

Supporting Information: Thermodynamic Foundations

Derivation of Thermodynamic Laws from the Axiom

TF.1 Introduction

TF.1.1 Purpose

This Supporting Information establishes thermodynamics as emergent from the foundational axiom $\Diamond N \rightarrow \neg N$. We derive all four laws of thermodynamics from constraint geometry, demonstrating that thermodynamic structure is not imported but follows necessarily from distinguishability requirements.

What this document establishes:

1. **The Four Laws** — Each thermodynamic law derived from constraint geometry
2. **The Active Principle** — A more fundamental formulation underlying the passive laws
3. **Organization and Entropy** — Resolution of the apparent paradox of biological complexity
4. **The Jacobson Path** — How thermodynamic structure grounds the emergence of spacetime

TF.1.2 The Central Claim

Thermodynamics is not applied to the framework—it emerges from it.

The efficiency potential $\Phi = \ln(\Omega/K)$ has thermodynamic structure built in:

- Ω counts accessible configurations (entropy-like)
- K measures descriptive complexity (negentropy-like)
- Gradient flow on Φ optimizes this ratio

The four laws describe geometric properties of Φ on the viable region.

TF.1.3 Relation to Other Documents

Document	Relationship
SI_Section3_Constraint_Space_Geometry	Provides Φ derivation; this document adds thermodynamic interpretation
SI_Section5_Bridge_Jacobson	Uses thermodynamic structure established here

Document	Relationship
SI_Section5_Physical_Emergence	Physical interpretation of gradients

TF.1.4 Notation

Symbol	Meaning
V	Viable region in constraint space
Φ	Efficiency potential $\ln(\Omega/K)$
Ω	Accessible configurations from current state
K	Descriptive complexity of current state
$\nabla\Phi$	Gradient of efficiency potential
T	Temperature (defined in TF.4)
S	Statistical entropy (defined in TF.5)
E	Energy (τ -conjugate, defined in TF.4)

Part I: The Viable Region as Thermodynamic Arena

TF.2 The Viable Region

TF.2.1 Origin from the Axiom

From $\diamond N \rightarrow \neg N$ (nothing cannot exist), any configuration must be distinguishable from:

- **Nothing:** The impossible null state
- **Contradiction:** The impossible total state (indistinguishable from everything)

This creates the viable region V—a shell in constraint space where configurations can exist.

Formal definition:

$$\mathcal{V} = \{C \in \mathbb{R}^5 : D(C, 0)^2 \geq \epsilon^2 \text{ AND } D(C, 1)^2 \geq \epsilon^2\}$$

where D is the distinguishability metric and ε is the minimum distinguishability threshold.

TF.2.2 Boundary Structure

The viable region has two boundaries:

Inner boundary ∂V_- : Where configurations approach indistinguishability from nothing

- $D(C, 0)^2 = \varepsilon^2$
- Configurations here are "barely existing"

Outer boundary ∂V_+ : Where configurations approach indistinguishability from totality

- $D(C, 1)^2 = \varepsilon^2$
- Configurations here are "maximally saturated"

The interior V° : Configurations safely distinguishable from both extremes

TF.2.3 Why V Is the Thermodynamic Arena

Thermodynamics describes what configurations are accessible and how systems move between them. The viable region provides exactly this:

- **Accessible states:** Points in V
- **Inaccessible states:** Points outside V (they cannot exist)
- **Dynamics:** Gradient flow on Φ within V
- **Equilibrium:** Critical points of Φ within V

The boundaries ∂V_- and ∂V_+ are absolute limits—they cannot be reached, only approached.

