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Supporting Information: Bridge to Physical Formalism

Section 5 Addendum B: Indivisible Stochastic Processes Correspondence

5B.1 Introduction

Section 5 of the main text identifies structural parallels between our constraint framework and Barandes'
reformulation of quantum mechanics in terms of indivisible stochastic processes. This addendum develops those
parallels mathematically, proposing a specific mapping between our N-dependence structure and Barandes'

divisibility criterion.

The Central Claim: The transition from N =2 to N > 3 in our framework corresponds to the transition from
structurally pre-divisible to divisibility-testable regimes in Barandes' framework. Furthermore, the pattern

constraint k quantifies the degree of indivisibility—the "quantumness"—of a configuration.

Significance: Both frameworks share a crucial philosophical commitment: quantum mechanical structure
(Hilbert spaces, wavefunctions, superposition) is not fundamental but emergent from more primitive structure.

If the correspondence holds:

1. Our geometric framework provides a spatial/relational grounding for Barandes' temporal/stochastic
structure

2. The quantum-classical transition becomes a geometric phase transition in constraint space

3. Decoherence acquires a precise geometric meaning as emergence of divisibility

5B.2 Review of Indivisible Stochastic Processes

5B.2.1 Classical Stochastic Processes

A classical (textbook) stochastic process describes a system evolving probabilistically through a configuration

space. The dynamics are specified by transition matrices:
Lij(t < to) = P(X; = i| Xy, = J)

giving the probability of being in state i at time t given state j at time to.
Stochastic matrix properties:

e All entries non-negative: I[;;> 0

e Columns sum to unity: Z; I'jj=1



5B.2.2 The Divisibility Condition

A stochastic process is divisible if for any intermediate time t' between to and t:
T(t<ty) =T« t) Tt < ty)
This says: to get from to to t, we can always factor through any intermediate time t'. The process has no

"memory" of how it reached t—only the state at t' matters.

Markov processes satisfy divisibility. They obey the Chapman-Kolmogorov equation and have well-defined
instantaneous transition rates.
5B.2.3 Indivisible Stochastic Processes

Barandes defines an indivisible stochastic process as one that fails the divisibility condition. Given I'(t «<— to), if

we attempt to define an intermediate transition matrix:
D(t—t)=T(t < to) - Tt + to)

the result generically fails to be a valid stochastic matrix. Specifically, I' will have negative entries—it

becomes a "pseudo-stochastic matrix."

Why negative entries? The inverse of a stochastic matrix is only stochastic if both are permutation matrices
(containing only Os and 1s). For matrices with genuine probabilities (entries strictly between 0 and 1), the

inverse necessarily has negative entries.

Physical interpretation: Negative "probabilities" signal that the intermediate factorization is unphysical. The
process genuinely cannot be divided—it is indivisible.
5B.2.4 The Stochastic-Quantum Correspondence

Barandes' central result: quantum systems are indivisible stochastic processes.
The correspondence works as follows:

o Configuration space states <> measurement outcomes
e Transition matrices I" <> constructed from Born rule probabilities
e Indivisibility <> quantum coherence/interference

e Division events <> measurements/decoherence



Hilbert space emergence: In this view, Hilbert spaces and wavefunctions are not fundamental ontology but
convenient mathematical tools ("appurtenances") for computing the transition matrices of indivisible stochastic

Processes.

5B.2.5 Non-Markovian Realizers

A given indivisible stochastic process admits multiple "non-Markovian realizers"—ways of embedding the
indivisible dynamics into a larger Markovian framework via hidden variables or environmental coupling. These
realizers form an equivalence class; the physical predictions depend only on the equivalence class, not the

specific realizer.

This parallels our framework's treatment of Hidden Markov Models: the observed non-Markovian behavior

emerges from Markovian dynamics in a higher-dimensional space with restricted observer access.

5B.3 The N-Dependence Mapping

5B.3.1 N = 2: Pre-Divisibility Regime

In our framework, N = 2 configurations involve exactly two features A and B. The fundamental limitation:
there is no intermediate feature C through which to factor.

The divisibility question asks: "Can transition A — B be factored through intermediate C?"

At N = 2, this question is structurally meaningless—not because the answer is "no," but because the question

cannot be posed. There is no C.

Analogy: Asking whether a two-point set is "connected" or "disconnected" is meaningless—connectedness

requires at least the possibility of intermediate points.

Claim: The N = 2 regime is pre-divisibility: prior to the structure needed to define divisibility at all.

