
Supporting Information: Physical Emergence

Section 5 Supporting Information for "Being and Nothingness"

P.1 Introduction

P.1.1 Purpose

This Supporting Information provides the interpretive bridge between the geometric framework (Sections 2-4)
and physical formalism (Section 5). We develop:

1. From Geometry to Physics: How physical concepts emerge from constraint geometry at N ≥ 3

2. Physical Interpretation of Gradients: What each component of ∇Φ corresponds to physically

3. Gravity as Constraint Coupling: The β-ρ coupling structure

4. Fundamental Symmetries: CPT invariance from Φ structure

5. Connections: Links to detailed derivations in companion documents

P.1.2 The Interpretive Threshold

A critical distinction underlies this entire document:

At N = 2: The constraint geometry exists, but physical interpretation is inapplicable. There is no ordering
structure (τ = 0), no causality, no "before/after." The geometry is tenseless.

At N ≥ 3: Ordering structure emerges (τ > 0 possible). Physical concepts—time, causality, forces, propagation
—become meaningful as descriptions of the gradient geometry.

This document concerns the N ≥ 3 regime where physical language applies. The geometric foundations (valid at
all N) are established in SI: Constraint Space Geometry.

P.1.3 Ontological Commitment

We maintain field-first ontology throughout:

The constraint field is fundamental

Physical concepts (force, energy, momentum) are descriptions of field geometry

There are no entities that "experience" forces—gradient structure IS what we call force

Physical law describes the geometry, not evolution through external time
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P.1.4 Companion Documents

This document serves as conceptual framework. Detailed derivations appear in:

Topic Document

Fine structure constant α Supporting_Information_Section5_Fundamental_Constants_Derivations

Weinberg angle sin²θ_W Supporting_Information_Section5_Fundamental_Constants_Derivations

Speed of light c

Supporting_Information_Section5_Fundamental_Constants_DerivationsUncertainty principle

Geometric Algebra formulation GA_Unified_Framework_Draft.md

Connection to Barandes SI_Section5_Bridge_Barandes.md

Connection to Finster (CFS) SI_Section5_Bridge_CFS.md

Connection to Jacobson SI_Section5_Bridge_Jacobson.md

Connection to Gorard SI_Section5_Bridge_Gorard.md

Part I: From Geometry to Physics

P.2 The Emergence of Physical Concepts

P.2.1 What "Physical" Means

In the framework, "physical" is not a primitive category. Physical concepts emerge as descriptions of constraint
geometry at N ≥ 3:

Supporting_Information_Section5_Fundamental_Constants_Derivations



Physical Concept Geometric Origin

Time Ordering structure τ at N ≥ 3

Space Boundary structure β

Energy Gradient magnitude in τ direction

Momentum Gradient magnitude in spatial (β, κ, ρ) directions

Force Gradient of Φ

Mass Curvature of Φ landscape

Charge Coupling coefficient in λ sector

These are not analogies but identifications. Physical concepts ARE geometric concepts at N ≥ 3.

P.2.2 Why N ≥ 3 is the Physical Threshold

The transition from N = 2 to N ≥ 3 is not gradual but categorical:

At N = 2:

Two coupling matrices can be simultaneously diagonalized

No irreducible structure exists

Circulation around any loop is zero

τ = 0 necessarily

No ordering, no causality, no "physics"

At N ≥ 3:

Three or more coupling matrices cannot generically be simultaneously diagonalized

Irreducible structure emerges

Circulation can be non-zero: ∮∇Φ · dℓ ≠ 0

τ > 0 becomes possible

Ordering, causality, and physics emerge

The N = 3 threshold is where physics begins.



This is not a claim about our knowledge or observation. It is a geometric fact about what structure exists. At N =
2, there simply is no temporal or causal structure to describe. At N ≥ 3, such structure exists whether or not
anyone observes it.

P.2.3 The Central Thesis

Quantum mechanics is the thermodynamics of distinguishability.

Specifically:

States are features in constraint space (grade-1 in Cl(5))

Correlations are pairwise relations (grade-2 bivectors)

N = 3 structure is irreducible three-way coupling (grade-3 trivectors)

Evolution is gradient flow (rotors in GA language)

The "mystery" of quantum mechanics dissolves: it is the natural structure of constrained distinguishability
at N ≥ 3

The electroweak constants (α, sin²θ_W) are not free parameters but thermodynamic ratios determined by the
combinatorial structure of the monogamy constraint.

Part II: Physical Interpretation of Gradient Components

P.3 The Gradient as Force

P.3.1 The Gradient Field at N ≥ 3

At N ≥ 3, the gradient of the efficiency potential:

acquires physical interpretation. Each component corresponds to a distinct type of physical tendency.

