
Supporting Information: Bridge to Physical Formalism

Section 5 Addendum C: Thermodynamic Structure and the Jacobson Correspondence

5C.1 Introduction

Ted Jacobson's 1995 derivation showed that Einstein's field equations follow from thermodynamic consistency
—requiring δQ = TdS across local causal horizons implies the gravitational field equations. This remarkable
result suggests that spacetime geometry is not fundamental but emergent from thermodynamic structure.

This addendum examines how Jacobson's argument maps onto our constraint framework, with particular
attention to:

1. Terminological precision: "Entropy" is overloaded; Φ is not entropy

2. The geometric core: What structure exists independent of physical interpretation?

3. N-dependence: How does the argument work at N = 3, 4, 5, ... ?

4. The thermodynamic boundary: When does statistical interpretation become valid?

5. Level separation: Maintaining the distinction between relational geometry and physical mapping

The Central Claim: A "Jacobson-like" relation exists at all N ≥ 3, relating flux across boundaries to changes in
the efficiency potential. This relation is purely geometric at small N; thermodynamic interpretation emerges
only at large N.

Prerequisite: This document builds on the thermodynamic structure established in
SI_Section5_Thermodynamic_Foundations.md , which derives all four thermodynamic laws from the axiom ◇N

→ ¬N. The reader should be familiar with how the efficiency potential Φ = ln(Ω/K) serves as the
thermodynamic organizing quantity.

5C.2 The Many "Entropies" — Terminological Hygiene

5C.2.1 The Entropy Zoo

The term "entropy" carries multiple distinct meanings across physics and information theory:
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Name Definition Domain Dimension Key Feature

Clausius dS = δQ_rev/T Heat engines Energy/Temperature Requires reversibility

Boltzmann S = k_B ln W Statistical mechanics Energy/Temperature Microstate counting

Gibbs S = -k_B Σ pᵢ ln pᵢ Ensembles Energy/Temperature Probability distribution

Shannon H = -Σ pᵢ log₂ pᵢ Information bits Communication capacity

Von Neumann S = -Tr(ρ� ln ρ�) Quantum systems dimensionless Zero for pure states

Bekenstein-Hawking S = A/(4l_P²) Black holes dimensionless Area law

Kolmogorov K(x) = min program Computation bits Incomputable

These quantities share mathematical structure but differ in physical meaning, domain of applicability, and
dimensional character.

5C.2.2 The Status of Φ

Our efficiency potential Φ = ln(Ω/K) is not entropy. It is a difference of two logarithmic quantities:

where:

Ω: Measure of accessible configurations from current state

K: Descriptive complexity (specification cost) of current state

Structural analysis:

Quantity Resembles But differs because

ln Ω Boltzmann entropy No temperature, no equilibrium assumption

ln K Algorithmic complexity Defined geometrically, not computationally

Φ Free energy / T Ratio, not difference; no temperature defined

5C.2.3 Φ as Efficiency Potential

The appropriate interpretation of Φ:

Φ measures the efficiency of distinguishability — how many distinguishable configurations are accessible per
unit of descriptive cost.

Φ = ln Ω − lnK



High Φ: Many accessible states, low complexity → efficient

Low Φ: Few accessible states, high complexity → inefficient

Gradient ∇Φ: Direction of increasing efficiency

Φ is closer to a free energy than an entropy:

Recall: F = E - TS, so F/T = E/T - S (competition between energy and entropy)

Similarly: Φ = ln Ω - ln K (competition between accessibility and complexity)

The gradient ∇Φ drives dynamics toward configurations that maximize accessible states while minimizing
descriptive cost.

5C.2.4 Terminological Conventions

Throughout this addendum:

Term Symbol Meaning

Accessible configurations Ω Boltzmann-like count of distinguishable states

Descriptive complexity K Specification cost of configuration

Efficiency potential Φ ln(Ω/K), the quantity whose gradient drives dynamics

Geometric factor G_N Proportionality constant in flux-Φ relation at N features

Statistical entropy S_stat k_B ln Ω (only when ensemble interpretation valid)

Temperature T Only used when thermodynamic interpretation established

We avoid using "entropy" for Φ to prevent conceptual confusion.