5B.3.2 N > 3: Divisibility Becomes Testable

At N >3, we have at least three features A, B, C. Now we can meaningfully ask:
"Can the coupling structure A <> B be factored through C?"

In matrix terms: given coupling matrices M*(AB), M*(BC), M*(CA), can we write:

M(?fB) _ f(M(AC),M(CB))

for some composition function f that preserves the "stochastic" properties of couplings?



The generic answer is no. This is the content of Theorem 3 in SI: Circulation Proof—three symmetric matrices

generically cannot be simultaneously diagonalized.

5B.3.3 The Correspondence Table

Our Framework Barandes' Framework

N = 2 configuration Pre-divisibility regime

N = 3 configuration Divisibility-testable regime

Coupling matrix M"(af3) Transition matrix I'(f « o)

Simultaneous diagonalizability Divisibility

Generic non-diagonalizability Indivisibility

Circulation C#0 Pseudo-stochastic intermediate

K (pattern constraint) Degree of indivisibility

T (ordering constraint) Temporal structure enabling division events

5B.4 Mathematical Correspondence

5B.4.1 Coupling Matrices as Transition Structures

In our framework, the coupling matrix M"(af3) characterizes the relationship between features a and f3:

M(aﬂ) . 62(bint
T ac@ac?)
i J

In Barandes' framework, the transition matrix I'(B «— a) characterizes the stochastic evolution from state o to
state [3.
The structural parallel:

e Both are matrices encoding pairwise relationships
e Both satisfy certain positivity/normalization conditions in physical regimes

¢ Both compose via matrix multiplication for sequential relationships



Proposed identification: Under appropriate normalization and positivity constraints:
T'(8 + o) ~ exp(—M @A) /T)

where T is a "temperature" parameter controlling the sharpness of transitions. This exponential map converts

coupling strengths to transition probabilities, analogous to Boltzmann factors.

5B.4.2 Divisibility and Simultaneous Diagonalization

Barandes' divisibility criterion:
T(t<ty) =T« t) Tt < ty)

is satisfiable with valid (non-negative) intermediate I'(t «— t').
Our framework's analog:

For three features A, B, C, consider whether:
M AC M AB M BC

for some "consistent" composition g.
Theorem (Divisibility-Diagonalization Correspondence):

If MNAB), MNBC), MNCA) are simultaneously diagonalizable, then the coupling structure is divisible in the
sense that transitions factor through any intermediate feature. If they are not simultaneously diagonalizable

(generic case), the structure is indivisible.
Proof sketch:

In the simultaneously diagonalizing basis, each coupling matrix is diagonal:
. af af
M = diag(p{™”, ..., u™”)

Transitions in each constraint dimension decouple. The composed transition A — B — C factors:

AC AB BC
) = A



(or multiplicatively for the exponentiated transition matrices). Each dimension evolves independently—perfect

divisibility.

When simultaneous diagonalization fails, the dimensions couple. Transition A — C through B generates "cross-
terms" that cannot be absorbed into a simple A — C coupling. The intermediate I'(C < B) would require these

cross-terms, which manifest as negative entries. ®

5B.4.3 Commutators and Indivisibility

The failure of simultaneous diagonalization is measured by commutators:
[M(AB), M(BC)] — M(AB)M(BC) . M(BC)M(AB)

Non-zero commutator implies indivisibility.
Definition (Indivisibility Measure):

For an N-feature configuration with N > 3, define:

1 e
Ty=—— 3 M), M)
triangles a8y

where:

e L N=C(N,3)is the number of triangles

e |I|_F is the Frobenius norm: ||A]|_F = V(Tr(AtA))

Properties of I_N:

e | N=0atN=2 (vacuously—mno triangles exist)
e [ N=0iff all coupling matrices commute (divisible case)

e I N> 0 generically for N > 3 (indivisible case)

5B.4.4 Relation to Circulation

The commutator structure connects to the circulation integral of SI: Circulation Proof.

Proposition: The indivisibility measure I N is related to the average absolute circulation:



1
T~ 1= O 1)

triangles

Proof sketch: The circulation around a triangular loop involves the curl of the gradient field, which in turn
depends on the non-commutativity of the coupling structure. The Frobenius norm of the commutator and the
circulation magnitude both measure "how far" the structure is from being simultaneously

diagonalizable/conservative. m

This establishes: Circulation (SI.1-8) and indivisibility (Barandes) are two manifestations of the same

geometric structure.