P.3.2 The β-Gradient: Spatial/Geometric Forces
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Physical interpretation: The β-gradient governs spatial structure—how boundary configurations change.

Positive F_β: Φ increases with sharper boundaries → tendency toward spatial localization

Negative F_β: Φ increases with softer boundaries → tendency toward spatial delocalization

At large N: The β-gradient manifests as geometric forces—tendencies for spatial structure to curve, expand, or
contract. This connects to:

Spatial forces in mechanics

Geometric curvature in general relativity

Confinement/deconfinement in field theory

P.3.3 The κ-Gradient: Coherence Dynamics

Physical interpretation: The κ-gradient governs pattern structure—how configurations maintain or lose
coherence.

Positive F_κ: Φ increases with higher κ → tendency toward quantum coherence (non-factorizability)

Negative F_κ: Φ increases with lower κ → tendency toward decoherence (factorizability)

Connection to quantum mechanics: The κ-gradient governs the quantum-classical boundary:

High κ configurations are "quantum" (entangled, non-factorizable)

Low κ configurations are "classical" (separable, factorizable)

Decoherence is gradient flow toward lower κ

P.3.4 The ρ-Gradient: Energy-Momentum Flow

Physical interpretation: The ρ-gradient governs resource distribution—how capacity redistributes.

Positive F_ρ: Φ increases with higher ρ → energy concentration favorable

Negative F_ρ: Φ increases with lower ρ → energy dispersal favorable

F ​ =κ ​

∂κ
∂Φ

F ​ =ρ ​

∂ρ
∂Φ



Connection to thermodynamics: At large N, the ρ-gradient becomes the thermodynamic force:

Heat flows along ρ-gradients

Energy conservation is ρ-symmetry of Φ

Temperature relates to ρ-gradient magnitude

P.3.5 The λ-Gradient: Correlation Dynamics

Physical interpretation: The λ-gradient governs correlation structure—how features become more or less
entangled.

Positive F_λ: Φ increases with higher λ → tendency toward integration/entanglement

Negative F_λ: Φ increases with lower λ → tendency toward factorization/independence

Connection to quantum information: The λ-gradient governs entanglement dynamics:

Entanglement creation: flow toward higher λ

Entanglement destruction: flow toward lower λ

Monogamy constraints limit achievable λ values

The monogamy constraint on λ:

Each feature has finite correlation capacity Λ:

This constraint creates the monogamy polytope whose structure determines α and sin²θ_W.

P.3.6 The τ-Gradient: Temporal Dynamics

Critical distinction: This component exists only at N ≥ 3, where ordering structure emerges.
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Physical interpretation: The τ-gradient governs ordering structure—the "rate" at which configurations relate
along gradient flow lines.

At N = 2: F_τ = 0 necessarily (τ = 0 always)

At N ≥ 3: F_τ can be non-zero, enabling temporal ordering

Connection to time: What we experience as "the flow of time" is the τ-component of the gradient structure at N
≥ 3. The τ-gradient magnitude relates to:

Proper time along worldlines

Clock rates in different reference frames

The "pace" of physical processes

P.3.7 Forces Are Gradient Structure

Critical reframing: In physics, we say "force acts on object." This presupposes entities that forces act upon.

In field geometry:

Forces ARE the gradient structure. They are not "on" anything.

The field has gradient structure at each locus. This structure is intrinsic to the field geometry. There are no
separate "objects" that "experience" the gradients—the gradients are what the field is doing.

Analogy: A hillside doesn't "exert force on" lower points. The slope IS the geometric relationship between
elevations. Similarly, ∇Φ doesn't "act on" configurations—it IS the geometric relationship between them.

Part III: Gravity as Constraint Coupling

P.4 The β-ρ Coupling

P.4.1 Cross-Constraint Coupling

The constraints are not fully independent. The Hessian of Φ includes off-diagonal terms:

Of particular importance is the β-ρ coupling:
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This coupling means: changes in boundary structure (β) affect how resource (ρ) distributes, and vice versa.

P.4.2 Gravity as β-ρ Coupling

Claim: What we call "gravity" is the β-ρ coupling in constraint space.

The argument:

1. Mass-energy (ρ) curves space (β): In general relativity, the stress-energy tensor T_μν sources spacetime
curvature. In our framework, ρ-gradients create β-gradients through the coupling H_βρ.

2. Curved space (β) affects motion: Objects follow geodesics in curved spacetime. In our framework, β-
gradients influence gradient flow lines.

3. The coupling is universal: Gravity couples to all energy, regardless of type. In our framework, all
configurations have ρ values, so all configurations couple to β through H_βρ.

P.4.3 The Einstein Equation as Coupling Condition

The Einstein field equation:

relates spacetime curvature (G_μν) to stress-energy (T_μν).

In constraint language:

where g_βρ is the coupling coefficient, related to Newton's constant G.