5C.3 The Geometric Core of Jacobson's Argument

5C.3.1 Jacobson's Physical Argument (Summary)

Jacobson's derivation proceeds:

1. Consider local Rindler horizons (causal boundaries for accelerated observers)

2. Energy flux δQ crosses the horizon

3. The horizon has entropy S proportional to area: S = A/(4l_P²)

4. Local thermodynamic equilibrium: δQ = T dS with T = Unruh temperature

5. Requiring this across ALL local horizons implies Einstein's equations



The physical content: spacetime geometry adjusts to satisfy thermodynamic consistency at all points.

5C.3.2 Extracting the Geometric Core

We now extract the logical structure independent of physical interpretation:

Geometric Jacobson Argument:

1. Boundary existence: In a space of N ≥ 3 features, there exist (N-1)-dimensional boundaries separating
feature subsets

2. Flux: Constraint quantities (particularly ρ�) can flow across boundaries between regions

3. Boundary capacity: Boundaries have a "capacity" related to Φ integrated over boundary structure

4. Proportionality: Flux and capacity-change are related by a geometric factor: $$\Delta\rho_{boundary} =

G_N \cdot \Delta\Phi_{boundary}

5. Consistency: Requiring this relation across ALL boundaries constrains the geometry of constraint space

5C.3.3 Level 1-2 Formulation

Working purely at the relational field level:

Definitions:

Let S ⊂ {1, ..., N} be a subset of features (the "inside")

Let SÌ„ = {1, ..., N} \ S be the complement (the "outside")

The boundary ∂S is the coupling structure between S and SÌ„

Boundary flux:

where M^(αβ)_ρ� is the ρ�-component of the coupling matrix.

Boundary capacity:

The geometric relation:

​(∂S) =ρ ​M ​

α∈S,β∈S „Ì

∑ ρ
(αβ)

​(∂S) =Φ ​
Φ

​

α∈S,β∈S „Ì

∑ coupling

(αβ)

​(∂S) =ρ G ​ ⋅N Δ ​(∂S)Φ



This relation is purely geometric—no thermodynamics invoked.

5C.3.4 The Correspondence Table

Jacobson (Physical) Geometric Core (Level 1-2)

Spacetime point Feature configuration

Causal horizon Boundary ∂S in feature space

Heat flow δQ ρ�-flux F_ρ�(∂S)

Entropy S Boundary capacity C_Φ(∂S)

Temperature T Geometric factor G_N

Einstein equations Consistency constraints on G_N

5C.4 N = 2: Pre-Boundary Regime

5C.4.1 Why Boundaries Cannot Be Defined

At N = 2, we have exactly two features A and B. To define a boundary, we need:

An "inside" region S

An "outside" region SÌ„

A non-trivial boundary ∂S between them

The problem: The only non-trivial partition is S = {A}, SÌ„ = {B}. But this makes every coupling a "boundary"
coupling. There is no distinction between bulk and boundary structure.

Analogy: Asking for the "boundary" of a two-point set is meaningless—both points are boundary points.

5C.4.2 The Jacobson Structure Doesn't Apply

At N = 2:

No meaningful inside/outside distinction

No "flux across boundary" (all flux is the total flux)

No capacity separate from total Φ

The geometric Jacobson relation cannot be formulated

Conclusion: N = 2 is pre-boundary—the structural prerequisites for Jacobson's argument don't exist.



This is consistent with N = 2 being pre-temporal (τ = 0 necessarily). Without ordering structure, there are no
causal horizons.

5C.5 N = 3: First Geometric "Thermodynamics"

5C.5.1 Boundary Structure Emerges

At N = 3, we have features A, B, C. Now meaningful partitions exist:

Partition Inside S Outside SÌ„ Boundary ∂S

P₁� {A} {B, C} A-(BC) interface

P₁‚ {B} {A, C} B-(AC) interface

P₁ƒ {C} {A, B} C-(AB) interface

P₁„ {A, B} {C} (AB)-C interface

P₁… {A, C} {B} (AC)-B interface

P₁† {B, C} {A} (BC)-A interface

Note: P₁� and P₁† are complementary (same boundary, different labeling), etc. There are 3 distinct boundaries.

5C.5.2 The Geometric Relation at N = 3

For each boundary ∂S, we can compute:

**ρ�-flux:**

**Φ-capacity:**

where Φ^(αβ)_int is the interaction contribution to Φ from the α-β coupling.

