

Supporting Information: Fundamental Constants from Constraint Geometry

Derivations of α , $\sin^2\theta_W$, c , \hbar , and the Minimum Phase Space Cell

FC.1 Introduction

FC.1.1 Purpose

This Supporting Information provides complete derivations of fundamental physical constants from the constraint framework. Each constant emerges from the geometric structure that follows from the axiom $\Diamond N \rightarrow \neg N$ (nothing cannot exist).

Constants derived:

Constant	Formula	Value	Accuracy
Fine structure constant α	$\sqrt{3}/(24\pi^2 + \sqrt{7/30})$	1/137.036	1 ppm
Weinberg angle $\sin^2\theta_W$	49/212	0.2311	0.03%
Speed of light c	$\sqrt{g_\beta/g_\tau}$	1 (natural)	Exact
Reduced Planck constant \hbar	$A_{\text{min}}/2\pi$	1 (natural)	Exact

Additional content:

- The minimum phase space cell and conjugate variable bounds
- The monogamy polytope structure underlying electroweak parameters
- Scale dependence (N-dependence) of constants—exploratory analysis

FC.1.2 What This Document Establishes

Derived from the axiom:

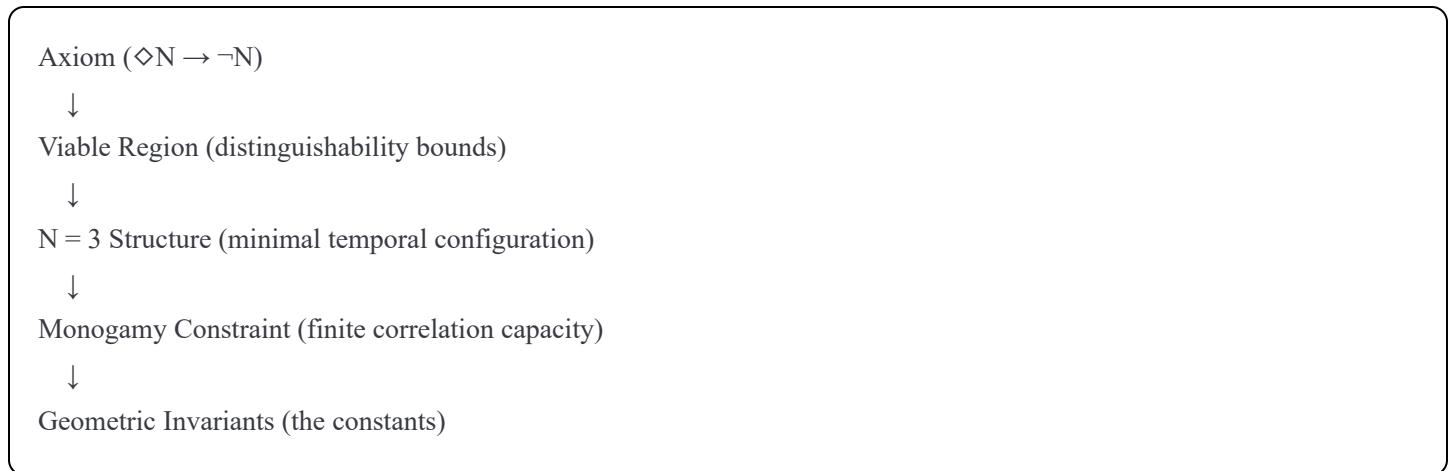
- Dimensionless constants (α , $\sin^2\theta_W$) as pure geometric invariants
- Dimensional constants (c , \hbar) as unit conversion factors with geometric meaning
- The minimum distinguishable cell in phase space

Exploratory (not fully derived):

- The N-dependence of constants at different scales
- The mapping between experimental energy and effective N

FC.1.3 The Derivation Strategy

Each derivation follows the same logical chain:



The constants are not fitted to experiment—they emerge from counting and geometry.

FC.1.4 Companion Documents

This document provides derivations. Related material appears in:

Topic	Document
Geometric Algebra formulation	GA_Unified_Framework_Draft.md
Physical interpretation	SI_Section5_Physical_Emergence.md
Connection to Barandes	SI_Section5_Bridge_Barandes.md
Constraint space geometry	SI_Section3_Constraint_Space_Geometry.md

Part I: The Monogamy Polytope

FC.2 The Monogamy Constraint

FC.2.1 Finite Correlation Capacity

At $N = 3$, three features A, B, C are mutually related. Each feature has finite capacity for correlation—a consequence of the axiom requiring features to remain distinguishable from each other.

