
Supporting Information: Bridge to Physical Formalism

Section 5 Addendum A: Causal Fermion Systems Correspondence

5A.1 Introduction

Section 5 of the main text identifies structural parallels between our constraint framework and Finster's Causal
Fermion Systems (CFS). This addendum develops those parallels mathematically, proposing a specific mapping
between the five constraints and the algebraic structure of CFS operator products.

The Central Claim: The five constraints (β, κ, ρ, λ, τ) correspond to the five grade components of operator
products in CFS when decomposed via the natural Clifford algebra structure of the spin spaces.

If correct, this correspondence would:

1. Ground our abstract constraints in rigorous mathematical physics

2. Inherit CFS's derivations of spacetime geometry

3. Provide a route to quantitative predictions

4. Unify the philosophical framework with established formalism

5A.2 Review of Causal Fermion Systems

5A.2.1 Basic Definitions

A causal fermion system (H, F, ρ) consists of:

H: A separable complex Hilbert space

n: The "spin dimension" (n = 2 for physical spacetime)

F: The set of self-adjoint operators on H with at most n positive and n negative eigenvalues

ρ: A measure on F (the "universal measure")

Spacetime emergence: Spacetime M is defined as the support of ρ:

Points of spacetime are operators, not primitive locations.

M := supp(ρ) ⊂ F
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5A.2.2 The Spin Space

For each x ∈ M, the spin space S_xM is defined as the image of x:

For regular points (maximal rank), dim(S_xM) = 2n. For n = 2 (physical case), dim(S_xM) = 4.

The spin space carries an inner product ≺·|·≻_x of signature (n, n) = (2, 2), defined by:

5A.2.3 The Operator Product and Causal Structure

For two spacetime points x, y ∈ M, the operator product xy is a linear map. Its eigenvalues λ₁, ..., λ₂ₙ
determine the causal relationship:

Causal Relation Eigenvalue Condition

Spacelike All

Timelike All λᵢ real, not all

Lightlike Otherwise

5A.2.4 The Antisymmetric Functional (Time Direction)

Finster defines the directional functional:

where π_x, π_y are spectral projectors. This satisfies:

The sign of C(x,y) determines which direction is "future": y is in the future of x if C(x,y) > 0.

5A.3 Clifford Structure in CFS

S ​M :=x x(H)

≺ u∣v ≻ ​x= −⟨u∣xv⟩ ​H

C(x, y) = i ⋅ Tr yxπ ​π ​ − xyπ ​π ​( y x x y)

C(x, y) = −C(y,x)



5A.3.1 Clifford Subspaces

Finster's Definition 3.2 introduces Clifford subspaces: subspaces K ⊂ Symm(S_xM) satisfying:

for all u, v ∈ K. This is precisely the defining relation of a Clifford algebra. The spin space S_xM with signature
(2,2) naturally carries the structure of Cl(2,2).

5A.3.2 The Algebra Cl(2,2)

The Clifford algebra Cl(2,2) has:

Four generators {γ⁰, γ¹, γ², γ³} with (γ⁰)² = (γ¹)² = +1 and (γ²)² = (γ³)² = -1

Total dimension 2⁴ = 16

Isomorphism: Cl(2,2) ≅ M₄(ℝ), the 4×4 real matrices

Any 4×4 matrix (including operator products xy restricted to spin spaces) decomposes into Clifford grades.

5A.3.3 The Five Grades

The grade decomposition of Cl(2,2):

Grade Name Dimension Basis Elements Symmetry

0 Scalar 1 𝟙 Symmetric

1 Vector 4 γ^μ Mixed

2 Bivector 6 γ^μγ^ν (μ < ν) Antisymmetric

3 Pseudovector 4 γ^μγ⁵ Mixed

4 Pseudoscalar 1 γ⁵ = γ⁰γ¹γ²γ³ Symmetric

Here γ⁵ is the pseudoscalar (volume element).

Key observation: There are exactly 5 grades, matching our 5 constraints.

​{u, v} =
2
1

⟨u, v⟩1



5A.4 The Proposed Correspondence

5A.4.1 Grade Decomposition of the Operator Product

For spacetime points x, y ∈ M, let P(x,y) denote the kernel of the fermionic projector restricted to spin spaces.
This is a 4×4 matrix (for n = 2) and decomposes as:

where ⟨P⟩_k denotes the grade-k component.

