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Dielectric Relaxation Around a Charged Colloidal Cylinder
in an Electrolyte
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The polarizability and corresponding dielectric relaxation of the
Debye–Hückel (DH) atmosphere surrounding a charged rod-like
polyelectrolyte immersed in an ionic solution of a symmetrical
electrolyte is determined following the method developed by J. A.
Fornés [Phys. Rev. E 57, 2110 (1998)]. Several formulas are given to
estimate the DH atmosphere parameters, namely, the polarizability
at zero frequency, α(0), the relaxation time, τ , the cloud capaci-
tance, C, the average displacement of the ionic cloud, δ, the square
root dipole moment quadratic fluctuation, 〈p2〉1/2, and the ther-
mal fluctuating field, 〈E2〉1/2. The Poisson–Boltzmann equation is
solved numerically to apply the theory to a highly charged polyelec-
trolyte such as DNA in solution, although formulas valid for the DH
approximation are also given. A dispersion in the polarizability and
correspondingly in the dielectric constant of these solutions in the
microwave region is predicted. For instance, considering a DNA
length of 1000 Å, with its reduced linear charge density ξ0= 4.25
and ionization factorγ= 0.5, immersed in a NaCl solution (40 mM),
we predict a polarizability of the DH atmosphere at zero frequency
α(0) of 1× 10−33 Fm2 ('6.1× 106) times greater than the mean
value of the polarizability of water) and the corresponding fluctuat-
ing dipole moment p of 2.1× 10−27 Cm ('600 times greater than
the permanent dipole moment of water molecule). The relaxation
time and the average displacement of the ionic cloud are τ = 1.6 ns
and δ= 14. Å, respectively. This displacement is produced by the
thermal fluctuating field, which, in this case, at room temperature
is 〈E2〉1/2= 2× 106 V/m. C© 2000 Academic Press

Key Words: ionic dielectric relaxation; ionic polarization; cylin-
drical polyelectrolytes.
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I. INTRODUCTION

Since the pioneer works of Schwarz (1, 2), and Mandel (3
the polarization of rod-like polyelectrolytes, a lot of work h
been performed on this subject, basically because most o
biological macromolecules under physiological conditions
polyelectrolytes in solution and their biological activity depen
on their physicochemical properties. Oosawa (4, 5) calcul
the polarizability of a rold-like polyion considering the fluctu
tions of the counterion density. Manning (6) used his counte
1 E-mail: fornes@fis.ufg.br.
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condensation formalism to generalize Mandel’s model for po
ization; he also considered the effects of the Debye atmosp
in a steady electric field on the induced dipole moment i
formalism similar to the Onsager–Debye treatment (7) of c
ductance in ionic solutions (8). In a recent paper Mohanty
Zhao (9) (this paper is an excellent bibliography on polariza
in polyelectrolytes) further generalized the Mandel–Mann
theories to include low and high electric field without cons
ering the response to an electric field of the Debye atmosp
and polarization of the condensed counterions perpendicul
the polyion axis. Fixman and Jagannathan estimated co-ion
condensed counterion polarization considering the ion at
sphere as producing convective effects on the polarization
Fornés (11), using the fluctuation–dissipation theorem, de
oped a simple method to estimate the longitudinal polariza
of rod-like polyelectrolyte solutions, considering each char
group within the polyelectrolyte framework and its neighb
hood as a circuitRC. In this paper we apply this method
estimate the Debye–H¨uckel (DH) atmosphere polarization pe
pendicular to the axis of a rod-like polyelectrolyte immersed
an ionic solution.

II. METHOD

We consider a rigid rod-like molecule or particle of radiusa
and lengthLÀa, so that end effects may be neglected, w
chargeQ distributed uniformly over the surface with an elect
cal surface potentialψ0 immersed in a solution of puntual ion
of a symmetrical electrolyte of valencez with n ions per cubic
meter. The law governing the potential profile and conseque
the ionic distribution (“diffuse” layer) from the surface of th
particle is given by the Poisson–Boltzmann (PB) equation,

4ψ = 2ze0n

εε0
sinh

(
ze0ψ

kT

)
, [1]

where4 is, in our case of cylinder symmetry, the radial part
the Laplace operator. Equation [1] can be written as