Part II: The Efficiency Potential as Free Energy

TF.3 Thermodynamic Interpretation of Φ

TF.3.1 The Structure of Φ

$$\Phi = \ln \Omega - \ln K = \ln \left(\frac{\Omega}{K} \right)$$

Ω (Accessible Configurations):

- Counts distinguishable states reachable from current configuration
- Increases when more possibilities open up
- Analogous to: Boltzmann's W , phase space volume, microstate count

K (Descriptive Complexity):

- Measures the cost to specify the current configuration
- Increases with more detailed/specific states
- Analogous to: Negentropy, information content, Kolmogorov complexity

TF.3.2 Φ as Free Energy Analog

Recall the Helmholtz free energy: $F = E - TS$

Rearranging: $F/T = E/T - S$ (competition between energy and entropy)

The parallel:

$$\Phi = \ln \Omega - \ln K$$

- $\ln \Omega$ plays the role of entropy (state counting)
- $\ln K$ plays the role of E/T (constraint cost)
- Φ plays the role of $-F/T$ (efficiency rather than free energy)

The gradient $\nabla \Phi$ drives dynamics toward configurations that maximize accessible states while minimizing descriptive cost.

TF.3.3 Why Φ Is Not Entropy

Φ is often confused with entropy. The distinction matters:

Property	Entropy S	Efficiency Potential Φ
Definition	$-\sum p_i \ln p_i$ or $k_B \ln W$	$\ln(\Omega/K)$
Sign	Always ≥ 0	Can be positive or negative
Equilibrium	Maximum	Critical point (may be max, min, or saddle)
Components	Single term	Difference of two terms
Interpretation	Disorder/uncertainty	Efficiency of distinguishability

Φ is closer to a free energy than an entropy—it balances two competing factors.

Part III: Derivation of the Zeroth Law

TF.4 Equilibrium and Temperature

TF.4.1 The Zeroth Law (Standard Statement)

If system A is in thermal equilibrium with system B, and B is in thermal equilibrium with C, then A is in thermal equilibrium with C.

This transitivity defines temperature as a well-defined quantity.

TF.4.2 Derivation from Φ Structure

Definition of equilibrium:

Two configurations A and B are in equilibrium if there is no net gradient flow between them:

$$\nabla \Phi|_{A \leftrightarrow B} = 0$$

Transitivity from smoothness:

The efficiency potential Φ is smooth (C^∞) throughout the interior of V . This follows from:

- Ω is a continuous count (measure) of configurations
- K is a continuous complexity measure
- The logarithm preserves smoothness

Theorem TF.1 (Zeroth Law): *If A is in equilibrium with B and B is in equilibrium with C, then A is in equilibrium with C.*

Proof:

Equilibrium $A \leftrightarrow B$ means: $\partial\Phi/\partial(\text{path } A \rightarrow B) = 0$ at the interface

Equilibrium $B \leftrightarrow C$ means: $\partial\Phi/\partial(\text{path } B \rightarrow C) = 0$ at the interface

Since Φ is smooth, the directional derivatives are consistent:

$$\partial\Phi/\partial(\text{path } A \rightarrow C) = \partial\Phi/\partial(\text{path } A \rightarrow B) + \partial\Phi/\partial(\text{path } B \rightarrow C) = 0 + 0 = 0$$

Therefore A is in equilibrium with C. ■

TF.4.3 Temperature as Φ -Gradient Component

Definition: Temperature T is the inverse of the τ -component of $\nabla\Phi$:

$$\frac{1}{T} \equiv \frac{\partial\Phi}{\partial E}$$

where E is the energy (the quantity conjugate to τ).

Equivalently:

$$T = \left(\frac{\partial E}{\partial \Phi} \right)_{\text{other constraints}}$$

Physical meaning: Temperature measures how much the efficiency potential changes per unit energy. High temperature means Φ changes slowly with E (many states accessible). Low temperature means Φ changes rapidly with E (few states accessible).

TF.4.4 Why Temperature Is Well-Defined

The smoothness of Φ guarantees that $T = (\partial\Phi/\partial E)^{-1}$ is:

- Single-valued at each point
- Continuous throughout V°
- The same for all systems in equilibrium

This is precisely what the Zeroth Law requires.

