
Physical Constants from Algebraic Structure

A Unified Framework Connecting Geometric Algebra, Indivisible Processes, Causal Fermion
Systems, and Thermodynamics

Abstract

We present a unified framework in which fundamental physical constants emerge from the algebraic structure of
Clifford algebra Cl(5). The fine structure constant α = 1/137.036 and the Weinberg angle sin²θ_W ≈ 0.231 arise
as combinatorial invariants of a constraint structure on bivector magnitudes. This same constraint—which we
call "monogamy"—appears identically in Barandes' indivisible stochastic processes (as the failure of Chapman-
Kolmogorov factorization), in Finster's Causal Fermion Systems (as the causal action bound), and in
thermodynamics (as entropy subadditivity). The dimensional constants c and ℏ are explained as consequences of
algebraic isotropy and minimum distinguishable bivector structure respectively. The uncertainty principle ΔxΔp
≥ ℏ/2 emerges as an indivisibility constraint rather than a measurement limitation. This synthesis suggests that
quantum mechanics is fundamentally the thermodynamics of distinguishability, with the electroweak constants
serving as thermodynamic parameters of the constraint structure.

1. Introduction

1.1 The Problem of Fundamental Constants

Physics contains approximately 26 free parameters that must be measured experimentally. Among these, the
dimensionless constants—particularly the fine structure constant α ≈ 1/137 and the Weinberg angle sin²θ_W ≈
0.231—have long been considered mysterious. Why these particular values?

We propose that these constants are not free parameters but combinatorial invariants of an underlying
algebraic structure. Specifically, they emerge from the Clifford algebra Cl(5) through constraints on how
relational structures (bivectors) can be distributed among features (vectors).

1.2 The Axiom

Our starting point is a single axiom from modal logic:

◊N → ¬N
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"If nothing is possible, then nothing is not the case"—equivalently, nothing cannot exist. This implies that
anything which exists must be distinguishable from nothing, and distinct things must be distinguishable from
each other.

1.3 Why Clifford Algebra?

Previous formulations used "constraint space" language that presupposed a container—a geometric arena in
which relations occur. This violates the relational ontology we seek, where relations are primary and entities
emerge from relational patterns.

Clifford (Geometric) Algebra provides intrinsically relational mathematics:

The geometric product ab = a·b + a∧b encodes both correlation (scalar) and oriented relation (bivector)

Relations ARE products, not distances in a pre-existing space

Structure emerges from algebraic properties, not geometric embedding

2. The Algebraic Framework

2.1 Clifford Algebra Cl(5)

The algebra Cl(5) is generated by five orthonormal basis vectors e₁, e₂, e₃, e₄, e₅ satisfying:

This gives a 32-dimensional algebra with graded structure:

Grade Dimension Elements Physical Interpretation

0 1 Scalars Magnitudes, correlations

1 5 Vectors Features (distinguishable aspects)

2 10 Bivectors Relations (pairwise structure)

3 10 Trivectors N=3 structure (irreducible triples)

4 5 Quadvectors Dual to vectors

5 1 Pseudoscalar Orientation

e ​e ​ +i j e ​e ​ =j i 2δij



2.2 Features as Grade-1 Elements

A feature is a vector in Cl(5):

The axiom requires distinguishability:

From nothing: |a|² ≥ ε²

From each other: |a − b|² ≥ ε²

From totality: |a|² ≤ 1 − ε²

2.3 Relations as Grade-2 Elements

The relation between features a and b is the bivector:

Key properties:

Antisymmetric: a∧b = −b∧a

Magnitude: |a∧b|² = |a|²|b|² − (a·b)²

Interpretation: The bivector IS the relation, not a measurement of distance

2.4 The N=3 Structure as Grade-3

Three features form a trivector:

This is non-zero if and only if the features are linearly independent. Crucially, the trivector contains information
not reducible to its constituent bivectors—it represents genuinely three-way structure.

a = a e ​ ∈
i=1

∑
5

i
i Cl(5)1

a ∧ b ∈ Cl(5)2

T = a ∧ b ∧ c ∈ Cl(5)3



3. The Monogamy Constraint

3.1 Finite Relational Capacity

Each feature has finite capacity to participate in relations. If feature b is involved in two bivectors a∧b and
b∧c, these cannot both be arbitrarily large:

This is the monogamy constraint—not a geometric condition but an algebraic one about how bivector
magnitudes can be distributed.