5B.5 The Pattern Constraint k as Indivisibility

5B.5.1 Reinterpreting k

The pattern constraint k was introduced as measuring "structural complexity" or "non-factorizability" of a
p g p y y

configuration. The Barandes correspondence gives this a precise meaning:
k measures the degree of indivisibility of the configuration.
High « configurations:

e Have complex, non-factorizable correlations
e Cannot be divided through intermediate features
e Exhibit quantum-like coherence

e Have non-commuting coupling matrices

Low « configurations:

e Have simple, factorizable structure
e Can be approximately divided
e Exhibit classical-like behavior

e Have approximately commuting couplings

5B.5.2 Formal Definition

Definition (k as Normalized Indivisibility):



where I N”(max) is the maximum indivisibility achievable for the given configuration geometry.
Properties:

e x€]0,1]

e k=0 implies divisibility (classical limit)

e k=1 implies maximal indivisibility (maximally quantum)

5B.5.3 k at Different N

N = 2: « is not defined via indivisibility (no triangles). However, k can still be non-zero, measuring internal
structure of the two-feature coupling. This is the "pure quantum" regime—maximally non-factorizable because

factorization isn't even structurally possible.
N = 3: First regime where k-as-indivisibility is well-defined. Generic configurations have k > 0.

Large N: « can vary continuously. Environmental averaging tends to reduce k toward zero (decoherence).

5B.5.4 Comparison with Barandes' Criteria
Barandes characterizes indivisibility via:
1. Negative entries in would-be intermediate transition matrices

2. Failure of the divisibility equation

3. Equivalence classes of non-Markovian realizers

Our « characterizes indivisibility via:

1. Non-commutativity of coupling matrices
2. Failure of simultaneous diagonalization

3. Non-zero circulation around feature triangles

Claim: These are equivalent characterizations. The negative entries in Barandes' framework correspond to the

"imaginary" components that arise when trying to factor non-commuting matrices.




5B.6 Decoherence as Emergence of Divisibility

5B.6.1 The Decoherence Problem

Quantum systems appear to "decohere" when interacting with environments—Ilosing quantum coherence and

becoming classical. In Barandes' framework, this corresponds to the emergence of (approximate) divisibility.

Our framework provides a geometric picture of this process.

5B.6.2 Environmental Coupling

Consider a system S with N_S features coupled to an environment E with N_E features. The total configuration
has N=N S+ N _E features.

The full coupling structure involves:

e Internal system couplings: M"(af}) for a, p € S
e Internal environment couplings: M*(af) for a, p € E

e System-environment couplings: M*(af) fora € S, € E

5B.6.3 Tracing Out the Environment

The effective system dynamics involves "tracing out" the environment:

A

e

where T _E denotes an appropriate marginalization/averaging over environmental features.

Key result: As N _E — oo, the effective system coupling M"(S) eff becomes approximately diagonal.

5B.6.4 The Law of Large Numbers Argument

Theorem (Emergent Divisibility):

For a system S coupled to an environment E with N_E features, as N_E — o, the effective indivisibility measure

approaches zero:

. (S) _
lim If =

e
Ng—o0

almost surely, under generic coupling assumptions.



Proof sketch:

The off-diagonal elements of M~(S)_eff arise from system-environment couplings mediated through different

environmental features. For large N_E, these contributions are:

1. Numerous (scaling as N_E)
2. Quasi-independent (different environmental features)

3. Randomly signed (no preferred alignment)

By the law of large numbers, the sum of many quasi-independent, randomly-signed terms averages to zero. The

off-diagonal elements of M~(S) eff vanish, leaving a diagonal (divisible) structure. m

Physical interpretation: Decoherence is the emergence of divisibility through environmental averaging. The

environment provides sufficiently many "intermediate features" that effective factorization becomes possible.

5B.6.5 Decoherence Rate

The rate of decoherence should scale with:
SE) |2
Yaee ~ Ng - (| MED|?)

where the average is over system-environment couplings.

Prediction: Decoherence rate is proportional to the number of environmental features times the average
coupling strength squared. This is consistent with standard decoherence theory but provides geometric
grounding.

5B.6.6 The k-Decoherence Relation

As the system decoheres:

m(?}(t)—>0 as t— oo

e

The effective pattern constraint decreases, signaling the quantum-to-classical transition.

Quantitative prediction: The decay of « should follow:
k(t) = Ko - e dec't

with the decoherence rate y dec determined by environmental coupling as above.