The constraint: If A is highly correlated with B (large λ_{AB}), A's capacity for correlation with C is reduced.

Formally, each feature has correlation budget Λ :

$$\lambda_{AB} + \lambda_{AC} \leq \Lambda \quad (\text{A's budget})$$

$$\lambda_{AB} + \lambda_{BC} \leq \Lambda \quad (\text{B's budget})$$

$$\lambda_{BC} + \lambda_{AC} \leq \Lambda \quad (\text{C's budget})$$

FC.2.2 The Polytope Structure

Normalizing by Λ and defining:

- $x = \lambda_{AB}/\Lambda$
- $y = \lambda_{BC}/\Lambda$
- $z = \lambda_{CA}/\Lambda$

The constraints become:

Monogamy constraints:

- $x + y \leq 1$
- $y + z \leq 1$
- $z + x \leq 1$

Non-negativity:

- $x, y, z \geq 0$

This defines a convex polytope in the unit cube $[0,1]^3$.

FC.2.3 Polytope Properties

The monogamy polytope has:

Property	Value	Significance
Vertices V	5	Extreme correlation configurations
Edges E	9	Transitions between extremes
Faces F	6	Constraint boundaries
Euler characteristic χ	2	$V - E + F$ (topological invariant)
Volume	1/4	Fraction of unit cube

The five vertices:

Vertex	Coordinates (x, y, z)	Physical Meaning
V_1	(0, 0, 0)	No correlations—maximally distinguishable
V_2	(1, 0, 0)	A-B maximally correlated, C isolated
V_3	(0, 1, 0)	B-C maximally correlated, A isolated
V_4	(0, 0, 1)	C-A maximally correlated, B isolated
V_5	($\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$)	Democratic—all pairs equally correlated

Structure: $V = 1 + 3 + 1$ (origin + axis vertices + center)

FC.2.4 Why $\chi = 2$ Is Guaranteed

The Euler characteristic $\chi = 2$ follows necessarily from the axiom:

1. Correlation space is 3-dimensional (three pairwise correlations at $N = 3$)
2. Convexity follows from the linear nature of monogamy constraints
3. Simple connectivity follows from inequality constraints (no holes)

For any convex 3D polytope, $\chi = V - E + F = 2$ by Euler's theorem.

The combination $V + \chi = 7$ captures both:

- Local structure ($V = 5$ vertices where constraints saturate)
- Global topology ($\chi = 2$ encoding how pieces connect)

Part II: The Fine Structure Constant

FC.3 Derivation of α

FC.3.1 The Formula

$$\alpha = \frac{\sqrt{3}}{24\pi^2 + \sqrt{7/30}} = \frac{1}{137.036}$$

Agreement with experiment: 1 part per million

FC.3.2 Component Analysis

Factor	Value	Geometric Origin
$\sqrt{3}$	1.732	Equilateral triangle—minimal $N = 3$ structure
$(2\pi)^2$	39.48	Two independent $U(1)$ phases (third fixed by closure)
$3! = 6$	6	Permutation symmetry of three indistinguishable features
$24\pi^2$	236.87	Combined: $(2\pi)^2 \times 3!$
7	7	$V + \chi$ of monogamy polytope
30	30	5 constraints $\times 3!$ permutations
$\sqrt{7/30}$	0.483	Monogamy correction

FC.3.3 The Derivation

Step 1: The Axiom → Viable Region

From $\diamond N \rightarrow \neg N$, configurations must be distinguishable from both extremes:

- From nothing: $\sum_i g_i C_i^2 \geq \varepsilon^2$
- From contradiction: $\sum_i g_i (1-C_i)^2 \geq \varepsilon^2$

This creates a shell V between two ellipsoids in 5D constraint space.

Setting $\varepsilon = 1$ as the unit of distinguishability provides natural normalization—addressing the fatal flaw in Wyler's 1969 derivation, which required arbitrary $R = 1$.

