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Supporting Information: Fundamental Constants from Constraint

Geometry

Derivations of a, sin’0_W, ¢, /i, and the Minimum Phase Space Cell

FC.1 Introduction

FC.1.1 Purpose

This Supporting Information provides complete derivations of fundamental physical constants from the

constraint framework. Each constant emerges from the geometric structure that follows from the axiom ON —

—N (nothing cannot exist).

Constants derived:

Constant Formula Value Accuracy
Fine structure constant o \/3/(247t2 + \/(7/30)) 1/137.036 1 ppm
Weinberg angle sin’0 W 49/212 0.2311 0.03%
Speed of light c V(g p/g_ 1) 1 (natural) Exact
Reduced Planck constant 7 A _min/2n 1 (natural) Exact

Additional content:

e The minimum phase space cell and conjugate variable bounds
e The monogamy polytope structure underlying electroweak parameters

e Scale dependence (N-dependence) of constants—exploratory analysis

FC.1.2 What This Document Establishes

Derived from the axiom:

e Dimensionless constants (o, sin’0_W) as pure geometric invariants

e Dimensional constants (c, /) as unit conversion factors with geometric meaning

¢ The minimum distinguishable cell in phase space



Exploratory (not fully derived):

e The N-dependence of constants at different scales

¢ The mapping between experimental energy and effective N

FC.1.3 The Derivation Strategy

Each derivation follows the same logical chain:

-
Axiom (ON — —N)
!
Viable Region (distinguishability bounds)
!

N = 3 Structure (minimal temporal configuration)

!

Monogamy Constraint (finite correlation capacity)

!

Geometric Invariants (the constants)

g

The constants are not fitted to experiment—they emerge from counting and geometry.

FC.1.4 Companion Documents

This document provides derivations. Related material appears in:

Topic Document

Geometric Algebra formulation [GA_Uniﬁed_Framework_Draft.md)
Physical interpretation (SI_SectionS_Physical_Emergence.md]
Connection to Barandes (SI_SectionS_Bridge_Barandes.md)

Constraint space geometry (SI_Section3_Constraint_Space_Ge0metry.md)




Part I: The Monogamy Polytope

FC.2 The Monogamy Constraint

FC.2.1 Finite Correlation Capacity

At N = 3, three features A, B, C are mutually related. Each feature has finite capacity for correlation—a

consequence of the axiom requiring features to remain distinguishable from each other.

The constraint: If A is highly correlated with B (large A_AB), A's capacity for correlation with C is reduced.

Formally, each feature has correlation budget A:

FC.2.2 The Polytope Structure

Normalizing by A and defining:

e x=A AB/A
e y=X BC/A
e z=) CA/A

The constraints become:
Monogamy constraints:

° X+y§1
e y+z<I

e z7+x<1

Non-negativity:

e XxX,¥2z>0

Mg + Aac < A (A’s budget)

Mg + Ape < A (B’s budget)

ABc + Aac <A (C’S budget)



This defines a convex polytope in the unit cube [0,1].

FC.2.3 Polytope Properties

The monogamy polytope has:

Property Value Significance
Vertices V 5 Extreme correlation configurations
Edges E 9 Transitions between extremes
Faces F 6 Constraint boundaries
Euler characteristic 2 V - E + F (topological invariant)
Volume 1/4 Fraction of unit cube

The five vertices:
Vertex Coordinates (x, y, z) Physical Meaning
Vi (0,0,0) No correlations—maximally distinguishable
V2 (1,0,0) A-B maximally correlated, C isolated
Vs 0,1,0) B-C maximally correlated, A isolated
Vi 0,0, 1) C-A maximally correlated, B isolated
Vs (%%, 72, '2) Democratic—all pairs equally correlated

Structure: V=1 + 3 + 1 (origin + axis vertices + center)
FC.2.4 Why y =2 Is Guaranteed
The Euler characteristic x = 2 follows necessarily from the axiom:

1. Correlation space is 3-dimensional (three pairwise correlations at N = 3)
2. Convexity follows from the linear nature of monogamy constraints

3. Simple connectivity follows from inequality constraints (no holes)

For any convex 3D polytope, y =V - E + F =2 by Euler's theorem.