3.2 The Constraint Structure

For three features at N=3, we have three bivector magnitudes. Normalizing by Λ and denoting x = |a∧b|/Λ, y =
|b∧c|/Λ, z = |c∧a|/Λ, the constraints become:

Monogamy constraints:

x + y ≤ 1 (capacity of b)

y + z ≤ 1 (capacity of c)

z + x ≤ 1 (capacity of a)

Non-negativity:

x, y, z ≥ 0

3.3 The Combinatorial Invariants

This system of 6 linear constraints on 3 variables has:

V = 5 vertices (extreme configurations where 3 constraints are tight)

E = 9 edges

F = 6 faces

χ = V − E + F = 2 (Euler characteristic)

The vertices are:

∣a ∧ b∣ + ∣b ∧ c∣ ≤ Λ ​max



Vertex (x, y, z) Interpretation

V₁ (0, 0, 0) No bivector structure

V₂ (1, 0, 0) a-b maximal, c isolated

V₃ (0, 1, 0) b-c maximal, a isolated

V₄ (0, 0, 1) c-a maximal, b isolated

V₅ (½, ½, ½) Democratic—all relations equal

The numbers V + χ = 7 and dim(Cl(5)₁) × 3! = 30 are the key combinatorial invariants.

4. Derivation of the Electroweak Constants

4.1 The Fine Structure Constant

The fine structure constant emerges from the full N=3 geometry:

Origin of each factor:

Factor Value Algebraic Origin

√3 1.732 Equilateral bivector magnitude: |a∧b| at θ = 60°

(2π)² 39.48 Rotor periodicity: exp(B·2π) = 1, with 2 independent phases

3! = 6 6 Antisymmetry of wedge product under permutations

24π² 236.87 Combined: (2π)² × 3!

7 7 V + χ = constraint complexity

30 30 dim₁ × 3! = algebraic context

√(7/30) 0.483 Monogamy correction

α = ​

24π + ​

2 7/30

​3



Numerical result:

Agreement with experiment: 1 ppm

4.2 The Weinberg Angle

The Weinberg angle is simpler—a direct ratio:

Interpretation: The fraction of the algebraic structure subject to monogamy constraints.

Full topological formula (incorporating χ's distinct contribution):

Experimental value (at M_Z): 0.23121. Agreement: 0.03%

4.3 Why the Difference in Structure?

Constant Formula What it measures

α √3/(24π² + √(7/30)) Coupling strength (involves full geometry)

sin²θ_W 7/30 Mixing ratio (pure counting)

The fine structure constant involves the full N=3 structure—geometry (√3), phases ((2π)²), symmetry (3!), plus
monogamy correction. The Weinberg angle involves only the constraint fraction—no geometry or phases, just
combinatorics.

α = ​ =
236.87 + 0.483

1.732
​ =

237.35
1.732

0.007297

​ =
α

1
137.036

sin θ ​ =2
W ​

=
dim(Cl(5) ​) × 3!1

V + χ
​ =

30
7

0.2333

sin θ ​ =2
W ​ =

30 + 2/7
7

​ =
212
49

0.2311



5. Connection to Barandes' Indivisible Stochastic Processes

5.1 Barandes' Framework

Barandes shows that quantum mechanics emerges from indivisible stochastic processes—processes where:

The Chapman-Kolmogorov equation fails. You cannot decompose the process A→C into sub-processes through
intermediate state B without changing the probabilities.

5.2 The Correspondence

Our Framework Barandes

N=2 (no monogamy) Divisible processes

N=3 (monogamy active) Indivisible processes

Monogamy: λ_AB + λ_BC ≤ Λ Chapman-Kolmogorov failure

Trivector irreducibility Process irreducibility

The monogamy constraint IS indivisibility.

