Thermal length fluctuations of a linear chain of masses connected

by springs in a viscous medium

José A. Fornés*“ and S. Ripoll Massanés®

d09d

“ Instituto de Fisica, Universidade Federal de Goias, C.P. 131, 74001-970, Goidnia, GO,

Brazil. E-mail: fornes@fis.ufg.br

b Department de Fisica Fonamental, Facultat de Fisica, Universitat de Barcelona,
Diagonal 647, 08028 Barcelona, Spain. E-mail: sripoll@ffn.ub.es

Received 1st November 2002, Accepted 22nd November 2002
First published as an Advance Article on the web 10th December 2002

By applying the Fluctuation Dissipation Theorem the root mean-square amplitude (RMSA) of the longitudinal
vibrations of a linear chain of masses connected by springs in a viscous medium is estimated as a function of the
mass of the particles, the force constant of the springs, the number of particles, the damping parameter and
temperature. At room temperature the RMS end-to-end length is found to vary from a few tenths of an
Angstrom for hydrocarbon chains of the length found in phospholipid membrane bilayers to several Angstroms

in a-helices of peptide residues.

1 Introduction

It has been suggested that low-frequency vibrations or bending
oscillations in proteins may play a role in their biological activ-
ity. The magnitude of the length fluctuations could be a mean-
ingful information carrier.! Also it is now widely believed that
the electric dipole field of the oriented a-helix in proteins plays
a role in catalysis for some enzymes.> Perhaps there is a
dynamic aspect of this dipole field since the longitudinal oscil-
lations of the helix will give a varying field that could play a
role in catalysis. The calculations of the RMSA of vibrations
is a well-documented science for small molecules.® Peticolas*
performed a detailed calculation of the RMSA of vibrations
for the lowest frequency of the longitudinal vibrations of linear
hydrocarbon chains and a-helix polypeptides without damp-
ing. In this paper, we estimate the RMSA with damping as a
function of the mass of the particles, the force constant of
the springs, the number of particles, the damping parameter
and temperature.

In globular proteins the end groups are dynamically active,
rather than fixed in space and participate through hydrogen
bonding with non-helical segments, in this context both
boundary conditions are considered with free and fixed ends.

Damping of the vibrations of polymer chains due to friction
with solvent, including hydrodynamic interaction between
chain elements have been already considered in ref. 5. The
authors concluded that the damping constant is independent
of the degree of polymerization. In the present paper we follow
an easier method in order to estimate the RMSA of the long-
itudinal vibrations of a linear chain of masses.

Firstly we estimate the general susceptibility matrix for the
normal coordinates of a linear chain of masses connected by
springs in a viscous medium in order to apply the Fluctuation
Dissipation Theorem (FDT) for estimating the length fluctua-
tions of the linear chain.

2 Electrical and mechanical systems analogies

The establishment of a formal analogy between the differential
equations expressing two different types of problems permits a
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formal transfer of known solutions of problems of one type to
those of the other. The method of complex amplitudes devel-
oped in connection with electric circuits has a useful applica-
tion in mechanical problems where generalized definitions of
mechanical impedances or susceptibilities are involved.

The differential equation of a simple (L,R,C)-circuit acted
upon by a sinusoidal electromotive force is

t

di A
La—i-RH-a/zdth (1
0

~—

Differentiating eqn. (1) we obtain

d% di i dE
Y S 2)

Lt Rutc~a

Consider, on the other hand, a mechanical system of a
damped oscillator excited by an external sinusoidal force. Its
equation is

P (3)
dr dz N

One observes that eqns. (2) and (3) are of the same form and
that the following corresponding quantities indicate the
analogy between electrical and mechanical problems:

Qi (L R0 (gk)s (Gor) @

The corresponding electrical, Z., and mechanical, Z,,,
impedances for both systems are:

.L
Z.=R+ 15((02 — w?) (5)

.m

Zm :b+16(w2_wém) (6)

where i is the imaginary unit, woe = (1/LC)"/? and wom, = (k/
m)'/? are the corresponding resonance frequencies of the

systems.
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The corresponding susceptibities, a(w) = i/wZ(w), are:

- w(z)e) + iwye

L[(@? = o) + (@]

(o

oe(w) =

™)

(wz - w(%m) + iwym
o (@) = (8)
m{(@? = 03 + ()]

where y. = R/L and y,, = b/m are respectively the electrical
and mechanical damping factors or resonance widths.

These electro-mechanical analogies can easily be established
for systems with several degrees of freedom. We will use these
analogies for estimating the RMSA of the longitudinal vibra-
tions of a linear chain of masses.