Part IV: Derivation of the First Law

TF.5 Energy Conservation

TF.5.1 The First Law (Standard Statement)

Energy is conserved. In any process: $dE = \delta Q - \delta W$

where δQ is heat transferred and δW is work done.

TF.5.2 Derivation from Symplectic Structure

The constraint space has natural symplectic structure (established in SI_Section3). Conjugate pairs include:

- (τ, E) : Ordering and energy
- (position, momentum): Spatial coordinates

Symplectic structure implies conservation:

The symplectic 2-form ω is closed: $d\omega = 0$

By Noether's theorem, continuous symmetries imply conserved quantities. The τ -translation symmetry of Φ implies energy conservation:

$$\frac{\partial \Phi}{\partial \tau} = 0 \quad \Rightarrow \quad E = \text{constant along flow}$$

Theorem TF.2 (First Law): *Total energy is conserved in isolated systems.*

Proof:

For an isolated system (no coupling to environment), the Hamiltonian $H = E$ generates τ -evolution:

$$\frac{dE}{d\lambda} = \{E, H\} = \{E, E\} = 0$$

where $\{\cdot, \cdot\}$ is the Poisson bracket and λ is the flow parameter. ■

TF.5.3 Heat and Work in the Framework

Work δW : Energy transfer that changes macroscopic constraints (β, κ, ρ)

$$\delta W = \sum_{i \in \{\beta, \kappa, \rho\}} F_i dC_i$$

where $F_i = \partial\Phi/\partial C_i$ are the generalized forces.

Heat δQ : Energy transfer that changes microscopic configuration without changing macroscopic constraints

$$\delta Q = T dS_{stat}$$

where S_{stat} is the statistical entropy of the microscopic distribution.

The First Law becomes:

$$dE = T dS_{stat} - \sum_i F_i dC_i$$

This is the standard thermodynamic identity, now derived from constraint geometry.

Part V: Derivation of the Second Law

TF.6 Entropy Increase

TF.6.1 The Second Law (Standard Statement)

The entropy of an isolated system never decreases: $dS \geq 0$

TF.6.2 The Counting Argument

Why high- Φ configurations are typical:

Consider the set of all configurations in V with Φ in the range $[\Phi_0, \Phi_0 + d\Phi]$.

The "number" of such configurations (more precisely, the measure) is:

$$\mathcal{N}(\Phi_0) \propto e^{\Phi_0}$$

Why? By definition, $\Phi = \ln(\Omega/K)$. A configuration with higher Φ has more accessible states (Ω) relative to its complexity (K). The exponential relationship means:

- Configurations with $\Phi = 10$ are $e^{10} \approx 22,000$ times more numerous than $\Phi = 0$
- Configurations with $\Phi = 20$ are $e^{20} \approx 485$ million times more numerous than $\Phi = 0$

Overwhelming probability: Almost all configurations have Φ near the maximum compatible with constraints.

TF.6.3 Gradient Flow Increases Φ

Theorem TF.3 (Second Law): *Along gradient flow lines, Φ does not decrease.*

Proof:

The gradient flow equation is:

$$\frac{dC}{d\lambda} = \nabla\Phi$$

The rate of change of Φ along flow:

$$\frac{d\Phi}{d\lambda} = \nabla\Phi \cdot \frac{dC}{d\lambda} = \nabla\Phi \cdot \nabla\Phi = |\nabla\Phi|^2 \geq 0$$

Equality holds only at critical points where $\nabla\Phi = 0$. ■

TF.6.4 Statistical Entropy

When statistical interpretation is valid (large N , many configurations), define:

$$S_{stat} = k_B \ln \Omega$$

The Second Law becomes: $dS_{stat} \geq 0$

This is Boltzmann's formulation, now derived from the geometry of Φ .

TF.6.5 Why the Second Law Is Not Fundamental

The Second Law is a **consequence** of:

1. The definition of Φ (counting structure)
2. Gradient flow dynamics
3. The exponential measure on configuration space

It is not a separate postulate but a theorem about typical behavior in the viable region.