When b's relational capacity is bounded, it cannot fully mediate both the a↔b and b↔c correlations. The
intermediate state b is "shared" in a way that prevents factorization.

5.3 GA Formulation

In Cl(5), a trivector a∧b∧c is irreducible—it cannot be written as a product of lower-grade elements. This
algebraic irreducibility corresponds exactly to Barandes' process indivisibility.

The transition from divisible to indivisible (classical to quantum) occurs at N=3, where:

Trivector structure becomes non-trivial

Monogamy constraints activate

Chapman-Kolmogorov fails

Quantum behavior is N≥3 relational structure.

P (A → C) = ​P (A →
B

∑ B)P (B → C)



6. Connection to Causal Fermion Systems

6.1 Finster's Framework

In Causal Fermion Systems, spacetime emerges from a measure space of operators. The key structure is the
causal action principle:

where L(x,y) is built from the spectrum of the operator product xy.

The Lagrangian penalizes configurations where points are:

Too similar (indistinguishable)

Too different (causally disconnected)

The optimum is where points are just distinguishable enough.

6.2 The Correspondence

Our Framework CFS

Feature a Spacetime point x

Geometric product ab Operator product xy

Scalar a·b Eigenvalue magnitude

Bivector a∧b Causal structure

Distinguishability bounds Causal action constraints

Monogamy constraint Causal bound: L(a,b) + L(b,c) bounded

The causal action principle IS the distinguishability optimization.

6.3 Emergence of Lorentzian Signature

In CFS, Lorentzian signature (−,+,+,+) emerges from the causal action—it's not assumed.

S[ρ] = L(x, y) dρ(x)dρ(y)∫∫



In our framework, the Lorentzian signature reflects the ontological difference between:

Directions meaningful at N=2 (spatial: e₁, e₂, e₃)

Directions meaningful only at N≥3 (ordering: e₅)

The e₄ direction emerges when circulation becomes possible (N≥3). The "minus sign" in ds² = −c²dt² + dx²
encodes this categorical difference, not a metric magnitude difference.

Both frameworks derive Lorentzian structure rather than assuming it.

7. Connection to Thermodynamics

7.1 Entropy as Grade Mixing

A general element of Cl(5) is a mixed multivector:

spanning all grades. Define grade probabilities:

where |M|_k is the magnitude of the grade-k component. Then:

Low entropy: M concentrated in one grade (pure state)

High entropy: M spread across grades (mixed state)

7.2 The Efficiency Potential

The efficiency potential Φ = ln(Ω/K) measures hidden structure:

Ω: Total degrees of freedom (dim(Cl(5)) = 32)

K: Observer-accessible degrees of freedom

M = s + v + B + T + Q + P

p ​ =k ​

​ ∣M ∣ ​∑j j
2

∣M ∣ ​k
2

S = − ​p ​ ln p ​

k

∑ k k



Observer Resolution K Φ = ln(32/K)

Full (all grades) 32 0

Grades 1,2,3 25 0.25

Grades 1,2 15 0.76

Grade 1 only 5 1.86

7.3 Monogamy as Entropy Subadditivity

The thermodynamic analog of monogamy is entropy subadditivity:

Correlations through B are limited by B's entropy capacity—exactly the monogamy constraint in
thermodynamic language.

7.4 Thermodynamic Interpretation of Constants

Constant Thermodynamic Meaning

α Entropy production efficiency

sin²θ_W Entropy partition fraction (constrained/total)

7 = V + χ Effective entropy of constrained sector

30 = 5 × 3! Maximum entropy of unconstrained sector

The electroweak constants are thermodynamic parameters of the constraint structure.

8. The Dimensional Constants: c, ℏ, and Uncertainty

8.1 The Speed of Light (c = 1)

Algebraic origin: Cl(5) is isotropic—all basis vectors satisfy eᵢ² = +1 with no algebraic preference for any
direction.