The combination V + y =7 captures both:

e Local structure (V = 5 vertices where constraints saturate)

¢ Global topology (x = 2 encoding how pieces connect)

Part II: The Fine Structure Constant

FC.3 Derivation of o

FC.3.1 The Formula

a = \/§ = L
2472 4+ 1/7/30  137.036

Agreement with experiment: 1 part per million

FC.3.2 Component Analysis

Factor Value Geometric Origin
3 1.732 Equilateral triangle—minimal N = 3 structure
(2n)? 39.48 Two independent U(1) phases (third fixed by closure)
31=6 6 Permutation symmetry of three indistinguishable features
24n? 236.87 Combined: (2m)? x 3!
7 7 V + x of monogamy polytope
30 30 5 constraints X 3! permutations
\/(7/30) 0.483 Monogamy correction
FC.3.3 The Derivation

Step 1: The Axiom — Viable Region

From &N — —N, configurations must be distinguishable from both extremes:



e From nothing: %; giCi? > &2

e From contradiction: % gi(1-C;)*> > &2

This creates a shell V between two ellipsoids in 5D constraint space.

Setting € = 1 as the unit of distinguishability provides natural normalization—addressing the fatal flaw in

Wyler's 1969 derivation, which required arbitrary R = 1.
Step 2: N = 3 Existence
For ordering structure (circulation) to emerge, minimum 3 features are required:

e N =2 is genuinely atemporal (no chirality, no ordering direction)

e N >3 allows irreducible circulation — ordering emergence

The minimal N = 3 configuration is an equilateral triangle in constraint space with side length a = ¢/\/g.
Step 3: Phase Structure

Each pair of features has a correlation with magnitude and phase:

i0aB

AaB = |AaBle
Phase closure (Chern class ¢i1 = 1):
Oap +0pc +0ca = 27

This fixes one phase, leaving 2 independent U(1) degrees of freedom — factor (2m)>.
Step 4: Permutation Symmetry

The 3 features are indistinguishable, giving S; symmetry with 3! = 6 elements.

Step 5: The Base Formula

The packing efficiency of minimal N = 3 structures in constraint-phase space:

V3 VB 1
b T (2m)2 x 31 242 136.78




This captures the triangle geometry, phase structure, and permutation symmetry. The remaining geometric

structure—the monogamy constraint—provides the final factor.
Step 6: The Monogamy Correction
The monogamy constraint restricts the valid configuration space further.

The correction factor:

Vv |7
Correction = E :_;f = 30

Interpretation: The ratio of polytope topological weight (7) to embedding space complexity (30).

Step 7: The Complete Formula

o V3 17321
2472 +/7/30 237.35  137.036

FC.3.4 Why a Is Small

Most of configuration space cannot support valid N = 3 structures. The denominator = 237 reflects the

"wastage" from:

e Phase space constraints (2r per independent phase)
e Symmetry requirements (3! permutations)

e Monogamy constraints (7 polytope vertices in 30-dimensional embedding)

o ~ 1/137 because only about 1/237 of the available structure supports electromagnetic coupling.

FC.3.5 Comparison with Wyler (1969)

Wyler derived a =~ 1/137.036 from bounded complex domains:

B 9 7'('5 1/4
W= grt \ 215




Aspect Wyler This Framework

Normalization Arbitrary R=1 Fixed by viable region
Symmetry factor 5!1=120 31=6

Geometric factor 9 (unexplained) V3 (equilateral triangle)
Correction None \(7/30) from monogamy
Physical basis Bounded domains Constraint geometry

The critical difference: Wyler's normalization was arbitrary (Robertson's 1971 critique). Here, the viable region

bounds fix all scales from the axiom.