Part VI: Derivation of the Third Law

TF.7 The Boundary of the Viable Region

TF.7.1 The Third Law (Standard Statement)

As temperature approaches absolute zero, the entropy of a system approaches a minimum value.

Equivalently: *It is impossible to reach absolute zero in a finite number of steps.*

TF.7.2 The Third Law IS the Axiom

Theorem TF.4 (Third Law): *The inner boundary ∂V_- cannot be reached.*

Proof:

The inner boundary ∂V_- is defined by $D(C, 0)^2 = \epsilon^2$. At this boundary, the configuration is minimally distinguishable from nothing.

But "nothing cannot exist" (the axiom). A configuration at ∂V_- would be indistinguishable from nothing—it could not exist as a distinct configuration.

Therefore ∂V_- is a limit that can be approached but never reached. ■

The correspondence:

Third Law Concept	Framework Equivalent
$T \rightarrow 0$	Approaching ∂V_-
$S \rightarrow S_{\min}$	$\Omega \rightarrow \Omega_{\min}$ (minimum distinguishable states)
"Unattainable"	"Cannot exist at boundary"

The Third Law is the axiom expressed in thermodynamic language:

$$\text{Cannot reach } T = 0 \iff \text{Cannot reach } \partial V_- \iff \Diamond N \rightarrow \neg N$$

TF.7.3 Why Entropy Has a Minimum

At ∂V_- , configurations have minimum Ω —the fewest accessible states consistent with existence. This minimum is not zero (that would be nothing) but ε -dependent:

$$\Omega_{min} = \Omega(\partial V_-) > 0$$

The Third Law says $S \rightarrow S_{min} > 0$, not $S \rightarrow 0$.

Part VII: The Active Principle

TF.8 Beyond Passive Description

TF.8.1 Passive vs. Active Formulations

The four laws as derived above are **passive**—they describe equilibrium states and constraints on processes. They do not explain:

- Why systems evolve at all
- What path they take
- Why organization emerges

The **active principle** addresses dynamics directly.

TF.8.2 The Active Third Law

Standard Third Law (Passive): *Entropy approaches a minimum as $T \rightarrow 0$.*

Active Third Law: *A system maximizes the rate of entropy production dS/dt through optimization of Ω/K until available gradients are exhausted.*

Formal statement:

$$\frac{d\Phi}{d\lambda} = |\nabla\Phi|^2 \rightarrow \text{maximum compatible with constraints}$$

subject to:

- Configuration remains in V
- Conservation laws (First Law)

- Boundary conditions

TF.8.3 The Three Regimes

Non-equilibrium regime ($\nabla\Phi \neq 0$):

- System evolves to maximize $d\Phi/d\lambda$
- Gradient flow toward higher Φ
- Entropy production is positive

Approaching equilibrium ($\nabla\Phi \rightarrow 0$):

- $d\Phi/d\lambda \rightarrow 0$ as gradients exhaust
- System "coasts" toward critical point
- Entropy production decreases

At equilibrium ($\nabla\Phi = 0$):

- System at critical point of Φ
- Maximum entropy consistent with constraints
- $d\Phi/d\lambda = 0$ (no further evolution)

TF.8.4 Connection to MEPP

The Maximum Entropy Production Principle (MEPP) states that non-equilibrium systems evolve to maximize entropy production rate.

In the framework:

$$\text{MEPP: } \frac{dS}{dt} \rightarrow \max \Leftrightarrow \frac{d\Phi}{d\lambda} = |\nabla\Phi|^2 \rightarrow \max$$

The gradient flow on Φ is MEPP, derived from the axiom rather than postulated.