S(A,B) + S(B,C) ≤ S(A,C) + S(B)



Multi-framework interpretation:

Framework Why c = 1

GA Algebraic isotropy of Cl(5)

Barandes All directions in state space equivalent

CFS Causal action doesn't prefer any direction

Thermodynamics Entropy is isotropic

c = 1 is about isotropy, not "speed."

The Lorentzian signature (−,+,+,+) doesn't come from different "stiffnesses" in different directions. It comes
from the ontological distinction between N=2 structure (spatial) and N=3 structure (temporal/ordering).

8.2 Planck's Constant (ℏ = 1)

Algebraic origin: The minimum distinguishable bivector combined with rotor periodicity.

In GA, rotors R = exp(Bθ/2) generate evolution. The periodicity exp(B·2π) = 1 is algebraic, not geometric.
Combined with the minimum distinguishable bivector from N=3 structure, this sets the scale.

Multi-framework interpretation:

Framework What ℏ represents

GA Minimum bivector × rotor period

Barandes Minimum "indivisibility unit"

CFS Minimum "causal cell"

Thermodynamics Minimum distinguishable phase space cell

ℏ is the scale of distinguishability/indivisibility.

8.3 The Uncertainty Principle

Standard formulation: ΔxΔp ≥ ℏ/2

GA formulation: Conjugate variables span a bivector plane. The uncertainty relation states that the bivector
magnitude must exceed the minimum:



Multi-framework interpretation:

Framework What uncertainty means

GA Minimum bivector magnitude in phase space

Barandes Phase space is indivisible below this scale

CFS Causal uncertainty—minimum causal cell

Thermodynamics Minimum entropy cell

Uncertainty is about indivisibility, not measurement disturbance.

The uncertainty principle doesn't say "measurement disturbs the system." It says "the relational structure of
phase space cannot be divided below the minimum bivector scale." This is a geometric/algebraic fact, not an
epistemological limitation.

9. The Unified Picture

9.1 One Constraint, Four Languages

The monogamy constraint on bivector magnitudes:

appears in four equivalent forms:

Framework Expression Physical Meaning

GA/Relational Bivector bound Finite relational capacity

Barandes C-K failure Process indivisibility

CFS Causal bound Causal action constraint

Thermodynamics Subadditivity Entropy bound

∣Δx ∧ Δp∣ ≥ ℏ/2

∣a ∧ b∣ + ∣b ∧ c∣ ≤ Λ



9.2 The Grade-Framework Correspondence

GA Grade Barandes CFS Thermodynamics

0 (scalar) Transition probability Causal strength Energy

1 (vector) State Spacetime point Microstate

2 (bivector) Indivisibility measure Causal structure Pairwise entropy

3 (trivector) Quantum interference Spacetime volume 3-body correlation

Rotor exp(Bθ/2) Unitary evolution Causal propagator Time evolution

9.3 The Central Thesis

Quantum mechanics is the thermodynamics of distinguishability.

Specifically:

States are grade-1 elements (vectors)

Correlations are grade-2 elements (bivectors)

N=3 structure is grade-3 (trivectors)—where quantum behavior emerges

Evolution is rotors

Temperature is rotor frequency

Entropy is grade mixing

Monogamy is entropy subadditivity

The "mystery" of quantum mechanics dissolves: it's the natural structure of constrained distinguishability at
N≥3.

Terminological note: We use "quantum" to connect with established physics, but the underlying structure is
purely geometric—distinguishability constraints in Cl(5). The framework does not invoke wavefunctions,
Hilbert spaces, or measurement collapse. What physics calls "quantum behavior" is here identified as indivisible
stochastic structure (Barandes) emerging at N ≥ 3, where monogamy constraints activate and trivector
irreducibility appears.