Part II1: The Weinberg Angle
FC.4 Derivation of sin’0_W

FC.4.1 The Formula

Vertex-only formula:

V+x 7
2
Ow = = — =0.2333

SILUW = 53 T 30
Full topological formula:

4
sin? Oy = V'Jr X _ 4 gas11
h x 3+ J—VJFX 212

Experimental value (at M_Z): 0.23121

Agreement: 0.03% (3 parts in 10,000)

FC.4.2 The Physical Picture

The Weinberg angle measures the mixing between electromagnetic (U(1)) and weak (SU(2)) interactions. In the

framework:



U(1) structure:

e Associated with the A-sector (correlation/phase structure)
e Exists at N > 3 where pairwise correlations are defined

e Subject to monogamy constraint

SU(2) structure:

e Associated with N = 2 spinor/doublet structure
e Exists at N = 2, before monogamy emerges

e Not subject to monogamy constraint

The Weinberg angle is the boundary coupling between these two regimes:

-
N = 2: SU(2) structure exists
Monogamy does NOT exist

N =3: U(1) phase structure exists
Monogamy DOES exist

7-vertex polytope constrains correlations

FC.4.3 The Derivation
Step 1: The Mixing Ratio

The Weinberg angle measures what fraction of electroweak structure is "electromagnetic" (U(1), monogamy-

constrained) versus "weak" (SU(2), monogamy-free).
The U(1) sector lives in the monogamy polytope:

e Topological weight=V +y=5+2=7

The total embedding space:

e 5 constraint dimensions X 3! permutation symmetry = 30

The base ratio:

2 U(1) constrained contribution V +x 7
sin = = = —
W Total electroweak structure 5 x 3! 30




Step 2: Why V + y, Not Just V

The Euler characteristic y = 2 appears because the Weinberg angle measures global structure, not just local

extremes:

e V =5: Local structure—where constraints saturate

e x=2: Global connectivity—how local pieces fit together

For a quantity measuring overall coupling between sectors, both local and global structure contribute.
Step 3: The Topological Correction

The base formula 7/30 = 0.2333 captures the vertex structure. The full topological structure includes the distinct

role of the Euler characteristic y:

2
Topological refinement = X __ 2

V4+x 7

This represents "the global structure's fractional contribution to the topological weight."

Adding to the denominator:

. 7 TXT 49
sin” Oy = — = — =0.2311
30+2 30x7+2 212
FC.4.4 Connection to o
Both a and sin?0 W emerge from the same monogamy polytope:
Constant Formula Role of Polytope
a \/3/(247:2 + \/(7/30)) \/(7/30) as correction in denominator
sin’g W 7/(30 +2/7) 7/30 as direct ratio
The difference:

¢ o measures coupling strength—involves full N = 3 structure (geometry, phase space, symmet
pling g g ry, p Y y ry

e sin’0_W measures mixing ratio—a pure partition of electroweak structure



o requires the full geometry (V3 from triangle, (27)? from phases). sin?0_ W requires only the counting structure
(7/30).
FC.4.5 Summary

The Weinberg angle sin’0 W =~ 0.23 emerges because:

1. The electromagnetic component of electroweak is constrained by monogamy
2. The monogamy polytope has topological weight V +y =7

3. The embedding space has complexity 5 x 3! =30

4. The ratio 7/30 = 0.23 is the natural "electromagnetic fraction"

5. The refinement 2/7 accounts for global vs. local structure

Part IV: The Speed of Light
FC.5 Derivation of ¢

FC.5.1 The Formula

2 _ 98
gr

In natural units, ¢ = 1.

FC.5.2 The Geometric Meaning

The speed of light relates spatial displacement to ordering displacement. In constraint geometry:

e g PB: Metric stiffness (Fisher information) in boundary direction

e g T: Metric stiffness in ordering direction

The maximum propagation speed is achieved when spatial and ordering costs are equal:

g5 - (AB)? =g, - (AT)?

giving:



FC.5.3 Why ¢ =1 in Natural Units

The axiom treats all constraint directions symmetrically with respect to distinguishability. There is no preferred

direction in the viable region.
Therefore: g B=g 1=g,andc=1.

Physical interpretation: The speed of light is not a "speed" in the usual sense—it is the ratio of metric
stiffnesses in spatial and ordering directions. The equality ¢ = 1 reflects the symmetric role of these constraints

in the axiom.

