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of some random force sensed by the environment, whose

The electrical capacitance of several small systems is determined corresponding square root of the mean square of the fluctuatio
by using results given by the fluctuation-dissipation theorem in the is (Af )2>1/2_

classical limit. Estimating the electrical capacitance is important . . . .

because it is the link to knowledge of the fluctuation of several In order to simplify the notation we rewrite Eq. [1] as
physical quantities, voltage and field fluctuations, dipole moment, sx-8f = KT. 2]
pH, and charge, and also to knowledge of the polarizability and
the dielectric dispersion of colloidal and polyelectrolyte systems.

For small systems appearing in nature ~(10-1000) A the electric . . .
capacitance varies in the range ~(10-1000) x 10-'° F with the corre- and vice versa in order to mantain the product constant equal

sponding field and dipole moment fluctuations in the order of units KT; th's_ means a constant equilibrium between the system al
of (10°—106) V/m and (102 — 10%) D, respectively. 2000 Academic Press the environment. We also observe that the productf has the

We observe in Eq. [2] that whesx diminishséf increases

Key Words: charge fluctuation capacitance; small systems; elec-  dimension of energy. o .
trical fluctuations. As an example of Eq. [2] we can consider in a capacitor th

relation between the statistical fluctuation of charégg, and
the corresponding fluctuation of potentidly, sensed by the

I. INTRODUCTION environment

Several processes or systems are sources of electrical ca- 89 - 8¢ = KkT. 3]

acitance in small systems: protonation—deprotonation equiljb- ) .
ﬁum at interfaces a)rlld in thepbulk, the quctSation of the ?oni\(&e can define the capacitance as
atmosphere surrounding a charged surface or macroion in an q
electrolyte solution, and also cell and the inner mitochondrial C= W =38q=C-éy. [4]
membranes and ionic channels can be well represented by com-
binations of resistances and capacitances, etc. Estimating efsom Egs. [3] and [4] we obtain the following relations:
trical capacitance is important because itis the link to knowledge ) 12
of the fluctuation of several physical quantities: voltage and field ~ ~ _ (30) sy = (k_T) 5q = (KT -C)Y2.  [5]
fluctuations (1-6), dipole moment (5-7), pH, and charge (8). It kT’ C ’ '
is also a link to knowlege of the polarizabity and the dielectric )
dispersion of molecular systems (5, 7). In the present paper WaeS€ relations have already been used by several authors
estimate the electrical capacitance of several small systems ¥Aous situations; see Refs. (1-8).
discuss the implications of its magnitude in the values of severall € SI system of units is employed throughout the pa
physical quantities. per; namelygg is the permittivity of the vacuume§ = 8.85 x

12 2 N-1m=2) o i i i i
One of the results of the fluctuation-dissipation theoredf ~ C“N™"m™), ¢ is the dielectric constant oflghe medium

(FDT) in the classical imitKT > fw) (5) is (¢ =80), g is the proton chargeef=1.602x 10’ C), k is

the Boltzmann constank & 1.381x 1022 J/K), andT is the

absolute temperature.
In Table 1 the relations of Eq. [5] are shown numerically. Fron
) the third and fourth columns we can observe the increase of p
where((Ax)?)2 is the square root of the mean square of thentia| and field fluctuations with the decrease of the capacit
spontaneous fluctuations of a quantityas due to the action y5ye and size. The fifth column shows the diminution of charg
fluctuations (number of elementary charges) with the corre
Ln this reference we used the notatiofor Ax. sponding decrease of the capacitor value and size. The minimt

0021-9797/00 $35.00 172
Copyright© 2000 by Academic Press
All rights of reproduction in any form reserved.

