ical

n

e

At the particle surface,r =a; then

ψ(a) = Q

4πεε0a

1

1+ κa
= Q

4πεε0a
− Q

4πεε0

κ

1+ κa
. [10]

The first term on the right-hand side of Eq. [10] is the poten
ψQ at the surface of the particle due solely to the charge on
particle itself. The second term is the portionψcloud of the total
potential that is due to the arrangement of the surrounding
in the neighborhood of the particle and is called thepotential
of the ionic atmosphere. The contribution of the cloud to the
potential can be written as

ψcloud(r ) = Q

4πεε0r

[
eκ(a−r )

1+ κa
− 1

]
. [11]

The contribution of the ionic cloud to the electrostatic pote
tial at the particle surface will be

ψcloud(a) = − Q

4πεε0(1+ κa)/κ
. [12]

The entire charge of the ionic atmosphere,−Q, given by
Eq. [12], can be considered as if it is placed on a thin spher
shell at a distancex= (1+ κa)/κ from the center of the particle
Then we can define the Debye–H¨uckel cloud capacitance as

CDH = Q

ψcloud(a)
= 4πεε0

1+ κa

κ
. [13]

In cases where the Debye–H¨uckel approximation (Eq. [9])
is not longer valid we have to solve numerically the Poisso
Boltzmann equation.

B. Numerical Solution of the Poisson–Boltzmann Equation

1. Spherical systems.We have

1ψ = − ρ

εε0
[14]

with ρ being the charge density given by

ρ = e0

∑
ηi 0zi exp

(
−zi

e0ψ

kT

)
, [15]

where1 is, in our case of spherical symmetry, the radial par
the Laplace operator. The two previous equations can be wr
as

1

x

d

dx

(
dxy

dx

)
= −Aρ [16]

with A= e0/(εε0kTκ2) andρ written as
ρ = e0

∑
ηi 0zi exp(−zi y), [17]
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where y= e0ψ/kT and x= κr are the dimensionless poten
tial and distance, respectively,r being the distance from the
center of the sphere. At the surface of the sphere,x= x0= κa
andy= y0= e0ψ0/kT. Numerical integration of Eq. [16] is ob
tained by the Runge–Kutta method, in which Eq. [16] is tra
formed into a system of coupled first-order ordinary different
equations; namely,

dy1

dx
= y2

[18]
dy2

dx
= −Aρ − 2y2

x

with y1= y.
As the set of Eqs. [18] represent a second-order nonlin

differential equation, we used an adaptive step-size control s
routine, “odeint” from Ref. (11), joining the main program wit
subroutines, “derivs, odeint, rkqs, rkck.”

C. Boundary Conditions

In case we are interested in determining the overall pot
tial profile, it can be assumed that the potential through e
interface is continuous.

1. Interior of the vesicle. Because the symmetry of the ele
tric field must be zero at the center of the vesicle, we have

dy

dx
= 0, at x = 0. [19]

By Gauss’s law, we have at the interface between the interio
the vesicle and the lipid

εw

(
dψ

dr

)
a−
− εl

(
dψ

dr

)
a+
= σa

ε0
,

or as a function of the dimensionless potential and distance

εw

(
dy

dx

)
a−
− εl

(
dy

dx

)
a+
= e0

κε0kT
σa, [20]

whereσa is the surface charge density at the interface inx=
xa (r =a), εw andεl are the dielectric constants of water an
lipid, respectively, anda− anda+ refer to the left and right of
the interface.

2. Lipid region. If the net charge of ions in the interior o
the vesicle is equal and opposite to the charge at the inter
at x= xa, the electric field within the bilayer is null by Gauss
law, (dy/dx)a+ = 0. Then Eq. [20] transforms into(

dy

dx

)
a−
= e0

κε0εwkT
σa. [21]
3. Exterior of the vesicle.Then applying a similar Eq. [20]
at the interface between the lipid and the exterior of the vesic
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x= xb (r = b), having in mind that the electric field within th
bilayer is null, (dy/dx)b− = 0, we have(

dy

dx

)
b+
= − e0

κε0εwkT
σb. [22]

D. Integration Procedure

We consider a spherical vesicle delimited by a lipid bilayer
internal reduced radiusxa and external reduced radiusxb. The
interior (x< xa) and the exterior (x> xb) are constituted by an
ionic solution.