3 The fluctuation—dissipation theorem

One way of formulating the FDT is by formally regarding the
spontaneous fluctuations of a quantity x as due to the action of
some random force f, meaning that the environment senses the
system through the generalized susceptibility, o(w), and
responds with a fluctuating force. The Fourier components
X, and f,, are related by:

Xo = OC((/J) [0} (9)
The relation between the generalized impedance Z(w) and
o) is:
i
Z(w) = 1
() = osio (10)

—iwt

As x, = Xp,€ we can write:

dx,,

o = Z 11
fo = Z(@) 5 (n
The spectral densities of the fluctuation are given by
(), = (@) P (/) (12)
The results of the FDT are:
hw
2y " Rt
(x9),, = " (w) coth KT (13)
Correspondingly:
fio” (w) hiw
D)., = coth—— 14
(f )(u |OC(CU)|2 sz ( )
The mean-square of the fluctuating quantity is:
1 [ hore hiw
2\ _ 2 _ = " R
(x*) _Tf/o (x*),,do Tt/o o (w)cochdew (15)

These formulae constitute the FDT, established by Callen and
Welton (1951).° They relate the fluctuations of physical quan-
tities to the dissipative properties of the system. At energies
kT>ho (classical limit) we have coth(fiw/2kT)~2kT/hw,
and |o(w)]* & |0/ (0)]*. Then eqn. (15) becomes:

(x*) :szT/:)de (16)

w

Using Kramers and Kronig’s relationship this integral can be
written as:’

(x?) = kT (0)] (17)

Averaging eqn. (12) in frequency in the classic region, we have:

(%) = (%)) = (@) (/7),) (18)

and in order for eqns. (17) and (18) to be compatible, we
obtain:

o kT
<f>_|a/(0)‘ (19)

From eqns. (17) and (19) we obtain:
(2= kT (20)

This is the classical analogy of the Heisenberg uncertainty
principle.”® This equation shows a constant equilibrium
between the system and the environment, when (f2)? increases
in the environment, the systems react in such a way as to inhi-
bit the fluctuation of the corresponding physical quantity x
and vice versa in order to mantain the product constant equal
to kT.

The FDT can be generalised to the case where several fluc-
tuating quantities x; are considered simultaneously.” In this
case, eqns. (13) and (14) have to be replaced by:

| ho
(xixk), = Elh(aki — oc[k)coth(zk—T) (21)
| e i10)
(fifi)o = iy — o )coth(zk—T) (22)
with
Xioy = aikfkw fiw = O(;klxk(u (23)

where oy; are the matrix elements of the susceptibility and «};
the corresponding complex-conjugate elements.

Electric circuit

Let us give an example of the application of the FDT for the
case of one fluctuating variable. The case of several simulta-
neously fluctuating quantities is the objective of the present
work.

In an electric circuit the relation between the Fourier com-
ponents of the spontaneous fluctuation current 7, and voltage,
V., is given by:

V= Z(w)lun (24)
Eqn. (24) can be written as
qo = 1(0)) V(u (25)

where ¢, is the Fourier component of the fluctuation charge.
In the case of an RC circuit in series, we have

i

Correspondingly from eqn. (2), a(w) is given by:
#(w) = ——C i o . (27)
1+ (tw) 1 + (tw)
Then
o (w) = ;Cz, o (w) = ch (28)
1+ (tw) 1+ (tw)

From eqns. (13) and (28) and considering the classical limit, we
obtain:

2kTzC

2y
(¢, = It (o) (29)
and
2kTt

VY = 30
) s o) a0)

Then from eqn. (17):
(¢*) =kTC (31)

Correspondingly the mean quadratic fluctuation of the vol-
tage, (V2 = (¢°)C 2, will be:
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() =2 (32)

For applications of the FDT see refs. 10-18.

4 Coupled oscillators with damping

A system of a chain of N masses m, each of which is coupled
harmonically to its nearest neighbours, is described by the
following system of equations

d&’x, dx, Ky

kpi1
de +VPW+% p‘ﬁ(x,,ﬂ—x,,):() (p=12,....N)

(33)

where y, = b,/m, is the damping factor of mass p.

The solutions of eqn. 33, with y, = 0., for a system of N
equal particles (mass m) coupled by quasi-elastic forces of
constant k per unit displacement, can be written after Born
and von Karman® (see also ref. 9) as,

sm(¢)’
2

Free ends:
N-1
Xp = Z 0., cost 2)(;5/], w; = 2w
o0 = /_@J— (34

Fixed ends:
= . (P
Xp = jz:(; Oy, sin(pg;), w; = 2amp|sin (7) ,
.o
¢j:JN—H7]:1,27~-N (35)

In our case, with damping, ©,,, is the jth normal coordinate,
solution of the following equation,

&6, do,
dl2 +V dl —|—CUj@(,)j =0 (36)

with
t
0., = 4, exp(— %) cos[w;t + o] (37)

Eqn. (36) is similar to eqn. (12) of ref. 5.
In eqns. (34) and (35), w, has to be replaced by wy, , namely:

’))2 1/2
woy = (wg - Z) (38)

The decrease in frequency as a result of friction is to be
expected, since friction retards motion.