The N = 3 geometric relation:

​(∂S) =ρ M

α∈S,β∈S „Ì

∑ ρ
(αβ)

​(∂S) =Φ Φ
α∈S,β∈S „Ì

∑ int

(αβ)

​(∂S) =ρ G ​ ⋅3 Δ ​(∂S)Φ



5C.5.3 What G₃ Is (And Isn't)

G₃ is a geometric coupling constant. It relates how ρ�-flux affects Φ-capacity at boundaries.

G₃ is NOT temperature. At N = 3:

There is no statistical ensemble

There is no equilibrium assumption

There are no fluctuations to average over

The relation is exact, not statistical

G₃ is determined by constraint geometry. From the structure of coupling matrices and the definition of Φ, G₃
can be calculated. It depends on:

The metric structure of constraint space

The form of the interaction potential

The specific configuration (C^(A), C^(B), C^(C))

5C.5.4 Consistency at N = 3

With 3 distinct boundaries, requiring the same G₃ for all of them is a constraint:

This consistency requirement constrains the allowed configurations. Not all (C^(A), C^(B), C^(C)) triples admit
a consistent G₃.

Interpretation: The "Jacobson consistency" at N = 3 is a geometric constraint on viable configurations, not a
thermodynamic statement.

5C.6 N = 4, 5: Consistency Constraints Multiply

5C.6.1 Counting Boundaries

At N = 4 features {A, B, C, D}:

Partition type Count Example

1 vs 3 4 {A} vs {B,C,D}

2 vs 2 3 {A,B} vs {C,D}

G ​ =3 ​ =
Δ ​(∂S ​)Φ 1

​(∂S ​)ρ 1
​ =

Δ ​(∂S ​)Φ 2

​(∂S ​)ρ 2
​

Δ ​(∂S ​)Φ 3

​(∂S ​)ρ 3



Total: 7 distinct boundaries (up to complement symmetry).

At N = 5 features:

Partition type Count

1 vs 4 5

2 vs 3 10

Total: 15 distinct boundaries.

General formula: Number of distinct boundaries at N features:

5C.6.2 Consistency Constraints Grow

Requiring a single G_N across all B_N boundaries imposes B_N - 1 constraints.

N Boundaries B_N Constraints

3 3 2

4 7 6

5 15 14

6 31 30

As N increases, G_N becomes increasingly constrained by consistency requirements.

5C.6.3 First Averaging Structure

At N ≥ 4, we can meaningfully define:

**Mean geometric factor:**

Variance:

B ​ =N 2 −N−1 1

⟨G ​⟩ =N
BN

1

∂S

∑
Δ ​(∂S)Φ

​(∂S)ρ

Var(G ​) =N ⟨G ​⟩ −N
2 ⟨G ​⟩N

2



Consistency measure:

When ρ‡_N ≪ 1, the configuration admits an approximately consistent G_N.

5C.6.4 The Emergence of Statistical Structure

At N = 4, 5:

Multiple boundaries provide "samples"

Mean and variance become meaningful

Consistency (ρ‡_N small) is a statistical property

This is the beginning of statistical structure

But we still don't have:

A large ensemble

Thermodynamic equilibrium

Temperature in the conventional sense

5C.7 Unruh Temperature as Geometric Prototype

5C.7.1 The Unruh Effect

The Unruh effect demonstrates that temperature can arise geometrically, without statistical ensembles:

Physical statement: An observer with constant proper acceleration a through Minkowski vacuum perceives
thermal radiation at temperature:

Key features:

Single observer (N = 1 in some sense)

No ensemble averaging

Temperature from geometry (acceleration creates horizon)

The vacuum itself appears thermal

χ ​ =N ⟨G ​⟩N

Var(G ​)N

T ​ =U ​

2πck ​B

ℏa



5C.7.2 Geometric Content (Level 1-2)

Stripped of physical interpretation, the Unruh effect says:

1. A trajectory through constraint space with non-zero "acceleration" (deviation from geodesic)

2. Creates a horizon structure (boundary of causal access)

3. The horizon has geometric properties characterized by a factor G_Unruh

4. G_Unruh is proportional to the acceleration magnitude

In constraint space terms:

Let v be the tangent vector to a feature's trajectory through constraint space. Define:

Acceleration:

where ∇_v v is the covariant derivative of v along itself.

τ-gradient along trajectory:

The geometric Unruh relation:

or equivalently:

where α, α' are geometric constants determined by constraint space structure.