1. Interior of the vesicle. We start the integration at the cen
ter of the vesicle with the initial conditions

(y1, y2) = (y(0), 0). [23]

Integrating forward, 0→ xa. In the case where the value ofy2(xa)
coincides with that given by Eq. [21], we stop the integration w
the corresponding determination ofy(0) andy(xa)= y1(xa); on
the contrary, the procedure again starts changingy(0) until the
former condition ony2(xa) is accomplished.

2. Exterior of the vesicle.We start the integration at low po
tentials, far away from the surface. Under this condition the D
approximation is valid. In the case of a symmetrical electrol
we have

(y1, y2) =
(

y(xb)xb
exp(xb − x1)

x1
,−y1

(
1+ 1

x1

))
[24]

with y(xb) given by

y(xb) = ze0σbxb

κε0εwkT(1+ xb)
. [25]

We integrate backward,x1→ xb. If y2(xb) is equal to the value
given by Eq. [22], we stop the integration with the correspond
determination ofy(xb)= y1(xb); on the contrary, the procedur
again starts changing the value ofx1 until the former condition
on y2(xb) is accomplished.

E. Cylindrical Systems

We consider a rigid rod-like molecule or tubular vesicle
radiusa, lengthL À a, so that end effects may be neglecte
with chargeQ distributed uniformly over the surface with a
electrical surface potentialψ0 immersed in a solution of poin
ions. The law governing the potential profile and conseque
the ionic distribution (“diffuse” layer) from the surface of th
particle is given by the Poisson–Boltzmann equation:

1

x

d

dx

(
x

dy

dx

)
= −Aρ. [26]
le,
Numerical integration of Eq. [26] is obtained by the Runge–
Kutta method in which Eq. [26] is transformed into a system of



n
s
t

i

ace
the
on

onal

at

nic
ns

ess
ac-
y
c-
(5);

”

to

-
ace
ELECTRICAL CAPACITAN

coupled first-order ordinary differential equations; namely,

dy1

dx
= y2

[27]
dy2

dx
= −Aρ − y2

x

with y1= y.
As the set of Eqs. [27] represents a second-order nonli

differential equation, we used an adaptive step-size control
routine, “odeint” from Ref. (11), joining the main program wi
subroutines: “derivs, odeint, rkqs, rkck, bessi0, bessi1, bes
bessk1.”

In the case where the solution is constituted by a monova
symmetrical electrolyte, Eq. [26] transforms into

1

x

d

dx

(
x

dy

dx

)
= sinh(y). [28]

The set of Eqs. [27] transforms into

dy1

dx
= y2

[29]
dy2

dx
= sinh(y1)− y2

x
.

For the details of the numerical integration of [27] or [29], s
(6).

F. Ionic Atmosphere Capacitance

1. Spherical symmetry.In order to calculate the ionic atmo
sphere capacitance we use

C = Q

ψcloud(a)
= Qe

kT ycloud(x0)
[30]

with ycloud(x0) given by

ycloud(x0) = y(x0)− Qκ

4πεε0x0
. [31]

In the interior of a symmetrical confined system, we have
subtract the potential at the center of the system in the prev
equations:y(x0)→ y(x0)− y(0).

2. Cylindrical symmetry. The contribution of the ionic
cloud to the electrostatic potencial at the rod surface will be

ycloud(x0) = y(x0)+ 2zξ ln(x0). [32]

Then the ionic cloud capacitance is
C = Q

ψcloud(x0)
= 4πLε0εξ

y(x0)+ 2zξ ln(x0)
, [33]
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whereξ is the reduced linear charge density over the rod surf
(see (6)). In the case where the ratio of the electrical to
thermal energy of the ions is very small, DH approximati
((ze0ψ(r )/kT)¿ 1, or y¿ 1), Eq. [33] can be written as

CDH = 2πLεε0

[
K0(x0)

x0K1(x0)
+ ln(x0)