(AX)AV2(AF)?)Y2 = KT, [1]
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TABLE 1 At the particle surface, = a; then
Potential, Electric Field, and Charge Fluctuations as Related
to Given Values and Sizes of the Capacitors V(@) = Q 1 Q Q K [10]
c d=Ceco ” SE —s5y/d 50/8 4recgal+ ka 471880a 4reggl+ ka

1pF 1.4 mm 641V 46 (mV/m) 402  Thefirstterm on the right-ha_nd side of Eq. [10] is the potentic
1fF L.4um 2mv 1.4 (KV/m) 13 Yo at the surface of the particle due solely to the charge on ti
100 aF 1400:A 6 mv 43 (kv/m) 4  particle itself. The second term is the portignoug Of the total
(10)ng 140 A 20 mv 1.4 E'V'V;m; 1.3 potential that is due to the arrangement of the surrounding iol
e)°/KT =6.2 aF 87 A 26 mV 9.6 (MV/m 1 : : : : :
LaF 14 64 mv 46 (MV/m) 04 N the neighborhood of the particle and is called pugential

of the ionic atmosphereThe contribution of the cloud to the
Note.Cubic capacitorC = (A/d)seo; A= d2; ¢ = 80; aF=attoF=10"18 F.  potential can be written as

capacitance value at room temperature supporting one elemen- _ Q [et™ 1 11
tary charge fluctuation isef)?/kT = 6.2 aF, which correspond Yetoud(r) = A egor [1 +rka ] [11]
to a cubic capacitor in water of sidk= 87 A. Inside vesicular
biological systems in water with sizes approximately lower than The contribution of the ionic cloud to the electrostatic poten
this, charge fluctuations are fractions of one elementary chargj@l at the particle surface will be

Next we analize the capacitance of various capacitors that
appear in polyelectrolytes and colloidal and vesicular biolog- Veloud(@) = — Q ) [12]
ical systems, and the corresponding influence in the electrical 4meeo(l+ ka)/k

fluctuations. . o .
The entire charge of the ionic atmosphereQ, given by

Eq. [12], can be considered as if it is placed on a thin spheric

'I. METHOD shell at a distance = (1 + «a)/« from the center of the particle.
A. Spherical Charged Colloidal Particle Then we can define the DebyeuékKel cloud capacitance as
The Debye-Hdckel theory (9) for a symmetrical electrolyte Q 1+«a
of valencez with n ions per ni gives for the potentia/(r) Con = —— = dmeso——. [13]
Yeloud(@) K

surrounding a spherical particle of charQe
In cases where the DebyeutKel approximation (Eq. [9])
Q e((a e—Kr . . . .
w(r) = [6] is not longer valid we have to solve numerically the Poisson
drecol+ka r Boltzmann equation.

Here,a is the particle radius and, called theDebye—Hickel B, Numerical Solution of the Poisson—Boltzmann Equation
reciprocal lengthparameter, is given by .
1. Spherical systemsWe have

R 2 ZOOG%NA
‘= eeokTZn'OZ"Z_ eeok T |: ZC'21| 7] Alﬂ:—i [14]

£&p

whereN, is the Avogadro constangio andc; are the number of
ions per ni and the concentration in mole/liter of ion spedies
far away from the surface. The quantity= (1/2) 3" ¢, z? quan- o
tifies the charge in an electrolyte solution and is calledahée p =8 Z NioZi exp( Zi—— KT ) [15]
strengthafter Lewis and Randall (10). In the case of a solution

of a symmetrical £ — z) electrolyte we have

with p being the charge density given by

whereA is, in our case of spherical symmetry, the radial part
the Laplace operator. The two previous equations can be writt

GG N [8] as

T eegkT eegkT

1d /dx

wherec the solution concentration in mole/liter. X dx <d—y> =—Ap [16]
Equation [6] is limited to solutions in which the ratio of the Xax A dx

electrical to the thermal energy is very small; namely,

zey(r)
T <1 [9] p =€) moz exp(-zy), [17]

with A= ey/(ce0k Tk?) andp written as
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wherey =eyy/kT and x =«r are the dimensionless potenx = x, (r =b), having in mind that the electric field within the
tial and distance, respectively,being the distance from the bilayer is null, @y/dXx),- =0, we have
center of the sphere. At the surface of the spherex, =«a

andy = yo = eyo/ kT. Numerical integration of Eq. [16] is ob- dy _ €
tained by the Runge—Kutta method, in which Eqg. [16] is trans- ($(>b+ - _KeogwkTU
formed into a system of coupled first-order ordinary differential

b [22]

equations; namely, D. Integration Procedure
dy, We consider a spherical vesicle delimited by a lipid bilayer o
ax Y2 internal reduced radius, and external reduced rading. The