5A.4.2 The Five-Constraint Mapping

We propose:

Constraint Symbol CFS Grade Component Expression

Resource ρ Grade 0 (scalar) ⟨P(x,y)⟩₀ = ¼ Tr(P)

Boundary β Grade 1 (vector) |⟨P(x,y)⟩₁|

Pattern κ Grade 2 (bivector) |⟨P(x,y)⟩₂|

Ordering τ Grade 3 (pseudovector) ⟨P(x,y)⟩₃ (signed)

Integration λ Grade 4 (pseudoscalar) |⟨P(x,y)⟩₄|

Critical distinction: τ retains its sign (chirality matters for ordering), while β, κ, λ take magnitudes (only the
strength matters, not orientation).

5A.4.3 Extraction Formulas

The grade components can be extracted using the Clifford basis:

Grade 0 (scalar):

Grade 1 (vector):

P (x, y) = ⟨P ⟩ ​ +0 ⟨P ⟩ ​ +1 ⟨P ⟩ ​ +2 ⟨P ⟩ ​ +3 ⟨P ⟩ ​4

⟨P ⟩ ​ =0 ​Tr(P ) ⋅
4
1

1



Grade 2 (bivector):

Grade 3 (pseudovector):

Grade 4 (pseudoscalar):

5A.5 Justification of the Mapping

5A.5.1 Why τ ↔ Grade 3?

Claim: The ordering constraint τ corresponds to the pseudovector (grade-3) component.

Evidence:

1. Antisymmetry: Finster's C(x,y) = -C(y,x). Pseudovectors are antisymmetric under reversal.

2. Chirality: In our GA framework (SI: Geometric Algebra Foundations), τ > 0 requires trivector structure

—grade 3. The CFS grade-3 component is the natural correspondent.

3. Duality: In 4D, grade-3 (pseudovector) is dual to grade-1 (vector). Time direction (grade 3) is dual to

spatial direction (grade 1). This matches β ↔ grade 1.

4. Explicit form: Finster's C(x,y) involves the commutator structure [xy, yx] projected appropriately.

Commutators extract antisymmetric (odd-grade) parts, with grade-3 dominant for the time-ordering
structure.

⟨P ⟩ ​ =1 ​ ​ Tr(Pγ ) ⋅
4
1

μ

∑ μ γ ​μ

⟨P ⟩ ​ =2 ​ ​ Tr(Pγ γ ) ⋅
4
1

μ<ν

∑ μ ν γ ​γ ​μ ν

⟨P ⟩ ​ =3 ​ ​ Tr(Pγ γ ) ⋅
4
1

μ

∑ μ 5 γ ​γ ​μ 5

⟨P ⟩ ​ =4 Tr(Pγ ) ⋅
4
1 5 γ5



5A.5.2 Why ρ ↔ Grade 0?

Claim: The resource constraint ρ corresponds to the scalar (grade-0) component.

Evidence:

1. Conservation: Scalars are invariant under Lorentz transformations. Energy (which ρ maps to in physics)
is the time-component of a 4-vector, but total energy is a scalar.

2. Trace: The scalar part is Tr(P)/4. The trace of the fermionic projector relates to particle number/energy
density.

3. Coupling strength: The scalar component measures overall coupling magnitude between x and y,
independent of directional structure. This matches ρ as "capacity" or "substrate."

5A.5.3 Why β ↔ Grade 1?

Claim: The boundary constraint β corresponds to the vector (grade-1) component.

Evidence:

1. Spatial structure: Vectors encode directional information. The grade-1 component of P(x,y) encodes the

"direction" from x to y in constraint space.

2. Metric connection: Finster constructs the metric (spatial distances) from vector-type structures in the

spin connection. β maps to spatial structure in our framework.

3. Causal separation: The magnitude of the vector component relates to how "separated" x and y are—
larger |⟨P⟩₁| indicates stronger spatial distinguishability.

5A.5.4 Why κ ↔ Grade 2?

Claim: The pattern constraint κ corresponds to the bivector (grade-2) component.

Evidence:

1. Spin structure: Bivectors generate rotations/boosts. In quantum mechanics, spin is described by
bivector-valued objects (Pauli matrices are bivectors in the spacetime algebra).

2. Coherence: Quantum coherence involves phase relationships, which transform under rotations. The
bivector component encodes rotational/phase structure.

3. N = 2 structure: At N = 2 (our quantum regime), the dominant structure is bivector—matching κ being
"maximal" at N = 2.



5A.5.5 Why λ ↔ Grade 4?

Claim: The integration constraint λ corresponds to the pseudoscalar (grade-4) component.

Evidence:

1. Topological: The pseudoscalar γ⁵ encodes global orientation/handedness. Integration (λ) measures global
coherence spanning features.

2. Non-local: The pseudoscalar is the only grade that is simultaneously "everywhere" (it doesn't pick out a
direction). This matches λ as non-local correlation.