1

x

d

dx

(
x

dy

dx

)
= sinh(y), [2]
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wherey= ze0ψ/kT andx= κr are the dimensionless potenti
and distance, respectively,r being the distance from the cylinde
axis, perpendicular to the surface. At the surface of the cylin
x= x0= κa andy= y0= ze0ψ0/kT. The SI system of units wa
employed throughout, in Eq. [1].ε0 is the permittivity of vacuum
(ε0= 8.85× 10−12 C2 N−1 m−2), ε is the dielectric constant o
the medium,e0 is the electron charge (e0= 1.602× 10−19 C) and
κ, called the Debye–H¨uckel reciprocal length parameter (12),
given by

κ2 = e2
0

εε0kT

∑
ηi 0z2

i =
2000e2

0NA

εε0kT

[
1

2

∑
ci z

2
i

]
. [3]

The quantityI = 1
2

∑
ci z2

i quantifies the charge in an electroly
solution and is called the ionic strength after Lewis and Ran
(13). In the case of a solution of a symmetrical (z–z) electrolyte
we have

κ2 = 2(e0z)2

ε0εkT
n = 2(e0z)2

ε0εkT
NAc103, [4]

wherek is the Boltzmann constant (k= 1.381× 10−23 J/K), T
is the absolute temperature,NA is Avogadro’s constant, andc
is the solution concentration in moles per liter. For numeri
integration of Eq. [2] see (15).

The contribution of the ionic cloud to the electrostatic pote
tial at the rod surface will be (14, 15)

ycloud(x0) = y(x0)+ 2zξ ln(x0). [5]

We can then define the ionic cloud capacitance as

C = Q

ψcloud(x0)
= 4πLε0εξ

y(x0)+ 2zξ ln(x0)
, [6]

whereξ is the reduced linear charge density over the rod sur
(see next). In case the ratio of electrical to thermal energy of
ions is very small the DH approximation, (ze0ψ(r )/kT¿ 1, or
y¿ 1), Eq. [5] can be written as

CDH = 2πLεε0

[
K0(x0)

x0K1(x0)
+ ln(x0)

]−1

, [7]

whereK0(x0) andK1(x0) are the modified Bessel functions o
zeroth and first order.

In our range of concentrations we approximate the relaxa
time of the DH atmosphere by that given in Ref. (16):

τ = R(r )C(r ) = εε0ρ, [8]
whereR(r ) is the resistance of the electrical path associated w
the capacitance andρ is the electrical resistivity, calculated by
ORNES

l
r
er

s

e
all

al

n-

ce
the

f

ion

[see Ref. (16)]

ρ = 1

n(ze0)2
[[

1− (ze0)2κ

24πεε0kT

√
2

1+√2

]
(D+0 D−0 )

kT − κ
3πη(1+κgi )

] , [9]

whereD±0 are the ionic diffusion constants,η is the viscocity of
the solution, andai is the mean ion radius. Experimental valu
for ρ can also be used.

In Ref. (11) we obtained for the longitudinal polarizabili
α(0)=Cδ2, whereC is the total polyelectrolyte–ionic capac
tance andδ the average displacement of the “bound” ions un
the influence of the thermal fluctuating field. Any of the theor
that predictα(0), δ, and relaxation timeτ can be used to estima
R andC; on the other hand,R,C, andδ can be obtained inde
pendently by modeling the system. Among the results is tha
complex polarizabilityα(ω),

α(ω) = Cδ2

1+ (τω)2
+ i
−τωCδ2

1+ (τω)2
, [10]

whereC is the total polyelectrolyte–ionic capacitance andδ the
average displacement of the “bound” ions under the influe
of the thermal fluctuating field.τ is the relaxation time of the
fluctuation given by Eq. [11], andα(0) is given by

α(0)= Cδ2. [11]

Correspondingly the real and imaginary components of the
larizability are

α′(ω) = α(0)

1+ (τω)2
, α′′(ω) = −τωα(0)

1+ (τω)2
. [12]

Also obtained were the following expressions for the dip
moment quadratic fluctuation,〈p2〉, and field,〈E2〉:

〈p2〉 = α(0)kT, [13]

〈E2〉 = kT

α(0)
= kT

Cδ2
. [14]

Both satisfied the classic analogy of the Heisenberg uncerta
principle:

〈p2〉 〈E2〉 = (kT)2. [15]

III. POLARIZABILITY OF THE DEBYE–HÜCKEL
ATMOSPHERE

We apply the preceding results to estimate the DH atmosp
polarizabilityα(0)=Cδ2. We know that with the application o
an electric field the center of charge of the central polyion
displaced from the center of charge of its cloud; this is analog

ithto what happens with a spherical ion giving rise to the egg-shaped
ionic cloud [see, for instance, (14)]. The implication is that the
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ionic cloud is no longer symmetrical around the moving polyi
as a consequence a dipole is formed.