5B.7 Hilbert Space Emergence

5B.7.1 The Shared Commitment

Both frameworks reject Hilbert space as fundamental ontology:

Barandes: "Hilbert spaces of quantum theory and their ingredients, including wave functions, can be relegated

to secondary roles as convenient mathematical appurtenances."

Our framework: Quantum structure emerges from the geometry of N = 2 configurations in constraint space.
Hilbert space is a description of bivector structure, not fundamental reality.
5B.7.2 From Indivisibility to Hilbert Space

Barandes shows how Hilbert space emerges from indivisible stochastic structure:

1. Start with configuration space and transition matrices
2. Indivisibility prevents classical probabilistic description
3. The mathematical tool that captures indivisible dynamics is... Hilbert space

4. Wavefunctions encode the structure needed to compute transition probabilities

The Hilbert space is not "where the system lives" but a mathematical device for tracking indivisible
correlations.
5B.7.3 From Constraint Geometry to Hilbert Space

In our framework:

1. Start with constraint space and coupling matrices
2. At N =2, the configuration is a bivector in CI(5)
3. The bivector space has dimension 10 (see SI: Geometric Algebra Foundations)

4. This space, with appropriate inner product, becomes a Hilbert space

The bivector space IS the emergent Hilbert space.

5B.7.4 Dimension Matching

The bivector space of CI(5) has dimension C(5,2) = 10.



This suggests that the "natural" Hilbert space dimension arising from our 5-constraint structure is 10-

dimensional—or factors thereof.
Speculative connection:

e Spin-1/2: 2-dimensional Hilbert space = dimension of a single constraint's bivector subspace?
e Spin-1: 3-dimensional = ...?

e The standard model's structure might reflect the geometry of CI(5) bivectors.

This is highly speculative but suggests avenues for investigation.

5B.7.5 Hilbert Space Dilation

Barandes introduces "Hilbert space dilation"—extending the Hilbert space to accommodate additional structure

like spin. In our framework, this corresponds to:
Moving from bivector (grade-2) to higher-grade structures.

The full 32-dimensional CI(5) algebra provides ample room for dilation. Different grades might correspond to

different types of quantum numbers.

5B.8 Emergeables and the Constraint Hierarchy

5B.8.1 Barandes' Emergeables

Barandes introduces emergeables: quantities that emerge from patterns in stochastic dynamics but don't exist at

the configuration space level.
Examples:

e Spin: Not a configuration space property; emerges via Hilbert space dilation
e Interference patterns: Emerge from indivisible dynamics

e Entanglement measures: Emerge from multi-system correlations

These are "real" in the sense of being measurable, but "derivative" in the sense of not being fundamental.

5B.8.2 Constraints as Mid-Level Emergeables

In our framework, the five constraints might themselves be emergeables from a more fundamental level:

Most fundamental: Pure distinguishing relations (the axiom ON — —N)



First emergence: The five constraints (B, «, p, A, T) as necessary conditions for mutual distinguishability
Second emergence: Quantum observables (at N = 2) and classical observables (at large N)

The constraints are "more fundamental" than quantum mechanics but "less fundamental" than pure relational

structure.

5B.8.3 The Full Emergence Hierarchy

-
Level 0: Axiom (ON — —N)

l

Level 1: Distinguishing relations

!

Level 2: Five constraints (B, K, p, A, T)
!
Level 3a: Indivisible structure (N = 2, high k) — Quantum observables
Level 3b: Divisible structure (large N, low k) — Classical observables
!

Level 4: Thermodynamic quantities (@ in large-N limit)

!

Level 5: Spacetime geometry (from B, T structure)

\

Each level emerges from the one below but has genuine causal/explanatory power at its own level.

5B.8.4 Comparison of Emergence Structures

Barandes Our Framework
Configuration space Constraint space

Stochastic dynamics Gradient flow dynamics
Indivisibility High « / non-diagonalizability
Hilbert space Bivector structure of CI(5)
Wavefunctions Constraint configuration vectors

Emergeables Higher-level constraints / observables




5B.9 Predictions and Open Questions

5B.9.1 Testable Predictions

Prediction 1: Indivisibility Threshold

There should exist a critical value k_c such that:

e k>«k_c: System exhibits quantum behavior (indivisible)

e Kk <k c: System exhibits classical behavior (divisible)

This threshold should be calculable from constraint geometry, possibly related to the viable region boundary.
Prediction 2: N-Scaling of Decoherence

Decoherence rate should scale as:

Ydec X N,

env

with exponent a determined by the geometry of system-environment coupling. Standard decoherence theory
suggests o = 1; our framework might modify this in specific regimes.