[18] interior (X < Xa) and the exteriory > x,) are constituted by an

dy, — —Ap— 2y> ionic solution.
dx X 1. Interior of the vesicle. We start the integration at the cen-

with y; = v. ter of the vesicle with the initial conditions

As the set of Egs. [18] represent a second-order nonlinear _
differential equation, we used an adaptive step-size control sub- (v1. 2) = (¥(0). 0). [23]

routine, “odeint” from Ref. (11), joining the main program with

subroutines, “derivs, odeint, rkgs, rkck.” Integrating forward, 8- x,. Inthe case where the valueya{x,)

coincides with that given by Eq. [21], we stop the integration witt
C. Boundary Conditions the corresponding determination y(0) andy(xa) = y1(xa); on
the contrary, the procedure again starts changi@y until the
In case we are interested in determining the overall potefgrmer condition ony,(x,) is accomplished.

tial profile, it can be assumed that the potential through each, - yarior of the vesicle. We start the integration at low po-

interface is continuous. tentials, far away from the surface. Under this condition the Dt

1. Interior of the vesicle. Because the symmetry of the elecgpproximation is valid. In the case of a symmetrical electrolyt
tric field must be zero at the center of the vesicle, we have e have

| _ 1
% =0, atx=0. [19] (Y1, ¥2) = <y(xb)xb%lxl), —y1<1+ X_1>> [24]

By Gauss's law, we have at the interface between the interior,gf, y(xp) given by
the vesicle and the lipid
Z&0pXp
& (d_W) - <d—1/f> == Vo) = iceoewk T(1 4 Xp) =
w | =
dr /- dr / .+
We integrate backward; — xy. If y2(xp) is equal to the value
or as a function of the dimensionless potential and distance given by Eqg.[22], we stop the integration with the correspondin
determination ofy(xy) = y1(Xp); on the contrary, the procedure
dy dy € 5 again starts changing the valuexafuntil the former condition
8W<&)a - 8'( >a+ T keokT® (201 o ya(Xp) is accomplished.

whereo, is the surface charge density at the interfacaia  E. Cylindrical Systems

Xa (T =a), ew ande are the dielectric constants of water and \ye consider a rigid rod-like molecule or tubular vesicle of

Iipid_, respectively, ané~ anda™ refer to the left and right of radiusa, lengthL > a, so that end effects may be neglected

the interface. with chargeQ distributed uniformly over the surface with an
2. Lipid region. If the net charge of ions in the interior of electrical surface potentiato immersed in a solution of point

the vesicle is equal and opposite to the charge at the interfaggs. The law governing the potential profile and consequent|

atx = x,, the electric field within the bilayer is null by Gauss’she ionic distribution (“diffuse” layer) from the surface of the

law, (dy/dx),+ = 0. Then Eq. [20] transforms into particle is given by the Poisson—-Boltzmann equation:
dy € 1d/ dy
— = ———0,. 21 T x==Z)=-
(dx)a KeoewkT [21] X dX(XdX> Ap- [26]

3. Exterior of the vesicle. Then applying a similar Eqg. [20] Numerical integration of Eq. [26] is obtained by the Runge-
at the interface between the lipid and the exterior of the vesickeytta method in which Eq. [26] is transformed into a system o
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coupled first-order ordinary differential equations; namely, wheret is the reduced linear charge density over the rod surfa
(see (6)). In the case where the ratio of the electrical to tt
dyi thermal energy of the ions is very small, DH approximatior

dx Y2 [27] ((zey(r)/kT)« 1, ory « 1), Eq. [33] can be written as
dy> Y2
ax =TT Ko(xo) -
dx X _ o0\
Cpn = 27TL££0|:X0K1(XO) + |n(Xo)i| . [34]

with y; = .