5C.7.3 Why τ-Gradient Matters

The connection to τ (ordering structure) is natural:

Geodesic motion: The trajectory that extremizes proper "length" in constraint space. For geodesics, ∇_v
τ is constant (ordering structure doesn't "twist").

Accelerated motion: The trajectory deviates from geodesic. This deviation manifests as changing τ-
structure along the path.

a ​ =constraint ∣∇ ​v∣v

(∇ ​τ) =v v ∂ ​τ +i
i Γ ​v vij

τ i j

G ​ =Unruh α ⋅ ∣a ​∣constraint

G ​ =Unruh α ⋅′ ∣∇ ​τ ∣v



Horizon formation: Sufficient acceleration creates a horizon—a boundary beyond which the feature
cannot receive information. This is a β-τ boundary in constraint space.

The physical interpretation (Level 3): When we map τ → time and identify the constant α' = ℏ�/(2πck_B),
we recover the Unruh formula.

5C.7.4 Temperature Without Statistics

The Unruh effect shows:

G_geometric can function like temperature even at small N.

This is not statistical temperature (no ensemble) but geometric temperature (from horizon structure). The two
coincide in appropriate limits but are conceptually distinct.

Implication: The geometric factor G_N in our framework may admit a "geometric temperature" interpretation
even at N = 3, via the Unruh mechanism.

5C.8 The Statistical Boundary

5C.8.1 Two Notions of "Thermodynamics"

We now see two distinct routes to thermodynamic-like structure:

Route A: Geometric (Unruh-type)

Available at any N ≥ 3

Based on horizon structure and acceleration

G_N as geometric coupling

No ensemble required

Exact, not statistical

Route B: Statistical (Boltzmann-type)

Requires large N

Based on ensemble averaging

G_N → T through fluctuation-dissipation

Ensemble interpretation essential

Approximate, with 1/√N corrections

5C.8.2 When Does Statistical Interpretation Become Valid?

The statistical route requires:



1. Many boundaries: B_N = 2^(N-1) - 1 should be large

2. Small relative fluctuations: ρ‡_N = ρƒ(G)/⟨G⟩ ≪ 1

3. Ergodic-like behavior: Different boundaries sample similar physics

Estimate of the boundary N:*

For the central limit theorem to apply, we typically need ~30 independent samples. But boundaries are not
independent—they share features.

The effective number of independent boundary "samples" scales roughly as:

(each feature contributes independently to the boundary structure).

Criterion: Statistical interpretation valid when N_{eff} ≳ 30, i.e., N ~ 30*.

More precisely:

N ~ 10: Proto-statistical (fluctuations ~30%)

N ~ 30: Marginally statistical (fluctuations ~10%)

N ~ 100: Solidly statistical (fluctuations ~3%)

N → ∞: Full thermodynamic limit

5C.8.3 The Transition Region

For 3 ≤ N ≤ N*:

Geometric Jacobson relation holds exactly

G_N is well-defined but varies across boundaries

Statistical interpretation premature

"Proto-thermodynamic" regime

For N > N*:

G_N approximately constant across boundaries

Statistical temperature interpretation valid

Fluctuations small and Gaussian

Full thermodynamic interpretation appropriate

N ​ ∼eff N



5C.9 The Large-N Limit

5C.9.1 Emergence of Thermodynamic Quantities

As N → ∞, with appropriate scaling:

G_N → Temperature:

where T satisfies the standard thermodynamic relations.

Φ → Related to Free Energy:

In the large-N limit, extensive quantities scale with N:

Ω ~ e^(N · s) where s is entropy density

K ~ N · k where k is complexity per feature

Φ ~ N · (s - ln k)

The efficiency potential Φ becomes proportional to a free-energy-like quantity.

Boundary capacity → Entropy:

The boundary capacity becomes interpretable as boundary entropy (cf. Bekenstein-Hawking).

5C.9.2 Recovery of Jacobson's Argument

In the large-N limit, our geometric relation:

becomes:

which is Jacobson's starting point.

The consistency requirement across all boundaries becomes:

The geometry of constraint space must be such that T is well-defined everywhere.

This is the analog of Jacobson's derivation of Einstein's equations.