FC.5.4 SI Units

The SI value ¢ = 299,792,458 m/s is a unit conversion factor between:

e Human-scale length units (meters)

e Human-scale time units (seconds)

The framework does not "derive" this number—it explains why ¢ can be set to 1 in natural units and what that

means geometrically.

Part V: The Minimum Phase Space Cell
FC.6 The Bound on Conjugate Variables

FC.6.1 Conjugate Structure

The constraint space naturally partitions into conjugate pairs—variables whose joint specification determines a

configuration but which trade off under the distinguishability metric.
The ordering-energy sector:

e 1: Ordering structure

e E: Gradient magnitude in t direction (its conjugate)

The spatial-momentum sector:



e Position x in (B, x, p) subspace

e Momentum p: Rate of constraint flow

FC.6.2 The Symplectic 2-Form

On conjugate sectors, the natural area measure:
w=dpANdx

defines a symplectic structure with properties:

e Antisymmetric: o(u,v) = -o(v,u)
e Non-degenerate: ®w(u,v) =0 for all v implies u =0

e C(Closed:do=0

FC.6.3 The Minimum Distinguishable Cell

For two configurations to be distinct features, they must satisfy:

D(4,B)* = gi(C{' = CP)? > &

In the symplectic (X, p) sector:
D* = g,(Az)" + gp(Ap)* > €

The minimum area enclosing a distinguishable feature:

€ € 7'('62

Apin =T - : =

V9 v /929

FC.6.4 Connection to N = 3 Structure

From the o derivation, the minimal N = 3 triangle has area:

Atriangle -

~%
M
[\



Projection to the symplectic (t, E) sector with g_t = V3/(87):

ATE) V3 8m

2 2
o 1 . €” = 21e

)

Setting € = 1 (the distinguishability unit):

Amin =27

FC.6.5 The Action Unit /
Define 7 as action per unit cycle:

Amin

h 27

=1 (natural units)

In SI units, 2 =~ 1.055 x 10734 J-s converts between natural and conventional action units.

h is not a fundamental constant of nature but a unit conversion factor. The fundamental quantity is the

minimum distinguishable cell, which has area 27 in natural units.

FC.6.6 The Conjugate Variable Bound

A single feature occupies at least the minimum cell:
Az - Ap > A,in = 27h

Using standard deviations (6_x, 6_p) and the Cauchy-Schwarz inequality:

>t

O'm'o'p2§

This is a geometric bound, not a measurement limitation.

The bound states: configurations below the minimum cell cannot exist as distinct features. They would be
indistinguishable from nothing—and nothing cannot exist.

FC.6.7 Conceptual Clarification

This derivation does not invoke:



e  Wave mechanics or wavefunctions
e Measurement disturbance
e Observer effects

e Hilbert spaces

The bound emerges from distinguishability geometry—the structure of what can exist as separate features in

constraint space.

Connection to Barandes' framework: The minimum cell corresponds to the "indivisibility scale" below which
stochastic processes cannot be factorized. What appears as "quantum" behavior is the thermodynamics of

distinguishability at this scale.

Part VI: Scale Dependence of Constants

FC.7 The N-Dependence Structure

Status: Exploratory. The following analysis is not fully derived but indicates how constants might depend on

effective feature count.

FC.7.1 The Physical Question

Experimental measurements show constants "run" with energy:

Constant Low Energy High Energy (M_Z)
a’ 137.036 128
sin’0_W 0.238 0.231

What does this mean in the framework?

FC.7.2 Two Interpretive Pictures

Picture 1: N-Dependence (Dilution)
Energy scale corresponds to effective feature count N_eft:

e High energy — N_eff close to 3 (minimal structure)

e Low energy — N_eff > 3 (more features resolved)



Coupling "dilutes" over O(N?) pairs as N increases:

a(N) ~ Nz % (geometric factors)

Picture 2: Monogamy Tightening

High energy — features closer in constraint space — monogamy more restrictive

Low energy — features further apart — monogamy looser

Both pictures describe the same physics from different perspectives.