As the set of Egs. [27] represents a second-order nonlineag. Second plate position.Mantaining the symmetry of the
differential equation, we used an adaptive step-size control s@iystem, itis always possible to define an equivalent conventior
routine, “odeint” from Ref. (11), joining the main program withcapacitor with the same capacitari@ef the diffuse one, with
subroutines: “derivs, odeint, rkgs, rkck, bessio, bessil, besskfie plaque being at the surface of the system, positionad a

besskl.” with chargeQ, and the other with chargeQ positioned inside
In the case where the solution is constituted by a monovalghé solution inb; namely,

symmetrical electrolyte, Eq. [26] transforms into

4w egoab aC

1 Sphere € = -b=—— [35]
id Xd_y = sinh(y). [28] b—a C —4regoa
xdx\ dx 2megol 2mweegl

Cylinder -C = - b= aexp( 0 ) [36]
The set of Egs. [27] transforms into In(b/a) C

dyi G. Bound lon Capacitance

dx y2 [29] This capacitance emerges in rod-like polyelectrolytes in ioni

dy, h Y2 solutions exhibiting longitudinal polarization caused by the ion

ax sinhy.) — X that, according to a Boltzmann distribution, are more or les

_ o _ trapped on the surface of the polyelectrolyte and form the fra
For the details of the numerical integration of [27] or [29], seion of the “bound” ions. Although they are radially fixed, they

(6). still have a certain freedom to move in the longitudinal direc
tion of the molecule. This capacitance was estimated in Ref. (-
F. lonic Atmosphere Capacitance namely,
1. Spherical symmetry.In order to calculate the ionic atmo-
. 2 2
sphere capacitance we use c 2?2 _ (&) 3 37]
kT b ) kT’
c-_2 ___ Qe [30]
Yeoud(@) KT Yeroud(Xo) wheren is the number of “bound” iong; = zn/N is the degree
of association of the counterioriss the valence of the “bound”
with Yeioud(Xo) given by ions,b= L /N isthe linear charge spacinly,is the total number
of charged polymer sites, and is the length of the rod-like
Qx molecule.
Yeloud(X0) = Y(¥0) - A seoXo’ (311 The average displacemehof the “bound” ions is given by
In the interior of a symmetrical confined system, we have to L2
subtract the potential at the center of the system in the previous 8% = in [38]

equationsy(xg) — Y(xo) — y(0).
2. Cylindrical symmetry. The contribution of the ionic H. Surface Buffer Capacitance

cloud to the electrostatic potencial at the rod surface will be (6)1 lonizable groups. The vesicular surface is assumed tc

contain acidic ionizable groups at a densippSlwhereSis the
Yeloud(X0) = ¥(Xo) + 225 In(Xo). [32]  surface area per acidic group. A fractierithe degree of disso-
o _ ) ciation) of these groups will be dissociated so that the surfa
Then the ionic cloud capacitance is charge density is
Q A Legeé
: [33] o= [39]

C= = ,
Veloud(Xo)  Y(Xo) + 22£ In(Xo) S’
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which will depend on thelissociation constant, Kfor the sur- [ Ar] = [buffer group], where [buffer group] stands for the con-
face ionizable groups of the lipid corresponding to the reactia@entration of protonable phospholipid headgroups; namely,

AH Z A~ +HT, [40] B = 2.3[buffer groupk (1 — «). [49]

whose equilibrium constant is given by In general, for a number 1 of buffer groups, we will have

Ka= (H1dA7] = [HJ’]51 i " [41] B = 2.32 [buffer group] ;i (1 — o). [50]

[AH]

where [Ht]s is the hydrogen ion concentration at the surface
of the lipid. This concentration is related to the one in the buc'llzI arecent paper (8) it was shown tfatan be written as

solution, [H'], through the Boltzmann equilibrium condition

B = (89)?, [51]
[H¥]s = [H]e ™Y = 107PHe % [42] eSNAV
or V being the volume and@)? being given by
pH, = pH + 0.434ys, [43] 2 _ Vi
° ° (6a)” = e(% .Z 2 + e¥s10PH-PK4) 4 @ ¥s1 0PKa—pH) [52]

where we have used pH — log;[H*] andys= (ey/ kT)vs is
the uniform reduced surface potential. Substitution of Eq. [48}
into Eq. [41] yields

(69)? = eSZ _ 53]
Ka= 10rPHe—yS% [44] 2+ e + et
or, in terms of K, = —l0g;, Ka wherev; is the number of groups of typen the lipid.
pK , = pH + 0.434y, — log,, o [45] vi = NaV[buffer group]. [54]
1—a’

which is a well-known equation used in protein titration (se€; Correspondlngly, the buffer electrical capacitance will be

e.g., Tanford (12)).