​G ​ =
N→∞
lim N T

​(∂S) →Φ Sboundary

​(∂S) =ρ G ​ ⋅N Δ ​(∂S)Φ

δQ = T ⋅ dS



5C.9.3 What the Consistency Constraints Become

Jacobson shows: requiring δQ = TdS across all local horizons implies:

In our framework: requiring consistent G_N across all boundaries implies constraints on constraint space
geometry. The physical mapping (Level 3) would identify these constraints with gravitational field equations.

5C.10 Physical Mapping (Level 3)

5C.10.1 The Mapping

Having developed the geometric structure at Levels 1-2, we now indicate the physical interpretation:

Geometric (Level 1-2) Physical (Level 3)

Constraint space Pre-spacetime structure

β (boundary constraint) Spatial geometry

τ (ordering constraint) Temporal structure

ρ� (resource constraint) Energy-momentum density

Boundary ∂S Causal horizon

ρ�-flux F_ρ� Heat flow δQ

Φ-capacity C_Φ Entropy S

Geometric factor G_N Temperature T

Consistency constraints Einstein field equations

5C.10.2 The Hierarchy

The physical mapping suggests a derivation chain:

G ​ +μν Λg ​ =μν T
c4

8πG
μν



Gravity is derivative: Not a fundamental force but a consistency requirement on constraint geometry that
admits thermodynamic interpretation at large N.

5C.10.3 The Unruh-Hawking Connection

The geometric temperature G_Unruh maps to physical Unruh temperature:

This requires identifying:

|∇_v τ| with proper acceleration a

α with ℏ�/(2πck_B)

Hawking radiation emerges similarly: black hole horizons are β-τ boundaries in constraint space, with
geometric temperature determined by surface gravity.

5C.10.4 Physical Constants

The mapping introduces physical constants:

ℏ�: relates constraint gradients to quantum scales

c: relates β-structure to τ-structure (maximum "velocity" in constraint space)

k_B: relates geometric factors to temperature

G: appears in consistency constraints (Einstein equations)

Distinguishability (axiom)
    ↓
Constraint space geometry
    ↓
Geometric Jacobson relation (N ≥ 3)
    ↓
Consistency constraints on geometry
    ↓
Large-N limit
    ↓
Thermodynamic interpretation
    ↓
Jacobson's argument
    ↓
Einstein field equations

G ​ =Unruh α∣∇ ​τ ∣ ↦v T ​ =U ​

2πck ​B

ℏa



The program: These constants should ultimately be derivable from constraint space geometry, not introduced
by hand. This remains future work.

5C.11 Relational Reinterpretation of Jacobson's Concepts

Jacobson's original derivation assumes spacetime exists and considers surfaces within it. The framework inverts
this: relational structure is primary, and Jacobson's concepts must be reinterpreted relationally. This section
provides that translation.

5C.11.1 Horizons as Correlation Boundaries

Jacobson's concept: A horizon is a causal boundary in spacetime—a surface beyond which events cannot
influence an observer.

Relational translation: A horizon is the boundary of what a feature can be correlated with.

For feature A in a configuration with N features:

The horizon is not a surface in a pre-existing space. It is the set of features with which A has zero correlation—
the limit of A's relational reach.

Why horizons exist: The monogamy constraint creates horizons:

A feature cannot be correlated with everything. Its finite correlation budget Λ enforces a boundary. Features
beyond this boundary are "outside A's horizon."

The Rindler horizon specifically:

Jacobson uses Rindler horizons—the causal boundaries experienced by accelerated observers. Relationally:

If A's correlations are restructuring rapidly (high d/dτ), A is "accelerating" through correlation space. A Rindler
horizon emerges when the restructuring rate exceeds what correlations can maintain—some features become
unreachable, forming a horizon.

5C.11.2 Area as Correlation Count

Jacobson's concept: The area A of a horizon surface, measured in Planck units.

Horizon ​ =A {X : λ ​ =AX 0}

​λ ​ ≤
X

∑ AX Λ

Acceleration ∼ ​

dτ

d(coupling structure)



Relational translation: Area counts the number of potential correlations at the horizon boundary.

The "area" of A's horizon is the count of correlation pairs at the edge of A's relational reach.

The Bekenstein-Hawking relation:

becomes:

Entropy is proportional to the number of boundary correlations. The factor 1/(4l_P²) converts between the
discrete count and continuous area measure at large N.