]−1

. [34]

3. Second plate position.Mantaining the symmetry of the
system, it is always possible to define an equivalent conventi
capacitor with the same capacitanceC of the diffuse one, with
one plaque being at the surface of the system, positioneda
with chargeQ, and the other with charge−Q positioned inside
the solution inb; namely,

Sphere -C = 4πεε0ab

b− a
→ b = aC

C− 4πεε0a
[35]

Cylinder -C = 2πεε0L

ln(b/a)
→ b = a exp

(
2πεε0L

C

)
. [36]

G. Bound Ion Capacitance

This capacitance emerges in rod-like polyelectrolytes in io
solutions exhibiting longitudinal polarization caused by the io
that, according to a Boltzmann distribution, are more or l
trapped on the surface of the polyelectrolyte and form the fr
tion of the “bound” ions. Although they are radially fixed, the
still have a certain freedom to move in the longitudinal dire
tion of the molecule. This capacitance was estimated in Ref.
namely,

C = n2 (ze0)2

kT
=
(
γ L

b

)2 e2
0

kT
, [37]

wheren is the number of “bound” ions,γ = zn/N is the degree
of association of the counterions,z is the valence of the “bound
ions,b= L/N is the linear charge spacing,N is the total number
of charged polymer sites, andL is the length of the rod-like
molecule.

The average displacementδ of the “bound” ions is given by

δ2 = L2

12n
. [38]

H. Surface Buffer Capacitance

1. Ionizable groups. The vesicular surface is assumed
contain acidic ionizable groups at a density 1/S, whereS is the
surface area per acidic group. A fractionα (the degree of disso
ciation) of these groups will be dissociated so that the surf
charge density is
σ = −e0α

S
, [39]
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which will depend on thedissociation constant, Ka, for the sur-
face ionizable groups of the lipid corresponding to the react

AH ←→A− + H+, [40]

whose equilibrium constant is given by

Ka = [H+]s[A
−]

[AH]
= [H+]s

α

1− α , [41]

where [H+]s is the hydrogen ion concentration at the surfa
of the lipid. This concentration is related to the one in the b
solution, [H+], through the Boltzmann equilibrium condition

[H+]s = [H+]e−ys = 10−pHe−ys [42]

or

pHs = pH+ 0.434ys, [43]

where we have used pH= − log10[H
+] and ys= (e0/kT)ψs is

the uniform reduced surface potential. Substitution of Eq. [
into Eq. [41] yields

Ka = 10−pHe−ys
α

1− α [44]

or, in terms of pKa=− log10 Ka,

pK a = pH+ 0.434ys− log10
α

1− α , [45]

which is a well-known equation used in protein titration (s
e.g., Tanford (12)).

2. Buffer capacity. The buffering power, β, of a solution is
(13, 14)

β = d B

dpH
, [46]

whered B is the amount of base added to the solution anddpH
is the change in pH of the solution due to that base addit
The addition of acid to the solution is equivalent to a nega
addition of base,−d B. The units ofβ are mM/pH unit. In a
closed system the total buffer concentration remains cons
and the buffering power of a weak acid is given by (14)

β = 2.303[AT]KaaH

(Ka+ aH)2
, [47]

where [AT] is the total concentration of weak acid andaH is the
proton activity.

Substituting in Eq. [47],aH= [H+]s , α= [ A−]/[ AT] , Ka=
[H+]s(α/1− α), we obtain

β = 2.3[A−](1− α) = 2.3[AT]α(1− α). [48]
Neglecting, in a first approach, the contribution of free buffe
and considering only the PL headgroups buffers, we have t
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[ AT]= [buffer group], where [buffer group] stands for the co
centration of protonable phospholipid headgroups; namely,

β = 2.3[buffer group]α(1− α). [49]

In general, for a number>1 of buffer groups, we will have

β = 2.3
∑

i

[buffer group]i αi (1− αi ). [50]

In a recent paper (8) it was shown thatβ can be written as

β = 2.3

e2
0NAV

(δq)2, [51]

V being the volume and (δq)2 being given by

(δq)2 = e2
0

∑
i

νi

2+ eys10(pH−pK ai ) + e−ys10(pK ai−pH)
[52]

or

(δq)2 = e2
0

∑
i

νi

2+ eys Kai
[H+] + e−ys [H+]

Kai

, [53]

whereνi is the number of groups of typei in the lipid.