Prediction 3: Geometric Signature of Quantumness

A system's "quantumness" (amenability to quantum computation, interference visibility, etc.) should correlate
with its indivisibility measure I N, which is computable from coupling matrices.

Prediction 4: Division Events as N-Transitions

Barandes' "division events" (moments when new divisibility structure emerges) should correspond to effective

changes in N—environmental features entering or leaving the relevant coupling structure.

Measurement is an N-transition: the apparatus features couple to the system, changing effective N and inducing
divisibility.

5B.9.2 The Quantum-Classical Boundary

The correspondence suggests that the quantum-classical boundary is not:

e A matter of size (large # classical)
e A matter of complexity (complex # classical)

¢ Fundamentally fuzzy or conventional



Rather, it is:

e A geometric phase transition in constraint space
e Characterized by the divisibility/indivisibility threshold

e Sharp in principle, though practically gradual due to environmental averaging

5B.9.3 Open Questions

Q1: What is the precise mathematical map between constraint coupling matrices and Barandes' transition

matrices?

Q2: Can we derive the Born rule from constraint geometry, given that Barandes derives it from indivisible

stochastic structure?

Q3: How do specific quantum systems (hydrogen atom, harmonic oscillator, spin chains) map to specific

configurations in constraint space?

Q4: Is there a constraint-geometric interpretation of quantum field theory, where field configurations replace

particle configurations?

QS5: Can the correspondence be extended to Barandes' treatment of gauge symmetries and CPT?

5B.10 Summary

Main Result: The N-dependence structure of our framework corresponds to the divisibility structure of

Barandes' indivisible stochastic processes:

Our Framework Barandes

N=2 Pre-divisibility

N > 3, generic Indivisible (quantum)
Large N, averaged Divisible (classical)

K Indivisibility measure

T emergence (N > 3) Division events possible

Significance:



1. Shared ontology: Both reject Hilbert space fundamentalism; quantum structure emerges from deeper

relational/stochastic structure.

2. Geometric grounding: Our framework provides spatial/relational foundations for Barandes'

temporal/stochastic structure.

3. Unified decoherence: Quantum-to-classical transition is geometrically characterized as emergence of

divisibility through environmental coupling.

4. Predictive power: The correspondence suggests testable predictions about the quantum-classical

boundary.

Status: The correspondence is structural and motivated but not rigorously proven. Establishing the precise

mathematical mapping is future work.
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Appendix 5B.A: Pseudo-Stochastic Matrices

Definition

A pseudo-stochastic matrix is a real matrix with:

e Columns summing to 1

e At least one negative entry

Pseudo-stochastic matrices arise when attempting to "invert" stochastic evolution.

The Inversion Problem

Theorem: Let I' be a stochastic matrix that is not a permutation matrix. Then I'"! (if it exists) has at least one

negative entry.



Proof: Let I' and I'"! both have non-negative entries. Since I'T™! = I, each row of I must be orthogonal to all but
one column of I'"'. For non-negative matrices, orthogonality requires disjoint support. This forces I" to be a

permutation matrix. m

Physical Interpretation

Negative "probabilities" in pseudo-stochastic matrices signal that the physical process cannot be factored as

assumed. The negativity is not a failure of mathematics but a feature indicating indivisibility.

Appendix 5B.B: Commutators and the Frobenius Norm

The Frobenius Norm

For a matrix A, the Frobenius norm is:

|A||lp = 1/ Tr(AtA) =

Properties:

e ||A|_F >0, with equality iff A=0
o |loA[_F =la| - [|A]_F
e ||A+BJ||_F<||A||_F +|B||_F (triangle inequality)

« |AB|| F<|A|_F - |B|_F (submultiplicativity)

Commutator Norm as Non-Commutativity Measure

For matrices A and B:
1[4, B]||r = [[AB — BA||p

This is:
e Zero iff A and B commute

e Bounded by 2||A||_F - ||B||

o]

e Basis-independent



The commutator norm measures "how non-commutative" two matrices are—equivalently, how far they are

from being simultaneously diagonalizable.

Relation to Simultaneous Diagonalizability
Theorem: Symmetric matrices A and B are simultaneously diagonalizable if and only if [A, B] = 0.

Proof: (=) If P diagonalizes both, then PAP~' and PBP! are diagonal, hence commute. Thus AB = BA.

(&) If [A, B] =0, then B preserves eigenspaces of A. Restricted to each eigenspace of A, B can be diagonalized.

The combined eigenbasis diagonalizes both. m