Step 2: $N = 3$ Existence

For ordering structure (circulation) to emerge, minimum 3 features are required:

- $N = 2$ is genuinely atemporal (no chirality, no ordering direction)
- $N \geq 3$ allows irreducible circulation \rightarrow ordering emergence

The minimal $N = 3$ configuration is an equilateral triangle in constraint space with side length $a = \varepsilon/\sqrt{g}$.

Step 3: Phase Structure

Each pair of features has a correlation with magnitude and phase:

$$\lambda_{AB} = |\lambda_{AB}| e^{i\theta_{AB}}$$

Phase closure (Chern class $c_1 = 1$):

$$\theta_{AB} + \theta_{BC} + \theta_{CA} = 2\pi$$

This fixes one phase, leaving 2 independent $U(1)$ degrees of freedom \rightarrow factor $(2\pi)^2$.

Step 4: Permutation Symmetry

The 3 features are indistinguishable, giving S_3 symmetry with $3! = 6$ elements.

Step 5: The Base Formula

The packing efficiency of minimal $N = 3$ structures in constraint-phase space:

$$\alpha_{base} = \frac{\sqrt{3}}{(2\pi)^2 \times 3!} = \frac{\sqrt{3}}{24\pi^2} = \frac{1}{136.78}$$

This captures the triangle geometry, phase structure, and permutation symmetry. The remaining geometric structure—the monogamy constraint—provides the final factor.

Step 6: The Monogamy Correction

The monogamy constraint restricts the valid configuration space further.

The correction factor:

$$\text{Correction} = \sqrt{\frac{V + \chi}{5 \times 3!}} = \sqrt{\frac{7}{30}}$$

Interpretation: The ratio of polytope topological weight (7) to embedding space complexity (30).

Step 7: The Complete Formula

$$\alpha = \frac{\sqrt{3}}{24\pi^2 + \sqrt{7/30}} = \frac{1.732}{237.35} = \frac{1}{137.036}$$

FC.3.4 Why α Is Small

Most of configuration space cannot support valid $N = 3$ structures. The denominator ≈ 237 reflects the "wastage" from:

- Phase space constraints (2π per independent phase)
- Symmetry requirements ($3!$ permutations)
- Monogamy constraints (7 polytope vertices in 30-dimensional embedding)

$\alpha \approx 1/137$ because only about 1/237 of the available structure supports electromagnetic coupling.

FC.3.5 Comparison with Wyler (1969)

Wyler derived $\alpha \approx 1/137.036$ from bounded complex domains:

$$\alpha_W = \frac{9}{8\pi^4} \left(\frac{\pi^5}{2^4 \cdot 5!} \right)^{1/4}$$

Aspect	Wyler	This Framework
Normalization	Arbitrary $R = 1$	Fixed by viable region
Symmetry factor	$5! = 120$	$3! = 6$
Geometric factor	9 (unexplained)	$\sqrt{3}$ (equilateral triangle)
Correction	None	$\sqrt{7/30}$ from monogamy
Physical basis	Bounded domains	Constraint geometry

The critical difference: Wyler's normalization was arbitrary (Robertson's 1971 critique). Here, the viable region bounds fix all scales from the axiom.

Part III: The Weinberg Angle

FC.4 Derivation of $\sin^2 \theta_W$

FC.4.1 The Formula

Vertex-only formula:

$$\sin^2 \theta_W = \frac{V + \chi}{5 \times 3!} = \frac{7}{30} = 0.2333$$

Full topological formula:

$$\sin^2 \theta_W = \frac{V + \chi}{5 \times 3! + \frac{\chi}{V+\chi}} = \frac{49}{212} = 0.2311$$

Experimental value (at M_Z): 0.23121

Agreement: 0.03% (3 parts in 10,000)

FC.4.2 The Physical Picture

The Weinberg angle measures the mixing between electromagnetic (U(1)) and weak (SU(2)) interactions. In the framework:

U(1) structure:

- Associated with the λ -sector (correlation/phase structure)
- Exists at $N \geq 3$ where pairwise correlations are defined
- Subject to monogamy constraint

SU(2) structure:

- Associated with $N = 2$ spinor/doublet structure
- Exists at $N = 2$, before monogamy emerges
- Not subject to monogamy constraint

The Weinberg angle is the boundary coupling between these two regimes:

$N = 2$: SU(2) structure exists

Monogamy does NOT exist

$N = 3$: U(1) phase structure exists

Monogamy DOES exist

7-vertex polytope constrains correlations

FC.4.3 The Derivation

Step 1: The Mixing Ratio

The Weinberg angle measures what fraction of electroweak structure is "electromagnetic" (U(1), monogamy-constrained) versus "weak" (SU(2), monogamy-free).