The central polyion practically loses its cloud if it diffuses
a distanceδ during relaxation timeτ of the fluctuation. In this
way δ is given by

δ = τvpolyion = τµpolyion〈E2〉1/2, [16]

wherevpolyion andµpolyion are the velocity and mobility of the
polyelectrolyte in solution. From Eqs. [11], [14], and [16] w
get

α(0)= τµpolyion[kTC]1/2. [17]

The mobility of a polyion of chargeQ is given by (the formulas
given by Ohshima (17–19) also can be used),

µpolyion = Q

f
= Q

[
Dpolyion

kT

]
, [18]

where f (kg. s−1) is the frictional coefficient of the polyion an
Dpolyion is its diffusion coefficient (m2 s−1). For a long rod the
frictional coefficient is given by [see (20)]

f = 3πηL

2 ln(L/a)− 0.11
. [19]

Substituingµpolyion given by Eq. [18] in Eq. [17], we get

α(0)= τQDpolyion

[
C
kT

]1/2

. [20]

It is necessary to formulate a few definitions to put the equat
into the current nomenclature of polyelectrolyte science, nam

λ = Q

L
= e0

b
=
(

e0

lB

)
ξ0, [21]

whereλ is the linear charge density,b= L/N is the linear charge
spacing, andN is the number of charged polymer groups. T
Bjerrum lengthlB is the distance at which the coulombic ener
is equal tokT [(lB= 7.13 Å at 25◦C in water)] for an excellen
English reference on this subject, see (14)], namely,

lB = e2
0

4πεε0kT
= ξ0b. [22]

The dimensionless ratioξ0, which is a reduced linear charg
density, is particularly useful [a DNA molecule, for instanc
has two phosphate charges each at a helical spacing of 3.Å,
thenξ0= lB/b= 7.13× (2/3.37)= 4.23]. As a consequence th
surface charge density can be written as( )
σ = λ

2πa
= e0

2πalB
ξ0. [23]
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For DNA, a= 12.5 Å, Eq. [23] givesσ = 7.55× 1017 electric
charges m−2, which is 28 times less than that for a bidimension
array of Cu atoms.

Then, substituingQ= L(e0/ lB)ξ0 given by Eq. [21] into
Eq. [20], we get

α(0)= τ L

(
e0

lB

)
ξ0Dpolyion

[
C
kT

]1/2

. [24]

In general in a polyelectrolyte the real charge is lessened
a factorγ because of the presence of counterions within t
defining surface of the cylinder; correspondingly in the form
equationsξ0 has to be replaced byξ = γ ξ0.

In the range of validity of the DH approximation, Eq. [7] ca
be used to evaluateCDH; on the contrary, the numerical solution
of the Poisson–Boltzmann equation, through Eq. [6], has to
used.

To link microscopic parameters such asα(ω) with macro-
scopic mensurable ones we make use of the results of the th
of electric polarization [see, for instance, (21)],

ε0ε(ω)E(ω) = ε0εH2OE(ω)+ P(ω), [25]

whereE(ω) is the applied macroscopic field, andP(ω) is the
polarization, which is given by

P(ω) =
(

NA

VM

)
α(ω)F(ω), [26]

where F(ω) is the “inner field,” which is the actual field ex-
perienced by the molecule, andVM is the molar volume. From
Eqs. [25] and [26] we obtain the relative increment in the diele
tric constant:

ε(ω)− εH2O

εH2O
= B

(
NA

VM

)
1

ε0εH2O
α(ω). [27]

With B(ω) given by

B(ω) = F(ω)

E(ω)
, [28]

whereE(ω) is the applied field,B is usually a little larger than
unity for a polar solvent (4).

Using the relations

ε(ω) = ε′(ω)− i ε′′(ω),
[29]

α(ω) = α′(ω)+ iα′′(ω),

then for the real and imaginary parts of the dielectric const
we have

ε′(ω)− εH O
(

NA
)

1
[

α(0)
]

2

εH2O
= B

VM ε0εH2O [1+ (τω)2]
, [30]
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FIG. 1. Representation of the Debye–H¨uckel atmosphere parameters, in accordance with the values of Table 1, for DNA immersed inc mM NaCl solution in
water.
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ε′′(ω)

εH2O
= −B

(
NA

VM

)
ω

ε0εH2O

[
τα(0)

[1+ (τω)2]

]
, [31]

with α(0) andτ given by Eqs. [24] and [8], respectively. I
a more general actual experimental situation of a solution
volumeV with N macroions, each one occupying an avera
volumev, we have to reemplace in Eqs. [30] and [31] the fac
NA/VM by φ/v= N/V , with φ being the volume fraction.