3. Determinant relation: The pseudoscalar component relates to det(P). The determinant measures "total
enclosed volume" in a global sense.

5A.6 Consistency Checks

5A.6.1 Dimensional Counting

Our framework: 5 constraints
CFS grades: 5 grades (0, 1, 2, 3, 4)

The count matches.

5A.6.2 Signature Compatibility

Our framework (from SI: Geometric Algebra):

Cl(5) or Cl(4,1) as constraint algebra

τ possibly timelike (opposite signature)

CFS:

Cl(2,2) on spin spaces

Signature (2,2) matches Dirac spinor structure

Connection: Cl(4,1) contains Cl(2,2) as a subalgebra (via restriction to 4 generators with appropriate
signature). The 5th constraint dimension may correspond to the "extra" structure beyond spacetime.

5A.6.3 Causal Structure Agreement

CFS: Causal relations (timelike/spacelike/lightlike) from eigenvalue patterns of xy.



Our framework: Causal structure from τ > 0 at N ≥ 3.

Consistency: Both derive causality from algebraic structure of operator/constraint relationships, not from
assumed spacetime. The specific conditions should align when the mapping is made precise.

5A.6.4 Time Direction Agreement

CFS: Future direction from sign of C(x,y).

Our framework: Forward direction from gradient of Φ (Φ-direction).

Consistency: Both determine direction from asymmetric structure. The mapping τ ↔ ⟨P⟩₃ should satisfy:

when both are computed for corresponding configurations.

5A.7 The Operator Product Invariants

5A.7.1 Alternative Characterization

The operator product xy (as a 4×4 matrix for n = 2) has characteristic polynomial:

The coefficients I₁, I₂, I₃, I₄ are invariants:

I₁ = Tr(xy)

I₂ = ½[Tr(xy)² - Tr((xy)²)]

I₃ = ⅙[Tr(xy)³ - 3Tr(xy)Tr((xy)²) + 2Tr((xy)³)]

I₄ = det(xy)

Adding C(x,y) gives a 5th independent quantity characterizing the x-y relationship.

5A.7.2 Relation to Grade Decomposition

The invariants {I₁, I₂, I₃, I₄, C} are related to but not identical with the grade decomposition {⟨P⟩₀, |⟨P⟩₁|, |⟨P⟩₂|,
⟨P⟩₃, |⟨P⟩₄|}.

The grade decomposition is more fundamental because:

sgn(τ) = sgn(C(x, y))

det(xy − λ1) = λ −4 I ​λ +1
3 I ​λ −2

2 I ​λ +3 I ​4



1. It respects the Clifford algebra structure

2. It separates components by transformation properties

3. It connects directly to physical interpretations (scalar, vector, etc.)

The polynomial invariants mix grades in complicated ways. The grade decomposition provides cleaner physical
correspondence.

5A.8 Implications of the Correspondence

5A.8.1 Inherited Results

If the correspondence holds, our framework inherits from CFS:

1. Lorentzian geometry emergence: CFS proves that Lorentzian manifold structure emerges in appropriate

limits. This grounds our claim that spacetime emerges from constraint geometry.

2. Dirac equation: CFS derives the Dirac equation from the causal action principle. This connects our κ

constraint to quantum spinor dynamics.

3. Einstein equations: CFS derives (in limiting cases) the Einstein field equations. This grounds our claim
that gravity emerges from β-ρ coupling.

4. Regularization: CFS handles non-smooth and discrete structures via the universal measure. This
provides tools for our framework at small N.

5A.8.2 Novel Predictions

The correspondence suggests predictions testable within CFS formalism:

1. Grade correlations: The five grade components should show correlation patterns matching our
constraint knockout experiments.

2. N-dependence: At N = 2 (two spacetime points), grade-3 should vanish or be structurally constrained. At

N ≥ 3, grade-3 should be generically non-zero.

3. Optimization principle: Our Φ = ln(Ω/K) should relate to Finster's causal action. Specifically:

where the causal Lagrangian is (minus) our potential.

5A.8.3 Open Questions

L[xy] ∼ −Φ(C ,C )(x) (y)



1. Exact mapping: What is the precise formula relating constraint vectors C^(α) to CFS operators x ∈ F?

2. Measure correspondence: How does our viable region V relate to the support of the universal measure
ρ?

3. Action correspondence: Is Φ-optimization equivalent to extremizing the causal action?

4. Dimensional reduction: Our constraint space is 5D; CFS spacetime is 4D. How does the "extra"
dimension manifest?

5A.9 Toward a Rigorous Mapping

5A.9.1 Proposed Construction

Step 1: Identify constraint configurations with CFS operators.