$ 2
2. Buffer capacity. The buffering power 8, of a solution is Chuffer = % [55]
(13, 14)
dB with (8g)? given by either Eq. [52] or Eq. [53].
/3 = dp—H’ [46]

I11. ELECTRICAL AND pH FLUCTUATIONS
whered B is the amount of base added to the solution dpH
is the change in pH of the solution due to that base addition.!n order to estimate the fluctuations of the electric field ant
The addition of acid to the solution is equivalent to a negatiipole moment, we use the equations derived in Refs. (5) ar
addition of base—dB. The units of8 are mM/pH unit. In a (7). In the case of a charged system, in an electrolyte solutio
closed system the total buffer concentration remains const#t voltage fluctuation is given by
and the buffering power of a weak acid is given by (14) 12

sy = (k_T) | [56]

_ 2.303[Ar]Kaa .

(Ka+ an)?

where [A1] is the total concentration of weak acid aaglis the
proton activity.

: [47]

and the field fluctuation by

1/2
Substituting in Eq. [47]au =[H"]s, & =[A"]/[Ar], Ka= 5E = 3("—T> . [57]
[H*]s(e/1 — @), we obtain a\c
B =23AT11—-a) =23[Ar]a(l - ). [48] Correspondingly, the dipole moment fluctuation is given by
Neglecting, in a first approach, the contribution of free buffers 5p = k_T 58]
and considering only the PL headgroups buffers, we have that SE’
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whered is the average displacement of the ionic cloud under the TABLE 2
influence of the thermal fluctuating field, given by Reverse Micelle Parameters and Results from PB Calculations
KT\ /4 o a c C
d= (E) T, [59] @ nsgnt  (Cm?) Wo (A y(O0) y@ (mM) sq-g" (aF)

0.18 30 —0.053 7 11.4 0.684-0.495 1430 2.17 29.14

wherer is the relaxation time given by 0.21 74 —0.061 11 18.0 1.016-0.751 1046 2.98 55.06
0.26 138 —0.075 15 245 1.378-1.051 956 3.86 92.53

T = ggop, [60]

) ) o _ ) sodium-di-2-ethylhexyl sulfosuccinate, amd=(n*/NaVy),
wherep is the electrical resistivity of the solution apdis the \yhere \f, = (4/3)r a2 is the micellar volume.

mobility of the.system in the solution, and can be estimated inTphe gverall voltage and field fluctuation (22, 3) in the mi-
accordance with celle, in the reported range of parameters in Table 2, are, r

spectively,8y = (kT/C)Y?2 = (11.9-67) mV andSE = (1/a)
[61] (KT/C)¥2=(10.4-27)x 10°V/m. In relative terms we have
3y /¢y =8E/E=0.39-Q11, where we have usefl =25.9 x
103Ay, andE = vy/a.

Figure 1a is an example of an interface capacitance; the pi
e of the buffer capacitance, protonic charge fluctuations, ar
buffering power versus pH at the surface of aSUV bear-
ing ionizables groups atp =4 are shown. We can observe the
shift to the right, from the original value ofp=4, produced
[62] by the surface potential. The buffer capacitance can reach v

ues of 350 aF at pH 5.75, corresponding to protonic fluctuatior

. . f 7.5 elementary charges and buffering power of 100 mM/pk
We_can_also use thg_formulas given by Ohshima (16, 17, 18) Pﬂﬁe fluctuations cover a broad spectrum of values dependi
estimating the mobility of the cylindrical systems.

. on Cpyusier and pH. In a recent paper (8), it was shown that ir
In the case of a spherical system of radRjave have this system the pH fluctuations for pH values centered about 7
(6.4-8.4) can reach 1.5 pH units for surface potentials lowe
than—50 mV; it was also shown that the pH fluctuations dimin.