Jacobson's insight: Einstein's equation can be derived from thermodynamic relations on local causal horizons.
Our framework provides the underlying geometry: the β-ρ coupling IS what Jacobson's derivation describes.

See SI: Bridge to Jacobson for detailed development.

P.4.4 Why Gravity is Weak

The gravitational coupling G is enormously smaller than electromagnetic coupling α:
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(β-curvature) = g ​ ⋅βρ (ρ-distribution)



Framework explanation:

The electromagnetic coupling α involves the λ-sector (correlations), which is subject to monogamy constraints.
The monogamy polytope structure gives α ≈ 1/137.

The gravitational coupling involves the β-ρ sector. The β-ρ coupling is:

Not subject to monogamy (monogamy constrains λ, not β or ρ)

Spread across all five constraint dimensions

Geometrically "diluted" by the full constraint space volume

Estimate: If electromagnetic coupling is constrained to 7/30 of the embedding space (the monogamy fraction
for sin²θ_W), gravitational coupling is diluted across the full space:

where n relates to the dimensional difference. This suggests the hierarchy problem may have geometric origin.

P.4.5 Gravitational Waves

Gravitational waves are propagating disturbances in the β-ρ coupling structure:

They carry energy (ρ) through spatial (β) structure

They propagate at c (the maximum β/τ ratio)

They are quadrupolar (reflecting the tensor nature of H_βρ)

The detection of gravitational waves (LIGO 2015) confirms that β-ρ disturbances propagate as predicted.
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Part IV: Fundamental Symmetries

P.5 CPT Invariance

P.5.1 The Symmetries

C (Charge Conjugation): Reverses the sign of coupling in the λ-sector.

P (Parity): Reverses spatial orientation in the β-sector.

T (Time Reversal): Reverses ordering direction in the τ-sector.

P.5.2 Individual Symmetry Violation

Each symmetry can be individually violated because the field topology may distinguish orientations:

P violation: The weak force violates parity. In constraint language, the λ-sector (where weak coupling lives) has
chiral structure—left-handed and right-handed configurations are not equivalent.

C violation: Charge conjugation is violated by weak interactions. The λ-coupling coefficients are not
symmetric under sign reversal.

T violation: Time reversal is violated (equivalently, CP is violated). The τ-structure has preferred direction at N
≥ 3.

P.5.3 CPT Invariance

Theorem P.1: The combined CPT transformation leaves Φ invariant.

Proof sketch:

The efficiency potential Φ = ln(Ω/K) depends on:

Ω: relational richness (measure of distinguishable configurations)

K: pattern specificity (complexity of the configuration)

Both Ω and K are defined in terms of magnitudes and ratios, not signs:

Ω counts configurations regardless of orientation

K measures complexity regardless of sign conventions

Under CPT:

C flips λ-signs



P flips β-orientation

T flips τ-direction

The product CPT leaves all magnitudes unchanged. Since Φ depends only on magnitudes:

for all configurations C. ∎

P.5.4 Physical Consequence

CPT invariance means:

A particle and its antiparticle have identical masses

Decay rates are equal under CPT conjugation

The laws of physics are the same in a CPT-reversed universe

This is not imposed but follows from the structure of Φ.

P.6 Lorentz Invariance

P.6.1 The Origin of Lorentz Symmetry

Lorentz invariance—the equivalence of all inertial reference frames—emerges from the structure of constraint
space at N ≥ 3.

The key: The speed of light c = 1 (in natural units) is the ratio:

where g_β and g_τ are the metric stiffnesses in the spatial and ordering directions.

Why c is constant:

Both g_β and g_τ are determined by the same constraint geometry:

g_β measures distinguishability cost per unit spatial separation

g_τ measures distinguishability cost per unit ordering separation

The axiom treats all directions of distinguishability symmetrically. Therefore:

Φ(CPT ⋅ C) = Φ(C)

c =2
​

g ​τ

g ​β



and c = 1 in natural units.

P.6.2 The Lorentz Metric

The constraint metric in the (β, τ) sector takes the form:

With c = 1, this is the Minkowski metric:

The Lorentzian signature (one positive, one negative eigenvalue) follows from:

τ representing ordering (temporal direction)

β representing demarcation (spatial direction)

Their different roles in the constraint structure

P.6.3 Lorentz Transformations

Transformations that preserve the constraint metric are precisely the Lorentz transformations:

where γ = 1/√(1-v²).