νi = NAV [buffer group]i . [54]

Correspondingly, the buffer electrical capacitance will be

Cbuffer = (δq)2

kT
[55]

with (δq)2 given by either Eq. [52] or Eq. [53].

III. ELECTRICAL AND pH FLUCTUATIONS

In order to estimate the fluctuations of the electric field a
dipole moment, we use the equations derived in Refs. (5)
(7). In the case of a charged system, in an electrolyte solu
the voltage fluctuation is given by

δψ =
(

kT

C

)1/2

. [56]

and the field fluctuation by

δE = 1

d

(
kT

C

)1/2

. [57]

Correspondingly, the dipole moment fluctuation is given by

kT
rs
hat

δp =
δE
, [58]
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whered is the average displacement of the ionic cloud under
influence of the thermal fluctuating field, given by

d =
(

kT

C

)1/4

τµ, [59]

whereτ is the relaxation time given by

τ = εε0ρ, [60]

whereρ is the electrical resistivity of the solution andµ is the
mobility of the system in the solution, and can be estimated
accordance with

µ = Q

f
= Q

D

kT
, [61]

where f (kg · s−1units) is the frictional coefficient of the system
andD is its diffusion coefficient (m2 s−1 units). For a long rod of
lengthL and radiusa in a medium of viscocityη, the frictional
coefficient is given by (see (15))

f = 3πηL

2 ln(L/a)− 0.11
. [62]

We can also use the formulas given by Ohshima (16, 17, 18
estimating the mobility of the cylindrical systems.

In the case of a spherical system of radiusR, we have

f = 6πηR. [63]

Sometimes it is useful to estimate the mean voltage and
fluctuations over a distancer ; the formulas for these calculation
are the same as those in Eqs. [56, 57], but replacingd by r .

Recently (8) it was shown that the pH fluctuations are giv
by

δpH= e0

2.3(kT Cbuffer)1/2
. [64]

IV. RESULTS AND DISCUSSION

All the results reported were acquired at room tempera
(300 K). Remember the notation at the beginning of the pa
for the fluctuating quantities,δx≡〈(1x)2〉1/2. For calculations
on the reverse micelles, we used Eq. [18] with the bound
conditions [23, 22].

In Table 2nsg= 4πa2/S is the number of surface groups,S=
55 Å2 is the headgroups mean area,n+ =αnsg, in order to pre-
serve the charge neutrality in the microcavity (19, 20),
the number of positive charges in the solution,n− = 0,a=
3vwW0/Sis the micellar radius (21),vw= 30Å3 is the mean vol-

ume of water molecules in the bulk,W0= [H2O]/[AOT] is the
molar ratio of water–detergent, AOT is the nomenclature for
CE OF SMALL SYSTEMS 177
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TABLE 2
Reverse Micelle Parameters and Results from PB Calculations

σ a c C
α nsg n+ (Cm−2) W0 (A

a
) y(0) y(a) (mM) δq · e−1

0 (aF)

0.18 30 −0.053 7 11.4 0.684−0.495 1430 2.17 29.14
0.21 74 −0.061 11 18.0 1.016−0.751 1046 2.98 55.06
0.26 138 −0.075 15 24.5 1.378−1.051 956 3.86 92.53

sodium-di-2-ethylhexyl sulfosuccinate, andc= (n+/NAVm),
where Vm= (4/3)πa3 is the micellar volume.

The overall voltage and field fluctuation (22, 3) in the m
celle, in the reported range of parameters in Table 2, are
spectively,δψ = (kT/C)1/2= (11.9–6.7) mV and δE= (1/a)
(kT/C)1/2= (10.4–2.7)× 106 V/m. In relative terms we have
δψ/ψ = δE/E= 0.39–0.11, where we have usedψ = 25.9×
10−31y, andE=ψ/a.