10. Summary of Results



10.1 What We Derive

Quantity Formula Value Accuracy

α √3/(24π² + √(7/30)) 1/137.036 1 ppm

sin²θ_W (vertex-only) 7/30 0.2333 —

sin²θ_W (full topological) 49/212 0.2311 0.03%

10.2 What We Explain

Quantity Explanation

c = 1 Algebraic isotropy of Cl(5)

ℏ = 1 Minimum bivector + rotor periodicity

ΔxΔp ≥ ℏ/2 Minimum bivector bound (indivisibility)

Lorentzian signature N=2/N=3 ontological boundary

10.3 What We Unify

Connection Identification

Monogamy ↔ Indivisibility Same constraint on bivectors

Monogamy ↔ Causal action Same bound structure

Monogamy ↔ Subadditivity Same entropy constraint

N=3 emergence ↔ Quantum behavior Same threshold

11. Discussion

11.1 The Relational Ontology

Throughout this framework, relations are primary. The Clifford algebra Cl(5) is not a "space containing



things"—it IS the relational structure. Features (vectors) and relations (bivectors) are elements of the algebra,
not objects in a container.

This resolves the tension in earlier formulations that spoke of "constraint space" while claiming relations are
ontologically prior.

11.2 Why Cl(5)?

The dimension 5 appears to be the minimum for:

1. N=3 independent features (requires ≥3)

2. Non-trivial monogamy (requires "excess" bivector space)

3. Separate ordering direction (requires 3 + 1 + 1 = 5)

A rigorous derivation of "why 5" from the axiom alone remains for future work.

11.3 Dimensional vs Dimensionless Constants

The framework treats these differently:

Dimensionless (α, sin²θ_W): Pure numbers derivable as combinatorial invariants. Their values are predictions.

Dimensional (c, ℏ): Depend on unit conventions. We explain WHY they can be set to 1, but cannot "derive"
their SI values (those are human conventions).

11.4 Predictions and Tests

The framework makes specific predictions:

α = √3/(24π² + √(7/30)) exactly

sin²θ_W = 7/30 (vertex-only) or 49/212 (full topological structure)

N-dependence of constants (α larger at small N, corresponding to high energy)

These can be tested against precision measurements.

12. Conclusion

We have presented a unified framework in which:

1. The Clifford algebra Cl(5) provides the fundamental mathematical structure

2. The monogamy constraint on bivector magnitudes creates a polytope with V=5, χ=2



3. The fine structure constant α = √3/(24π² + √(7/30)) emerges from the full N=3 geometry

4. The Weinberg angle sin²θ_W = 49/212 emerges as the topological structure of the constraint polytope

5. The same constraint appears in Barandes (indivisibility), CFS (causal bound), and thermodynamics
(subadditivity)

6. The dimensional constants c, ℏ and the uncertainty principle are aspects of algebraic isotropy and
minimum distinguishable structure

The central insight is that quantum mechanics is the thermodynamics of distinguishability. The
"mysterious" features of quantum theory—superposition, entanglement, uncertainty—are natural consequences
of constrained relational structure at N≥3.

The electroweak constants are not arbitrary parameters but thermodynamic ratios determined by the
combinatorial structure of Cl(5). Physics, at its deepest level, is the working out of what must be true given that
nothing cannot exist.

Appendix A: Notation Summary

Symbol Meaning

Cl(5) Clifford algebra with 5 generators

eᵢ Basis vectors (i = 1,...,5)

a, b, c Feature vectors (grade-1)

a∧b Bivector (grade-2, oriented relation)

a∧b∧c Trivector (grade-3, N=3 structure)

a·b Scalar product (grade-0)

ab = a·b + a∧b Geometric product

R = exp(Bθ/2) Rotor (rotation generator)

V Number of vertices (= 5)

χ Euler characteristic (= 2)

α Fine structure constant



Symbol Meaning

θ_W Weinberg angle

Appendix B: Key Formulas

Fine structure constant:

Weinberg angle:

Monogamy constraint:

Bivector magnitude:

Rotor periodicity:

Version 2 — Updated for terminology consistency with SI documents

α = =
24π +2 7/30

3
137.036

1

sin θ ​ =2
W =

30
7

0.2333 (vertex-only)

sin θ ​ =2
W =

212
49

0.2311 (full topological)

∣a ∧ b∣ + ∣b ∧ c∣ ≤ Λ

∣a ∧ b∣ =2 ∣a∣ ∣b∣ −2 2 (a ⋅ b)2

e =B⋅2π 1 (algebraic, not geometric)