Why area, not volume: In container thinking, it seems strange that black hole entropy scales with area rather
than volume. Relationally, it is obvious: the horizon IS the boundary of correlations. What matters is the number
of correlations at that boundary, not the "interior."

5C.11.3 Flux as Coupling Energy Change

Jacobson's concept: Heat flux δQ—energy crossing the horizon surface.

Relational translation: There is no surface to cross. Flux is the change in coupling energy as correlations
restructure.

where E_AX is the energy associated with the A-X correlation.

The relational picture: As A's horizon shifts (correlations appear/disappear at the boundary), there is an energy
accounting. "Heat crossing the horizon" is the energy associated with correlations entering or leaving A's
relational reach.

This reframing eliminates the puzzle of how energy "crosses" a surface that isn't a physical barrier.

5C.11.4 Temperature as Gradient Ratio

Jacobson's concept: The Unruh temperature T = ℏa/(2πck_B) experienced by an accelerated observer.

Relational translation: Temperature measures the ratio of energy to Φ at the horizon:

A ​ =relational n ​ =boundary ∣{(A,X) : λ ​ at boundary}∣AX

S = ​

4l ​P
2

A

S ∝ n ​boundary

δQ ​ =A ​δ(λ ​ ⋅
X∈∂(Horizon ​)A

∑ AX E ​)AX



Equivalently, using the geometric factor G from Section 5C.7:

Physical meaning: Temperature quantifies how much the efficiency potential changes per unit energy at the
horizon. High temperature means many configurations are accessible per unit energy (Φ changes slowly). Low
temperature means few configurations per unit energy (Φ changes rapidly).

5C.11.5 Why Jacobson Works Better Relationally

Jacobson's derivation succeeds because it captures genuine structure. But it works more naturally in the
relational framework:

Issue In Jacobson (Spacetime) In Framework (Relational)

Horizon existence Assumed (Rindler construction) Derived (monogamy constraint)

Area-entropy relation Postulated (Bekenstein-Hawking) Natural (correlation counting)

Why area not volume? Mysterious Obvious (horizons ARE boundaries)

Heat flux meaning Energy crossing surface Coupling energy change

Temperature origin Unruh effect (QFT in curved spacetime) Geometric (τ-gradient at boundary)

Einstein equations Derived from δQ = TdS Derived from Φ-consistency

The key insight: Jacobson's argument doesn't require spacetime. It requires:

1. Boundaries with capacity (horizons with area/entropy)

2. Flux across boundaries (heat flow)

3. A consistency relation (δQ = TdS)

4. Universality (holds at all boundaries)

All of these exist in the relational framework without invoking spacetime. Spacetime emerges from requiring
this consistency at large N.

5C.11.6 Gravity as Correlation Consistency

Jacobson's conclusion: Einstein's equations are the condition for thermodynamic consistency.

T = ​ ​

∂Φ
∂E

horizon

​ =
T

1
G ​ =horizon α ⋅ ∣∇ ​τ ∣v



Relational translation: Gravity is not a force. It is the consistency requirement on the correlation field.

At large N, requiring:

Uniform G_N across all boundaries

δ(Φ-capacity) = G · δ(ρ-flux) everywhere

Smooth gradient structure

constrains the correlation geometry. These constraints, in the continuum limit, become Einstein's field equations
under the physical mapping.

Gravity emerges from distinguishability:

This is not gravity as a force acting in spacetime. It is gravity as the structure spacetime must have for the
underlying correlation field to be self-consistent.

5C.12 Summary: One Structure, Multiple Interpretations

5C.12.1 The Geometric Core

At all N ≥ 3, there exists a geometric relation:

relating ρ�-flux across boundaries to changes in Φ-capacity.

This relation:

Is purely geometric (Level 1-2)

Requires no thermodynamic interpretation

Holds exactly for each boundary

Constrains viable configurations through consistency

5C.12.2 The N-Progression

Axiom → Correlations → Monogamy/Horizons → Thermodynamic consistency → Einstein equa

​(∂S) =ρ G ​ ⋅N Δ ​(∂S)Φ



N Structure G_N Status Interpretation

2 No boundaries Undefined Pre-Jacobson

3 First boundaries Geometric constant Pure geometry

4-10 Multiple boundaries Constrained, varies Proto-thermodynamic

10-30 Many boundaries Approximately constant Statistical emergence

30+ Extensive boundaries Well-defined T Thermodynamic

∞ Continuum T everywhere Full Jacobson

5C.12.3 Two Routes to Temperature

1. Geometric route (Unruh-type): Available at any N via horizon structure and τ-gradients. No statistics
required.

2. Statistical route (Boltzmann-type): Emerges at large N through ensemble averaging. Full

thermodynamic interpretation.