FC.7.3 The Central Limit Connection

The statistical observation that many quantities saturate by N = 7 follows from the central limit theorem—

sample distributions approach their asymptotic form rapidly, with most convergence occurring by N = 7.

Applied to constants:

N Regime Expected Behavior

3 Fundamental Bare geometric values

4-6 Transition Rapid approach to asymptote
7+ Saturated Essentially asymptotic

The running "mostly happens" between N =3 and N = 7.

FC.7.4 Speculative Formulas

For a (speculative):

> ]-+(N_3)/Nscale

where:

e o o '=137.036 is the large-N asymptote
e A=10 is the total running range

e N scale =4 is the characteristic transition scale



For sin’0_W (speculative):

_ V(N)+2

- 2
30 + v

SiIl2 HW (N)

where V(N) is the vertex count of the monogamy polytope at N features.

FC.7.5 What Remains to Be Derived

A complete theory of running requires:

1. N_eff(E): The map from experimental energy to effective feature count
2. V(N): The polytope vertex count at general N
3. g(N): Geometric efficiency factors at general N

4. The spacetime emergence bridge: How probing at energy E translates to constraint space operations
The analogy: The current framework provides "special relativity"—static geometry with fixed constants.
Explaining running requires "general relativity"—geometry that responds to context.

The Jacobson connection (thermodynamics — Einstein equations) may provide this bridge, but the full

development is incomplete.

FC.7.6 What Our Derived Values Represent

The formulas a = V3/(24n* + \(7/30)) and sin*0_W = 49/212 give values matching low-energy experiments.

Interpretation: These are the large-N (low-energy) asymptotic values. The framework derives what

experiments measure at macroscopic scales, where N_eff is effectively large.

The high-energy (small N) regime requires the additional structure outlined above.

Part VII: Summary
FC.8 The Unified Picture

FC.8.1 All Constants from One Structure

The monogamy polytope underlies both electroweak parameters:



Monogamy Polytope (V =5, x =2, embedded in 30)

!
|
[ 1
! 1
o sin’g W
! !

\(7/30)yas  7/30 as

correction  direct ratio
! !

1/137.036  0.2311

(1 ppm) (0.03%)

FC.8.2 Dimensional vs. Dimensionless

Type Constants Status
Dimensionless o, sin?0_ W Derived as geometric invariants
Dimensional c, h Explained as unit conversions with geometric meaning

The dimensionless constants are predictions. The dimensional constants explain why natural units (c =4 =1)

are natural.

FC.8.3 The Logical Chain

f

ON — —N (Axiom: nothing cannot exist)

!
Distinguishability requirement (g > 0)
!
Five constraints (categorical exhaustion)
!
Viable region (shell in constraint space)
!
N = 3 structure (minimal circulation)
!
Monogamy polytope (V =5, y=2)
l
Phase structure (U(1) x U(1))
!

Permutation symmetry (Ss)

l




Geometric invariants

l
a=1/137.036, sin?0_W =0.2311,c=1,4=1

FC.8.4 What This Establishes

The framework predicts:

e The fine structure constant to 1 ppm
e The Weinberg angle to 0.03%
e The existence of a minimum phase space cell

e The equality of spatial and temporal stiffnesses (c = 1)

The framework explains:

e Why these particular numbers (geometric counting)
e Why a is small (packing efficiency)
e  Why sin?0 W = 0.23 (monogamy fraction)

e Why conjugate variables have minimum products (distinguishability)

Open questions:

e The hierarchy problem (why G << a)
e Particle masses (m_e/m_p)
e The strong coupling o_s

e Complete theory of running

Appendix: Notation Summary

Symbol Meaning
ON — N The axiom: if nothing were possible, nothing would obtain
v Viable region in constraint space

B, p, A7) The five constraints




Symbol Meaning

0] Efficiency potential In(€2/K)
A Correlation capacity (monogamy bound)
v Vertex count of monogamy polytope (= 5)
X Euler characteristic (= 2)
g i Metric stiffness in constraint direction i
€ Distinguishability threshold
N Number of features
o Fine structure constant
0 W Weinberg angle
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