In order to have real frequencies wg > /2 = ! where 7 is
the relaxation time which in accordance to Stokes’ law, is given
by

_m
" 3nna

(39)
where a is the radius of the spherical particle of mass m and 5
the viscocity of the medium.

In the case mo < y/ 2, wo, is 1mag1nary and can be written as
Woy = 1w0 , with wo real and given by

2 1/2
wg}, = (% — w(z)) (40)

Then eqn. (37) with o; = 0 transforms in

sin (%) H (41)
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71 ,
0., = A; exp (— %) cos {126061,
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or

0,, = A;jexp (— g) cosh {ng.’,

sin (%)

We observe in the former equation that the behavior is not
oscillatory, consequently the modes are overdamped.

z] (42)

5 Mean-square amplitudes of the normal
coordinates

In order to estimate the length mean-square amplitude, we
first calculate the mean-square amplitudes of the normal
coordinates.

We have N simultaneously fluctuating quantities, 0,
(j = 1,2...N), the normal co-ordinates, then the susceptibility
matrix is a vector of components,

o = o(@)djic (43)
a(w) = [ (w), wa(w) ...an(w)] (44)

Following the electro-mechanical analogy, of a series
(L,R,C)~circuit for eqn. (36), the corresponding generalized
susceptibility a;(w), in accordance with eqn. (8), will be

<w2 — ) + 1wy
(o) o]

The length fluctuations can be expressed in terms of the ima-
ginary components, o;(w) of the normal coordinates suscept-
ibilities. From eqn. (45) we obtain

%(w) = (45)

L

MMWQQWW (46)

Applying eqns. (21) and (43), we obtain for the mean correla-
tion of the normal coordinates,

T ho
= N (o — ])511‘00th(2kT)dw

We can observe the only non-null values are given by the
mean-square of the normal coordinates (j = k), namely,

<@i,> Zhrr / i j (@) co th(zkr>d‘“ (47)

In our case, it can be written (see Appendix) as

<@qu @mk>

7i
2 _
<@w/> m(4w/2 _ q/2)1/2
Sinh {% (4w]2 — '}12)]/2:|
cosh [ZkT (4o} — yz)l/z] e (27#)
2nkTy & n

" e o] - (e

X

(48)

6 Length mean-square amplitude

As we saw in section 3 the parameters which characterize a
thermodynamic system in equilibrium do not generally have
precise values, but undergo spontaneous fluctuations. Con-
sider our system in thermal equilibrium, because of thermal
fluctuations, the system is constantly absorbing and dissipating



energy, with the mean energy given by,
E = Eoexp(—y1) (49)

where Ej is the initial value of the energy. This is the origin of
the length fluctuations (RMSA).

As we mentioned the length RMSA without damping was
calculated by Peticolas.* The overall end-to-end length of the
linear chain is given by

I=xy—x (50)

Accordingly we obtain, using the eqns. (34) and (35)}
Free ends:

N-1

. TN . N-—-1\x.
-5 o), o ()] (%5231,
w; = 2w07|sin<j%)‘ (51)
Fixed ends:
= L[(N=1\7. ,
=5 o0, [ () e @)
. b1
;j = 2w, |sin (j m) ‘ (52)

where we have used the property of the normal coordinates
(0, 0,,) = 01if j#k. In the case of no damping (y = 0) we
have

Free ends:

N—1 0

W = Zwolsin(j%)‘ (53)

Fixed ends:
) N—-1\=. T,
azmm_4§;<Q) i (3 51) 3] <o (51)
.. T

or (see Appendix)
Free ends:

()~ ﬁee _ NZ [ha)o|s1n JZN)‘]

=0

wj = 2

n
S5 (5] -
|sin (j) |
Fixed ends:
o __h A Thonfsin (o)

(P fixea = mawo FZO coth KT

s1n Nz 5l cos? (L
(e I

‘ (fz NI )‘

Eqn. (55), was given by Peticolas.*

T We have also used cos 4 —cos B = 2sin}| 5(A + B)sin(B — A) and sin
A—sin B = 251n2(A B)cosz(A + B)

‘m 28 daltons k=2.33 mdyn/Angs

Wo =375 cm""

Fig. 1 Schematic model for frans hydrocarbons in accordance with
Peticolas.*

7 Results and discussion

In order to test the model, w; from eqns. (34) and (35) with w,
given by eqn. (38) and ¢; = j(n/N) or ¢; =jn/(N + 1)],
j = 1,2...N depending of free or fixed ends has to be fitted
against the experimental data of Ramman spectroscopy. We
suggest performing experiments with decreasing solvent visco-
cities and extrapolating to zero viscocity (vacuum), in order to
obtain wg . Once w is determined, 7y can also be obtained from
fitting with the experimental data at a given viscosity.