Both routes converge in appropriate limits, but they are conceptually distinct.

5C.12.4 Maintaining Level Separation

The framework maintains strict separation:

Level 1-2 (Geometric):

Constraint space and its geometry

Features, boundaries, couplings

Φ, flux, capacity

Geometric factors G_N

Consistency constraints

Level 3 (Physical):

Spacetime interpretation

Energy, entropy, temperature

Einstein equations

Physical constants



Physical interpretation is a map from geometric structure, not an identification. The geometric structure exists
independently of whether we interpret it physically.

5C.13 Open Questions

1. Explicit G₃ calculation: What is G₃ for specific constraint space geometries? Can it be computed from
first principles?

2. Consistency constraint equations: What differential equations on constraint space geometry follow
from requiring consistent G_N? Are they equivalent to Einstein's equations under the physical mapping?

3. The N = 5 special case: With 5 constraints and 5 features, is there special structure? The 15 boundaries at
N = 5 match certain dimensional counts in Cl(5).

4. Quantum corrections: At small N, should there be "quantum corrections" to the Jacobson relation? What

form do they take?

5. Holographic aspects: The boundary-bulk structure suggests connections to holography. Is there a

holographic interpretation of the geometric Jacobson relation?

6. Cosmological implications: What does the framework say about cosmological horizons and de Sitter
temperature?
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Appendix 5C.A: Entropy Disambiguation Reference

Clausius Entropy (1865)

Definition: dS = δQ_rev/T for reversible heat transfer

Domain: Classical thermodynamics, heat engines

Requirements: Temperature defined, reversible process

Dimension: Energy/Temperature (J/K)

Boltzmann Entropy (1877)

Definition: S = k_B ln W where W = number of microstates

Domain: Statistical mechanics, equilibrium systems

Requirements: Well-defined microstates, equilibrium

Dimension: Energy/Temperature (J/K), or dimensionless without k_B

Gibbs Entropy (1902)

Definition: S = -k_B Σᵢ pᵢ ln pᵢ over probability distribution

Domain: Statistical ensembles

Requirements: Probability distribution defined

Dimension: Energy/Temperature (J/K)

Shannon Entropy (1948)

Definition: H = -Σᵢ pᵢ log₂ pᵢ

Domain: Information theory, communication

Requirements: Probability distribution over messages

Dimension: bits (dimensionless)

Von Neumann Entropy (1932)

Definition: S = -Tr(ρ� ln ρ�) for density matrix ρ�

Domain: Quantum systems



Requirements: Density matrix defined

Dimension: Dimensionless (or with k_B: J/K)

Special property: Zero for pure states

Bekenstein-Hawking Entropy (1973-1975)

Definition: S = A/(4l_P²) = Ac³/(4Gℏ)

Domain: Black holes

Requirements: Event horizon with area A

Dimension: Dimensionless (or with k_B: J/K)

Special property: Proportional to area, not volume

Kolmogorov Complexity (1965)

Definition: K(x) = length of shortest program producing x

Domain: Computation, algorithmic information

Requirements: Universal Turing machine

Dimension: bits

Special property: Incomputable

Appendix 5C.B: Boundary Counting

General Formula

For N distinguishable features, the number of distinct boundaries (non-trivial partitions up to complement) is:

Derivation: Total partitions into two non-empty sets is 2^N - 2 (excluding empty/full). Dividing by 2 for
complement symmetry: (2^N - 2)/2 = 2^(N-1) - 1.

Table of Values

B ​ =N 2 −N−1 1



N B_N Partition types

2 1 {A} vs {B} only

3 3 1v2 (×3)

4 7 1v3 (×4), 2v2 (×3)

5 15 1v4 (×5), 2v3 (×10)

6 31 1v5 (×6), 2v4 (×15), 3v3 (×10)

7 63 1v6, 2v5, 3v4

10 511 Multiple types

20 524,287 Multiple types

Consistency Constraints

Requiring uniform G_N across all boundaries imposes B_N - 1 constraints. These grow exponentially with N,
making large-N configurations increasingly constrained.