Figure 2 is a representation of Eqs. [30] and [31] for a DN
solution at room temperature in water.

IV. RESULTS AND DISCUSSION

In Figures 1a–1f are plotted the results shown in Table
Figure 1a is a representation of Eq. [6] The capacitance is for
by the charged polyelectrolyte surface and the ionic atmosp
surrounding it. Figure 1b shows the plot of polarizabilityα(0)
versus concentration (Eq. [24]); we observe that the decrea
relaxation time with concentration dominates polarization
havior. This is also manifested in the plot of the fluctuatio
dipole moment,p/pH2O (Fig. 1e, Eq. [13]). In Fig. 1c is show
the fluctuational displacement,δ, of the cloud with respect to th
central polyion; we can also observe a decrease inδ with con-
centration because of the corresponding decrease in relax
time with concentration (Eq. [16]). In Fig. 1d is the plot ofδ
versusτ , showing the linear relation. From Fig. 1f we obser
the plot of p/pH2O versus relaxation timeτ . The values for re-
laxation time are in accordance with those reported by Yos
and Kikuchi (22), in their Metropolis Monte-Carlo Brownia
dynamics simulation of the ion atmosphere polarization aro
a rod-like polyion. In Figs. 2a–2c are shown plots related to
dielectric dispersion due to relaxation of the DH cloud of a DN

TABLE 1
Debye–Hückel Atmosphere Parameters by Numerical Solution

of PB Equation for DNA Immersed in c mM NaCl Solution in
Watera

c C α(0) δ τ

x0 (mM) y(x0) (10−16 F) (10−33 Fm2) (A
a
) (ns) p/pH2O

b

0.50 15.0 8.90 3.10 1.98 25. 4.0 860.
0.58 20.0 6.52 4.40 1.79 20. 3.0 818.
0.65 25.0 5.55 4.99 1.54 18. 2.4 759.
0.71 30.0 4.96 5.27 1.33 16. 2.1 705.
0.77 35.0 4.55 5.40 1.17 15. 1.8 660.
0.82 40.0 4.23 5.46 1.04 14. 1.6 621.
0.87 45.0 3.98 5.46 0.93 13. 1.4 588.
0.92 50.0 3.77 5.43 0.84 12. 1.3 559.
1.00 60.0 3.45 5.33 0.70 11. 1.1 511.
1.08 70.0 3.20 5.21 0.60 11. 0.9 473.
1.16 80.0 3.01 5.08 0.52 10. 0.8 443.
1.23 90.0 2.84 4.97 0.47 10. 0.7 417.
1.30 100.0 2.71 4.85 0.42 9. 0.7 395.

a L = 1000 A
a
, ξ0= 4.25, γ = 0.5,a= 12.5 A

a
.

b Fluctuational dipole moment,p, in units of the dipole moment of water,
pH2O.
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FIG. 2. (a) Representation ofε′(ω) from Eq. [30]. (b) Representa
tion of ε′′(ω) from Eq. [31]. (c) Cole–Cole plot for a DNA solution at room
temperature in water:B= 1, L = 1000 A

a
, ξ0= 4.25, γ = 0.5, molecular weight
Mw = 106, DNA concentration 10−2 mol/m3 DNA in 15 mM NaCl solution,
α(0)= 1.98× 10−33 Fm2, τ = 4.0 ns.
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solution. For a DNA electrolyte solution (DNA length 1000̊A,
DNA concentration 10−2 mol/m3, electrolyte concentratio
15 mM NaCl in water) a small increase in the dielectric cons
is predicted at low frequencies with a relaxation time of 4.
this increase can be higher at lower concentrations. We wa
emphasize that this relaxation is different from that caused b
bound ions, which is of the order of milliseconds and produ
a polarizability parallel to the cylinder axis,α(0)' 10−27 Fm2,
described in Ref. (11). The DH atmosphere relaxation is in
microwave region of the spectrum and could be measure
conventional techniques such as microwave bridges and
crowave resonant cavities (23, 24). As far as we know, DH at
sphere parameters and their influence on dielectric relaxatio
DNA solutions in this concentration range have not been tre
by other authors. We hope that these results will stimulate
experiments.
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