Once the model is determined, we suggest performing
experiments of fluorescence spectroscopy in order to estimate
(12>1/ 2 for a given peptide configuration varying the viscocity
of the medium, see refs. 19-22.

Fig. 2 Schematic model for a-helical poly(L-alanine) in accordance
with Peticolas.*
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Fig. 3 RMS displacement of the overall end-to-end length, (12)1/ 2 at room temperature, of trans hydrocarbons and a-helical poly(L-alanine) for

free and fixed boundary conditions in accordance to Peticolas’ model.*

For wy, real, wg > 0.5y = v, or in terms of the frequency
fo > 0.08y = 0.16t", with © glven by eqn. (39). In order to
have an idea of the order of magnitude of the relaxation
time, we can consider an amino acid residue of 3 A
radius, m = 100 Da (1 Da (dalton) = 1.6734x 107 kg)
immersed in an environment of viscosity 1 = 0.1n,, with
1w being the viscosity of water 7,~9x 107* N s m2, we
obtain 7 = 658 fs or 7! = 1.52 x 10'2 s7!. If we consider the
o-helix oscillations produced by the hydrogen bonds,? the
force constant for the hydrogen bonds is k = 0.11 mdyn
A"'=110 N m' in accordance with ref. 23 then

Dy = (kmfl)l/2 =8.1x10" s7!. We can observe wy > 17,
wo/‘t_] =53.

In Figs. 1 and 2 are depicted the models of zrans hydrocar-
bons and a-helical poly(r-alanine) in accordance with
Peticolas.*
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In Fig. 3(a-d) is shown the RMS displacement of the
overall end-to-end length, (12)1/ 2 at room temperature, of
trans hydrocarbons and o-helical poly(r-alanine) for free
and fixed boundary conditions in accordance to the model of
Peticolas.* We can observe in both cases, trans hydrocarbons
and o-helical polypeptide chains, (12>1/ 2 decreases with
decreasing relaxation time and correspondingly increasing
viscosity.

The alkyl chains of fatty acids in lipid bilayer possess
the same type of longitudinal acoustical mode as that
found in hydrocarbons.>* In Fig. 3(a—b), trans hydrocarbons,
we observe for 10 < carbons < 60(5 < N < 30) the corre-
sponding varlatlons of (lz)l/2 are 0.15 A < (12>;r/eze <09 A
and 0.1 A < (12) <025 A with the viscosity 1 and the
relaxation time r varying (0.0 cP<#np <09 cP) and
(0o <7< 18 f5).
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Fig. 4 RMS displacement of the overall end-to-end length, (lz> /2 for two different chains of 40 masses, at room temperature, for several values of

(40)~! and for free and fixed boundary conditions.

In Fig. 3(c-d), a-helical polypeptide chains, we observe for
peptide groups (PG) varying 3 < PG < 108 (3 < N < 30) the
corresponding variations of <1221/2 are 0.2 A < (lz)llr/eze <25
Aand 0.17 A < (P)}/2, < 0.67 A with the viscosity  and the
relaxation time t varying (0.0 cP <# <0.35 cP) and
(0o <7< 130 fs).

In this last case, we observe a reduced range in the viscosities
and correspondingly in the relaxation times because out of this
range the modes are overdamped.

In Fig. 4(a-b) are considered chains of 40 masses of 100 Da,
each mass with a radius of 3 A and /;! varying in the range 25
em™!' < ot <200 cm~! we can observe, analogously, for low
values of /5! a reduced range in the viscosities and correspond-
ingly in the relaxation times because out of this range the
modes are overdamped. We can also observe as 45! increases

(P)2 decreases. This behaviour is not the same in the case
of (I )}lﬁd, Fig. 4(b). The corresponding variations of (/*)!/
in the whole range of considered values of ij' are 1.0
A<(P)2<85Aand 03 A < (P2, <2.1 A with the visc-
osity # and the relaxation time 7 varying (0.0 cP <# < 0.9 cP)
and (oo <7 < 66.0 fs).