The U(1) sector lives in the monogamy polytope:

- Topological weight = $V + \chi = 5 + 2 = 7$

The total embedding space:

- 5 constraint dimensions $\times 3!$ permutation symmetry = 30

The base ratio:

$$\sin^2 \theta_W = \frac{\text{U(1) constrained contribution}}{\text{Total electroweak structure}} = \frac{V + \chi}{5 \times 3!} = \frac{7}{30}$$

Step 2: Why $V + \chi$, Not Just V

The Euler characteristic $\chi = 2$ appears because the Weinberg angle measures global structure, not just local extremes:

- $V = 5$: Local structure—where constraints saturate
- $\chi = 2$: Global connectivity—how local pieces fit together

For a quantity measuring overall coupling between sectors, both local and global structure contribute.

Step 3: The Topological Correction

The base formula $7/30 = 0.2333$ captures the vertex structure. The full topological structure includes the distinct role of the Euler characteristic χ :

$$\text{Topological refinement} = \frac{\chi}{V + \chi} = \frac{2}{7}$$

This represents "the global structure's fractional contribution to the topological weight."

Adding to the denominator:

$$\sin^2 \theta_W = \frac{7}{30 + \frac{2}{7}} = \frac{7 \times 7}{30 \times 7 + 2} = \frac{49}{212} = 0.2311$$

FC.4.4 Connection to α

Both α and $\sin^2 \theta_W$ emerge from the same monogamy polytope:

Constant	Formula	Role of Polytope
α	$\sqrt{3}/(24\pi^2 + \sqrt{7/30})$	$\sqrt{7/30}$ as correction in denominator
$\sin^2 \theta_W$	$7/(30 + 2/7)$	$7/30$ as direct ratio

The difference:

- **α measures coupling strength**—involves full $N = 3$ structure (geometry, phase space, symmetry)
- **$\sin^2 \theta_W$ measures mixing ratio**—a pure partition of electroweak structure

α requires the full geometry ($\sqrt{3}$ from triangle, $(2\pi)^2$ from phases). $\sin^2\theta_W$ requires only the counting structure (7/30).

FC.4.5 Summary

The Weinberg angle $\sin^2\theta_W \approx 0.23$ emerges because:

1. The electromagnetic component of electroweak is constrained by monogamy
2. The monogamy polytope has topological weight $V + \chi = 7$
3. The embedding space has complexity $5 \times 3! = 30$
4. The ratio $7/30 \approx 0.23$ is the natural "electromagnetic fraction"
5. The refinement $2/7$ accounts for global vs. local structure

Part IV: The Speed of Light

FC.5 Derivation of c

FC.5.1 The Formula

$$c^2 = \frac{g_\beta}{g_\tau}$$

In natural units, $c = 1$.

FC.5.2 The Geometric Meaning

The speed of light relates spatial displacement to ordering displacement. In constraint geometry:

- g_β : Metric stiffness (Fisher information) in boundary direction
- g_τ : Metric stiffness in ordering direction

The maximum propagation speed is achieved when spatial and ordering costs are equal:

$$g_\beta \cdot (\Delta\beta)^2 = g_\tau \cdot (\Delta\tau)^2$$

giving:

$$\frac{\Delta\beta}{\Delta\tau} = \sqrt{\frac{g_\tau}{g_\beta}} = c$$

FC.5.3 Why $c = 1$ in Natural Units

The axiom treats all constraint directions symmetrically with respect to distinguishability. There is no preferred direction in the viable region.

Therefore: $g_\beta = g_\tau = g$, and $c = 1$.

Physical interpretation: The speed of light is not a "speed" in the usual sense—it is the ratio of metric stiffnesses in spatial and ordering directions. The equality $c = 1$ reflects the symmetric role of these constraints in the axiom.