For a constraint vector C = (β, κ, ρ, λ, τ) ∈ V, construct an operator x_C ∈ F via:

(This is schematic; the actual construction requires careful handling of signatures and normalizations.)

Step 2: Define the universal measure from Φ.

The measure weights configurations by their efficiency of distinguishability.

Step 3: Verify causal structure.

Compute eigenvalues of x_C x_{C'} and verify that:

Timelike ↔ high |τ - τ'|

Spacelike ↔ high |β - β'|

Lightlike ↔ boundary between these

Step 4: Verify action equivalence.

Show that extremizing the causal action:

x ​ =C ρ ⋅ 1 + β ⋅ γ +1 κ ⋅ γ +12 τ ⋅ γ +123 λ ⋅ γ5

dρ(x ​) ∝C e dCΦ(C)



is equivalent to maximizing total Φ (or minimizing total complexity K subject to fixed total Ω).

5A.9.2 Technical Challenges

1. Infinite-dimensional H: CFS uses a separable Hilbert space H. Our constraint space is 5D. The mapping
must handle this dimension mismatch.

2. Regularization: CFS requires UV regularization (length scale ε). Our framework has the viable region
boundary. These should correspond.

3. Spin structure: CFS is intrinsically spinorial (Dirac spinors). Our framework is not manifestly spinorial.
The mapping must account for this.

4. Signature: CFS uses signature (2,2) on spin spaces. Our Cl(5) or Cl(4,1) has different signature.

Subalgebra embeddings must be verified.

5A.10 Summary

Main Result: The five constraints of our framework (β, κ, ρ, λ, τ) correspond to the five grades of the Clifford
algebra decomposition of operator products in Causal Fermion Systems:

Constraint CFS Grade Physical Content

ρ (resource) Grade 0 (scalar) Coupling strength, energy

β (boundary) Grade 1 (vector) Spatial structure, direction

κ (pattern) Grade 2 (bivector) Spin, quantum coherence

τ (ordering) Grade 3 (pseudovector) Time direction, causality

λ (integration) Grade 4 (pseudoscalar) Global correlation, topology

Significance: This correspondence, if made rigorous, would:

1. Ground our philosophical framework in established mathematical physics

2. Inherit CFS's derivations of spacetime, Dirac equation, and Einstein equations

S[ρ] = L(x, y) dρ(x) dρ(y)∬



3. Provide quantitative predictive power

4. Unify relational ontology with causal fermion systems

Status: The correspondence is proposed and motivated but not proven. Rigorous construction requires technical
work outlined in Section 5A.9.
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Appendix 5A.A: Clifford Algebra Cl(2,2) Reference

Basis and Products

Generators: {γ⁰, γ¹, γ², γ³} with:

(γ⁰)² = +1, (γ¹)² = +1

(γ²)² = -1, (γ³)² = -1

γ^μ γ^ν = -γ^ν γ^μ for μ ≠ ν

Pseudoscalar: γ⁵ = γ⁰γ¹γ²γ³, with (γ⁵)² = +1

Grade Projection Operators

For any multivector M ∈ Cl(2,2):

⟨M⟩ ​ =0 ​Tr(M)
4
1



where η^μμ = diag(+1, +1, -1, -1).

Isomorphism with M₄(ℝ)

The algebra Cl(2,2) is isomorphic to M₄(ℝ), the algebra of 4×4 real matrices. One explicit representation uses:

$$\gamma^0 = \begin{pmatrix} 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \ 0 & 0 & -1 & 0 \ 0 & 0 & 0 & -1 
\end{pmatrix}, \quad
\gamma^1 = \begin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & 1 \ 1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 \end{pmatrix}$$

$$\gamma^2 = \begin{pmatrix} 0 & 0 & 0 & 1 \ 0 & 0 & -1 & 0 \ 0 & 1 & 0 & 0 \ -1 & 0 & 0 & 0 
\end{pmatrix}, \quad
\gamma^3 = \begin{pmatrix} 0 & 0 & 1 & 0 \ 0 & 0 & 0 & -1 \ -1 & 0 & 0 & 0 \ 0 & 1 & 0 & 0 
\end{pmatrix}$$

⟨M⟩ ​ =1 ​ ​η Tr(Mγ ​)γ
4
1

μ

∑ μμ
μ

μ

⟨M⟩ ​ =2 ​ ​η η Tr(Mγ ​γ ​)γ γ
8
1

μ<ν

∑ μμ νν
μ ν

μ ν

⟨M⟩ ​ =3 ​ ​η Tr(Mγ ​γ )γ γ ​

4
1

μ

∑ μμ
μ

5 μ
5

⟨M⟩ ​ =4 Tr(Mγ )γ
4
1 5 5