In Fig. 4(c-d) are considered chains of 40 masses of 25 Da,
each mass with a radius of 3 A. We observe the case
ol =250 em™~! for free ends boundary conditions is omitted.
This is because w, is imaginary and all the modes are over-
damped. The rest of the behaviour is similar to Fig. 4(a-b).
The corresponding variations of ({2)1/ % in the whole range of
considered values of /;' are 0.5 A < (12>}r/62c <7.5A and 0.5
A< <lz>;1{id < 4.0 A with the viscosity n and the relaxation
time 7 varying (0.0 cP < < 0.5 cP) and (0o < 7 < 29.0 fs).
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8 Appendix

8.1 Normal coordinate mean-square amplitude

We saw that the mean-square of the normal coordinate @; is
given by the integral,

(02) 2 [ (2)o

In our case we have
o) -25 )
@i 2mm J_

Eqn. (A-2) can be written as

o coth(£2)dw

(”/ 21tm (0 —1)(w—m)(w— w3)(w— ws)

= P(w)d

2nm

(A-1)

w coth (£2)dw

(02— w})zﬂwv)z

(A-3)

The poles of the 1ntegrand of eqn. (A-3) are:

oo =ifs (0 +2) "

. 1 ) 5 1/2
w34 = —1§i§(4wj -7 )

2nkT . .
n—nl = gnl7 poles of coth

(A-4)

Wy =

h

The corresponding residues in the upper plane are:

i coth(awy)

Reslo=on] = f o) (or — ws) (@1 — o)

3 coth(aw,)
(w2 — o1) (w2 — w3)(w2 — w4)

na’ni

{(nn)z—k (awj)z} 2—(Tmay)2

Res[o=w,] = (A-5)

Res[o=w,] =

8.2 Path integral

For calculating (@(,,12) using eqn. (A-3) we make use of the
path integral in the complex plane: we integrate on a closed
curve consisting of a semicircle of infinite radius in the upper
complex plane, I',, and the real frequency axis, namely

I= ch(u))dw

:/F.xP(w)daH—/iZ

/ P(w)dw + 2;;m< > = 2mzRes

We will show now that the integral on I'., goes to zero as the
radius of the curve goes to oo. Writing @ = rexp(if), we obtain

P(w)dw = 2mi Z Res (A-6)
C

or

(A-7)

x 2 . .
/P((u)dcu _ i/ r exp(lZG)coth[;zrexp(lB)]dO (A-8)
r 0 [r2 exp(i20) — w7 | +92r? exp(i20)
The coth can be written as
cothlarexp(if)] = 1 + exp(—2arcos0) exp(—i2arsin ) (A-9)

1 —exp(—2arcos0) exp(—i2arsin )
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Taking the limit r — oo, we obtain
"2 exp(i20)d0
o)dw < lim i / =
oy 00
(A-10)

coth[ar exp(if)] <1 :>/

Then using eqn. (A-7)
hy
2 —1—
<@w]> = lm ZC:Res
From eqns. (A-5) and (A-11) we get

. n
(9%) =i —om

{ wicoth(am ) 3
(w1 — w3) (w1 — v4)

(A-11)

w3 coth(am,)
(w2 — w3) (w2 — w4)

hyna® & n
- > (A-12)

[+ (0’| (o

Replacing the values for w,(i = 1...4) given by eqns. (A-4), we
obtaini

o2\ _ i sinh [2”( 4or; — yz)l/z}
< wj> - m<4w_]2 _ yz)l/ cosh [L (407 — )1/2} cos(2'ZT>

kT
2k Ty & n

" [y o] (e

(A-13)

with w] = 4w} - (*/4)sin*[j(nt/2N)] or w = 4w} - (y/
4)Jsin*(ji/[2(N + 1)]) depending on having boundary condi-
tions of free or fixed ends respectlvely In the case of no damp-
lng y= 0) we have respectively wj = 4wosm (jm/2N) and
w/ = 4w0s1n (]n/ [2(N + 1)]). Then eqn. (A-13) transforms to
give

7 sinh ( 2572
<@5,,>} -0 2mawy; cosh<2(;i"j>T>1 (A-14)
or§
(@) =3 jch th<;:%) (A-15)

Eqn. (A-14) was first obtained by James.?®

The second term with the sum (coth terms) in eqn. (A-13) is
negligible in most of the real cases, for instance: consider
m =100 Da, ngo~1.0 cP, R=10 A b = 6nnyoR =
18 85 x 10712 N s m™', y=5b/m=1. 1287 x 10* s~!, for

=3x10"7s7", we obtain (@, )coth terms = 7 x 107" m”.
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