TF.8.5 Why the Active Principle Is More Fundamental

Aspect	Passive Laws	Active Principle
Describes	Equilibrium states	Dynamical evolution

Aspect	Passive Laws	Active Principle
Explains	What cannot happen	What does happen
Status	Constraints	Generating principle
Derives	—	The passive laws as special cases

The passive laws follow from the active principle:

- First Law: Conservation along gradient flow
- Second Law: Φ increases along gradient flow
- Third Law: Gradient flow cannot reach ∂V_-
- Zeroth Law: Equilibrium where $\nabla \Phi = 0$

Part VIII: The Organization Paradox

TF.9 Complexity and Entropy Production

TF.9.1 The Apparent Paradox

How can organized structures (life, crystals, ecosystems) arise if entropy always increases?

Organization implies low local entropy. The Second Law seems to forbid its emergence.

TF.9.2 Resolution: Organization Enhances $d\Phi/dt$

Key insight: The Second Law constrains total entropy, not local entropy.

Organization can **decrease local entropy** while **increasing global entropy production rate**.

The accounting:

$$\frac{d\Phi_{total}}{d\lambda} = \frac{d\Phi_{system}}{d\lambda} + \frac{d\Phi_{environment}}{d\lambda}$$

Organization in the system ($d\Phi_{system}/d\lambda < 0$ locally) is thermodynamically **favored** when:

$$\frac{d\Phi_{environment}}{d\lambda} > \left| \frac{d\Phi_{system}}{d\lambda} \right|$$

The system sacrifices local entropy to maximize global entropy production rate.

TF.9.3 Examples

Heat engine:

- Low internal entropy (organized structure)
- Produces entropy in environment faster than passive heat flow
- Organization enables efficient gradient exploitation

Living organism:

- Maintains low internal entropy through metabolism
- Accelerates environmental entropy production
- Organization is thermodynamically selected for

Crystal formation:

- Local entropy decreases (ordered lattice)
- Heat release increases environmental entropy
- Total entropy increases despite local ordering

TF.9.4 In Terms of Ω/K

The efficiency potential $\Phi = \ln(\Omega/K)$ makes this precise:

Organization increases K (more complex, specific description)

But organization can increase Ω even more (more pathways for gradient exploitation)

$$\frac{\Omega_{organized}}{\Omega_{disorganized}} > \frac{K_{organized}}{K_{disorganized}}$$

When this inequality holds, organization increases Φ and is thermodynamically favored.

TF.9.5 Life as Entropy Production Catalyst

Living systems are configurations that:

1. Maintain low local K (organized structure)

2. Maximize $\Omega_{\text{accessible}}$ (pathways for environmental entropy production)
3. Achieve high $\Phi = \ln(\Omega/K)$

Life is not fighting entropy—it is accelerating entropy production through organization.

This resolves the paradox: biological complexity is not despite thermodynamics but because of it.

Part IX: The Path to Jacobson

TF.10 From Thermodynamics to Spacetime

TF.10.1 What We Have Established

From the axiom $\diamond N \rightarrow \neg N$:

1. The viable region V with boundary structure
2. The efficiency potential $\Phi = \ln(\Omega/K)$
3. All four thermodynamic laws
4. The active principle (MEPP)

This is thermodynamics without spacetime.

The constraint space is not embedded in spacetime—spacetime will emerge from it.

TF.10.2 Jacobson's Insight

Ted Jacobson (1995) showed:

Requiring thermodynamic consistency ($\delta Q = TdS$) across local causal horizons implies Einstein's field equations.

The implication: If thermodynamics is fundamental, gravity is derived.

TF.10.3 The Framework Path

Axiom ($\diamond N \rightarrow \neg N$)

Viable Region V

Efficiency Potential Φ

↓
Thermodynamic Laws (this document)

↓
Thermodynamic consistency at horizons

↓
Einstein's equations (Jacobson)

↓
Emergent Spacetime

The detailed Jacobson correspondence is developed in SI_Section5_Bridge_Jacobson.

TF.10.4 What "Horizon" Means Relationally

In the framework, a horizon is not a surface in spacetime (spacetime doesn't exist yet). It is:

The boundary of correlation reach for a feature.