Figure 1a is an example of an interface capacitance; the
file of the buffer capacitance, protonic charge fluctuations,
buffering power versus pH at the surface of a 80Å SUV bear-
ing ionizables groups at pK = 4 are shown. We can observe th
shift to the right, from the original value of pK = 4, produced
by the surface potential. The buffer capacitance can reach
ues of 350 aF at pH 5.75, corresponding to protonic fluctuati
of 7.5 elementary charges and buffering power of 100 mM/p
The fluctuations cover a broad spectrum of values depen
on Cbuffer and pH. In a recent paper (8), it was shown that
this system the pH fluctuations for pH values centered abou
(6.4–8.4) can reach 1.5 pH units for surface potentials lo
than−50 mV; it was also shown that the pH fluctuations dim
ish with decreasing surface negatively due to a decrease in
number of buffer molecules on the inner vesicular surface.

Figure 1b shows the external ionic atmosphere capacita
surrounding a small unilamellar vesicle (SUV), 80Å, in a sym-
metrical monovalent electrolyte. We can observe a small v
ation of the capacitance∼10%, 78–99 aF for variations in
the electrolyte concentration in the range 15–100 mM. T
fluctuation in charge is approximately of the order of fo
elementary charges. The corresponding range of the flu
ations in the electric field areδE= (6.14–6.52)× 106 V/m;
correspondingly, the ranges of the fluctuations in the dip
moments areδp= (6.74–6.52)× 10−28 C ·m≡ (202—190) D,
δp/pH2O= (110–103), (1 D= 3.33× 10−30 C ·m, permanent
dipole moment of waterpH2O= 1.84 D).

In Fig. 1c is shown the ionic atmosphere capacitance
rounding a large unilamellar vesicle (LUV), 1000Å radius, in a
symmetrical monovalent electrolyte. Practically, the capacita
remains constant (1.1% variation) in the range of concen
tions studied. The charge fluctuation is∼12 elementary charges
The electric field fluctuation isδE∼ 1× 106 V/m, and the
corresponding fluctuation of the dipole moment isδp∼ 1233 D
or δp/pH2O∼ 670. The relaxation time of these fluctuation
the
(Figs. 1b and 1c) is in the one-digit ns range. Correspondingly,
the energy fluctuation is dissipated at the approximated rate of
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FIG. 1. (a) Buffer capacitance, protonic charge fluctuations, and buffering power versus pH for different surface potentials. (b) Ionic atmosphere capacitance
surrounding an SUV in a symmetrical monovalent electrolyte. (c) The same for an LUV. (d) The same for a DNA molecule.
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P= (kT/2)(1/10−9)= 2.1× 10−12 J/s. For calculatingδE and
δp we used Eqs. [57]–[63]. The estimation ofC in these two sys-
tems was performed solving the system, Eqs. [18], of coup
first-order ordinary differential equations with the conditio
[24, 25, 22].

In Fig. 1d we can observe the external ionic atmosphere
pacitance surrounding a molecule of DNA, lengthL = 1000Å,
reduced chargeξ0= 4.25, dissociation degreeα= 0.5, radius
a= 12.5 Å, immersed inc mM NaCl solution in water. The
fluctuations of this system were just studied (7); obtained w
ratiosδp/pH2O in the range 400–850 and, correspondingly,δE in
the range (17–8)× 105 V/m. The relaxation time of these fluctu
ations are also in the one-digit ns range. The estimation ofCwas
performed, solving the system, Eqs. [29], of coupled first-or
ordinary differential equations with the corresponding bound
conditions (see (6)).

With respect to the “bound” ion capacitance, it is on the or
of 4.4 pF for a DNA molecule withL = 1000Å, z= 1, associ-
ation degreeγ = 0.5, andn= 842 “bound ” ions, with the cor-
responding value ofδ∼ 10 Å. The ratioδp/pH2O∼ 2.2× 104,
andδE∼ 3.1× 104 V/m. The relaxation times of these fluctu
ations are on the order of ms, which gives a dissipated po
P= (kT/2)(1/10−3)∼ 2× 10−18 J/s. This power is on the orde
of magnitude of that involved in molecular motors (23–26).
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