] o ] _ish with decreasing surface negatively due to a decrease in 1
Sometimes it is useful to estimate the mean voltage and figlgmper of buffer molecules on the inner vesicular surface.

fluctuations over a distancethe formulas for these calculations Figure 1b shows the external ionic atmosphere capacitan
are the same as those in Egs. [56, 57], butreplagibgr. gyrrounding a small unilamellar vesicle (SUV), &in a sym-
Recently (8) it was shown that the pH fluctuations are givefietrical monovalent electrolyte. We can observe a small va
by ation of the capacitance-10%, 78-99 aF for variations in
the electrolyte concentration in the range 15-100 mM. Th
€ - . .
= m [64] fluctuation in charge is apprommately of the order of fou
uffer. elementary charges. The corresponding range of the fluct
ations in the electric field aréE = (6.14—6.52)x 10° V/m;
IV. RESULTS AND DISCUSSION correspondingly, the ranges of the fluctuations in the dipol
moments arép = (6.74—652) x 10-2C- m= (202—190) D,
All the results reported were acquired at room temperatusp,/ PH,0 = (110-103), (1D=3.33x 10°3°C.m, permanent
(300 K). Remember the notation at the beginning of the papgipole moment of watepy,o = 1.84 D).
for the fluctuating quantitiesx = ((Ax)?)¥/2. For calculations  In Fig. 1c is shown the ionic atmosphere capacitance st
on the reverse micelles, we used Eq. [18] with the boundafyunding a large unilamellar vesicle (LUV), 108Qradius, in a
conditions [23, 22]. symmetrical monovalent electrolyte. Practically, the capacitant
In Table 2nsy= 4 a*/Sis the number of surface groufB=  remains constant (1.1% variation) in the range of concentr
55A? is the headgroups mean ared,= ansg, in order to pre- tions studied. The charge fluctuationi42 elementary charges.
serve the charge neutrality in the microcavity (19, 20), ihe electric field fluctuation iSE ~1x 10°V/m, and the
the number of positive charges in the solution,=0,a= corresponding fluctuation of the dipole momentjs~ 1233 D
3uwWo/ Sis the micellar radius (21}, = 30A%isthe meanvol- or §p/pu,0 ~ 670 The relaxation time of these fluctuations
ume of water molecules in the bulWg = [H,0]/[AOT] is the (Figs. 1b and 1c) is in the one-digit ns range. Corresponding|
molar ratio of water—detergent, AOT is the nomenclature for thiee energy fluctuation is dissipated at the approximated rate

wheref (kg-slunits) is the frictional coefficient of the system
andD is its diffusion coefficient (s~ units). For a long rod of fil
lengthL and radiusa in a medium of viscocity;, the frictional
coefficient is given by (see (15))

¢ 3yl
~ 2In(L/a) —0.11°

f =6ryR. [63]

SpH
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FIG. 1.

(aF)

buffer

C

Capacitance (aF)

(a) Buffer capacitance, protonic charge fluctuations, and buffering power versus pH for different surface potentials. (b) lonic atmosphameecap:
surrounding an SUV in a symmetrical monovalent electrolyte. (c) The same for an LUV. (d) The same for a DNA molecule.
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P=(kT/2)(1/10°°%) = 2.1 x 10~'? J/s. For calculating E and
dpwe used Egs. [57]-[63]. The estimation®in these two sys-
tems was performed solving the system, Egs. [18], of couple%i
first-order ordinary differential equations with the conditionss
[24, 25, 22]. 4,
In Fig. 1d we can observe the external ionic atmosphere ca-
pacitance surrounding a molecule of DNA, lengite= 1000A, &
reduced chargé, = 4.25, dissociation degree = 0.5, radius
a=125 A, immersed inc mM NacCl solution in water. The
fluctuations of this system were just studied (7); obtained were
ratiossp/ pu,o in the range 400—-850 and, correspondingyjin ~ 10.
the range (17-8% 10° V/m. The relaxation time of these fluctu-11-
ations are also in the one-digit ns range. The estimatiGiveds
performed, solving the system, Egs. [29], of coupled first-ordes
ordinary differential equations with the corresponding boundary.
conditions (see (6)). 14.
With respect to the “bound” ion capacitance, it is on the order
of 4.4 pF for a DNA molecule withh. =1000A, z=1, associ-
ation degrees = 0.5, andn =842 “pound " ions, with the cor- 44
responding value of ~ 10 A. The ratiosp/ pu,o ~ 2.2 x 10,  17.
andsE ~ 3.1 x 10* V/m. The relaxation times of these fluctu-18.
ations are on the order of ms, which gives a dissipated powér
P =(kT/2)(1/1073) ~ 2 x 108 J/s. This power is on the order
of magnitude of that involved in molecular motors (23-26).
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