For feature A:

$$\text{Horizon}_A = \{X : \lambda_{AX} = 0\}$$

The set of features with which A has zero correlation.

The monogamy constraint creates horizons:

$$\sum_X \lambda_{AX} \leq \Lambda$$

A cannot be correlated with everything. The boundary of A's correlations is A's horizon.

TF.10.5 Thermodynamic Quantities at Horizons

Jacobson Concept	Framework Translation
Heat flux δQ	Change in boundary coupling energy
Temperature T	$(\partial E / \partial \Phi)$ at horizon
Entropy S	Φ integrated over boundary structure
Area A	Count of potential correlations at boundary

The Bekenstein-Hawking relation $S = A/(4l_P^2)$ becomes:

$$S \propto n_{\text{boundary}}$$

where n_{boundary} is the number of correlations at the horizon.

TF.10.6 Why Gravity Emerges

Jacobson's argument: requiring $\delta Q = TdS$ at all horizons constrains the geometry.

In the framework: Requiring thermodynamic consistency of Φ across all correlation boundaries constrains the coupling structure.

At large N (many features), this constraint manifests as:

- Smooth geometry (the continuous limit of discrete correlations)
- The Einstein equations (consistency conditions)
- Gravity (the β - ρ coupling structure)

Gravity is not a force—it is thermodynamic consistency of the correlation field.

Part X: Summary

TF.11 The Complete Picture

TF.11.1 The Four Laws from One Axiom

Law	Statement	Framework Origin
Zeroth	Equilibrium is transitive	Smoothness of Φ on V
First	Energy is conserved	Symplectic structure; τ -translation symmetry
Second	Entropy increases	Exponential measure on configuration space
Third	Cannot reach $T = 0$	Cannot reach ∂V ; THE AXIOM ITSELF

TF.11.2 The Active Principle

Systems maximize $d\Phi/d\lambda = |\nabla\Phi|^2$ until gradients are exhausted.

This generates the passive laws as special cases and explains dynamics.

TF.11.3 Organization and Entropy

Organization is thermodynamically favored when it increases global entropy production rate. Life accelerates entropy production through structure.

TF.11.4 The Path Forward

Thermodynamic structure → Horizon consistency → Einstein equations → Spacetime

The framework provides the thermodynamic foundation; Jacobson's argument provides the bridge to gravity and spacetime.

TF.11.5 What This Document Establishes

Derived:

- All four thermodynamic laws from the axiom
- The active principle (MEPP) as fundamental
- Resolution of the organization paradox
- Thermodynamic grounding for the Jacobson correspondence

Not established here:

- Detailed Jacobson derivation (see SI_Section5_Bridge_Jacobson)
- Specific gravitational predictions
- Cosmological implications

Appendix: The Third Law Equivalence

TF.A The Logical Chain

$$\Diamond N \rightarrow \neg N$$

↓ (nothing cannot exist)

Configurations must satisfy $D(C, 0)^2 \geq \epsilon^2$

↓ (distinguishability from nothing)

$\partial\mathcal{V}_-$ is unreachable

↓ (boundary cannot be attained)

$T = 0$ is unattainable

↓ (temperature interpretation)

$S \rightarrow S_{min} > 0$ as $T \rightarrow 0$

↓ (entropy interpretation) **Third Law of Thermodynamics**

The Third Law is the axiom in thermodynamic language.

References

Framework Documents

- [SI_Section3_Constraint_Space_Geometry.md](#) — Φ derivation
- [SI_Section5_Bridge_Jacobson.md](#) — Detailed Jacobson correspondence
- [SI_Section5_Physical_Emergence.md](#) — Physical interpretation

External References

- Jacobson, T. (1995). "Thermodynamics of Spacetime." *Physical Review Letters* 75, 1260.
- Martyushev, L.M. & Seleznev, V.D. (2006). "Maximum entropy production principle in physics, chemistry and biology." *Physics Reports* 426, 1-45.