These are not imposed symmetries but follow from the geometric structure of constraint space.
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Part V: Summary and Connections

P.7 The Physical Picture

P.7.1 Summary Table

Physical Concept Constraint Origin Key Equation

Time τ at N ≥ 3 Emerges from circulation

Space β structure Boundary demarcation

Energy ρ-gradient magnitude F_ρ = ∂Φ/∂ρ

Momentum (β,κ,ρ)-gradient Spatial components of ∇Φ

Force Full gradient ∇Φ Geometric structure

Gravity β-ρ coupling H_βρ = ∂²Φ/∂β∂ρ

Electromagnetism λ-sector with monogamy α = √3/(24π² + √(7/30))

Mass Φ-landscape curvature Hessian eigenvalues

Charge λ-coupling coefficient Monogamy polytope structure

Spin Rotor structure in Cl(5) exp(Bθ/2)

P.7.2 Derived Constants

Constant Formula Value Accuracy

α √3/(24π² + √(7/30)) 1/137.036 1 ppm

sin²θ_W 49/212 0.2311 0.03%

c √(g_β/g_τ) 1 (natural) Exact by construction

ℏ A_min/2π 1 (natural) Exact by construction

See companion documents for detailed derivations.



P.7.3 The Monogamy Constraint

The monogamy constraint—finite correlation capacity per feature—appears identically in four frameworks:

Framework Expression Physical Meaning

Constraint geometry λ_AB + λ_AC ≤ Λ Finite relational capacity

Barandes C-K failure Process indivisibility

Finster (CFS) Causal action bound Causal structure constraint

Thermodynamics S(AB) + S(AC) ≤ ... Entropy subadditivity

This convergence suggests the monogamy constraint captures fundamental structure.

P.8 Connection to Established Frameworks

P.8.1 The Bridge Documents

Four detailed bridge documents establish connections to established physics:

SI: Bridge to Barandes

Shows how indivisible stochastic processes emerge from constraint geometry

Identifies Chapman-Kolmogorov failure with monogamy constraint

Connects quantum behavior to N ≥ 3 irreducibility

SI: Bridge to Finster (CFS)

Maps Causal Fermion Systems to constraint framework

Identifies causal action with Φ-optimization

Shows how spacetime emerges from causal structure

SI: Bridge to Jacobson

Derives Einstein equation from thermodynamic relations

Identifies β-ρ coupling with gravitational dynamics

Connects horizon entropy to constraint geometry



SI: Bridge to Gorard

Connects computational irreducibility to N ≥ 3 structure

Shows why physics is computationally complex

Relates multicomputation to constraint branching

P.8.2 The Convergence

All four frameworks—developed independently from different starting points—exhibit the same structural
features:

1. A threshold at N = 3 (or equivalent): Where temporal/causal structure emerges

2. A ratio structure (Ω/K or equivalent): Efficiency/entropy measures

3. A monogamy-like constraint: Finite capacity bounds

4. Lorentzian signature: The emergence of spacetime structure

This convergence provides strong validation of the constraint framework.

P.9 What This Document Establishes

Derived:

Physical interpretation of gradient components at N ≥ 3

Gravity as β-ρ coupling

CPT invariance from Φ structure

Lorentz invariance from metric equality

Referenced:

Detailed constant derivations (companion documents)

Framework connections (bridge documents)

Not established here:

Quantitative gravity predictions (requires full coupling coefficient)

Particle spectrum (requires detailed Φ landscape analysis)

Cosmological implications (requires large-scale limit)



P.10 Open Questions

1. The hierarchy problem: Why is G/α so small? The geometric picture suggests an answer, but
quantitative derivation remains open.

2. The strong force: Does α_s emerge from a different constraint sector? The color structure may relate to
full N = 3 triplet symmetry.

3. Particle masses: Do mass ratios follow from Φ-landscape curvature? Can m_e/m_p ≈ 1/1836 be derived?

4. Dark matter/energy: Do these correspond to features in constraint space not accessible to
electromagnetic (λ-sector) interaction?

5. Quantum gravity: At the N = 2/N = 3 boundary, both quantum (κ) and gravitational (β-ρ) effects are
relevant. What is the detailed structure?
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Appendix: Glossary of Physical-Geometric Correspondences

Charge: Coupling coefficient in the λ-sector; determines strength of correlation-mediated interactions.

CPT: Combined charge-parity-time transformation; leaves Φ invariant.

Energy: Gradient magnitude in the τ-direction; measure of ordering-rate.

Force: Gradient of Φ; the geometric structure relating configurations.

Gravity: The β-ρ coupling; how resource distribution affects spatial structure.

Lorentz invariance: Symmetry of the constraint metric; equivalence of inertial frames.

Mass: Local curvature of the Φ-landscape; resistance to gradient flow.

Momentum: Gradient components in spatial (β, κ, ρ) directions.

Monogamy: Finite correlation capacity constraint; source of α and sin²θ_W.

Space: Boundary (β) structure in the constraint field.

Spin: Rotor structure in Clifford algebra Cl(5); intrinsic angular momentum.

Time: Ordering (τ) structure at N ≥ 3; emerges from circulation.