FC.5.4 SI Units

The SI value $c \approx 299,792,458$ m/s is a unit conversion factor between:

- Human-scale length units (meters)
- Human-scale time units (seconds)

The framework does not "derive" this number—it explains why c can be set to 1 in natural units and what that means geometrically.

Part V: The Minimum Phase Space Cell

FC.6 The Bound on Conjugate Variables

FC.6.1 Conjugate Structure

The constraint space naturally partitions into conjugate pairs—variables whose joint specification determines a configuration but which trade off under the distinguishability metric.

The ordering-energy sector:

- τ : Ordering structure
- E : Gradient magnitude in τ direction (its conjugate)

The spatial-momentum sector:

- Position x in (β, κ, ρ) subspace
- Momentum p : Rate of constraint flow

FC.6.2 The Symplectic 2-Form

On conjugate sectors, the natural area measure:

$$\omega = dp \wedge dx$$

defines a symplectic structure with properties:

- Antisymmetric: $\omega(u, v) = -\omega(v, u)$
- Non-degenerate: $\omega(u, v) = 0$ for all v implies $u = 0$
- Closed: $d\omega = 0$

FC.6.3 The Minimum Distinguishable Cell

For two configurations to be distinct features, they must satisfy:

$$D(A, B)^2 = \sum_i g_i (C_i^A - C_i^B)^2 \geq \epsilon^2$$

In the symplectic (x, p) sector:

$$D^2 = g_x(\Delta x)^2 + g_p(\Delta p)^2 \geq \epsilon^2$$

The minimum area enclosing a distinguishable feature:

$$A_{min} = \pi \cdot \frac{\epsilon}{\sqrt{g_x}} \cdot \frac{\epsilon}{\sqrt{g_p}} = \frac{\pi \epsilon^2}{\sqrt{g_x g_p}}$$

FC.6.4 Connection to $N = 3$ Structure

From the α derivation, the minimal $N = 3$ triangle has area:

$$A_{triangle} = \frac{\sqrt{3}}{4} \cdot \frac{\epsilon^2}{g}$$

Projection to the symplectic (τ, E) sector with $g_\tau = \sqrt{3}/(8\pi)$:

$$A_{min}^{(\tau, E)} = \frac{\sqrt{3}}{4} \cdot \frac{8\pi}{\sqrt{3}} \cdot \epsilon^2 = 2\pi\epsilon^2$$

Setting $\epsilon = 1$ (the distinguishability unit):

$$A_{min} = 2\pi$$

FC.6.5 The Action Unit \hbar

Define \hbar as action per unit cycle:

$$\hbar \equiv \frac{A_{min}}{2\pi} = 1 \quad (\text{natural units})$$

In SI units, $\hbar \approx 1.055 \times 10^{-34} \text{ J}\cdot\text{s}$ converts between natural and conventional action units.

\hbar is not a fundamental constant of nature but a unit conversion factor. The fundamental quantity is the minimum distinguishable cell, which has area 2π in natural units.

FC.6.6 The Conjugate Variable Bound

A single feature occupies at least the minimum cell:

$$\Delta x \cdot \Delta p \geq A_{min} = 2\pi\hbar$$

Using standard deviations (σ_x, σ_p) and the Cauchy-Schwarz inequality:

$$\sigma_x \cdot \sigma_p \geq \frac{\hbar}{2}$$

This is a geometric bound, not a measurement limitation.

The bound states: configurations below the minimum cell cannot exist as distinct features. They would be indistinguishable from nothing—and nothing cannot exist.

FC.6.7 Conceptual Clarification

This derivation does not invoke:

- Wave mechanics or wavefunctions
- Measurement disturbance
- Observer effects
- Hilbert spaces

The bound emerges from **distinguishability geometry**—the structure of what can exist as separate features in constraint space.

Connection to Barandes' framework: The minimum cell corresponds to the "indivisibility scale" below which stochastic processes cannot be factorized. What appears as "quantum" behavior is the thermodynamics of distinguishability at this scale.

Part VI: Scale Dependence of Constants

FC.7 The N-Dependence Structure

Status: Exploratory. The following analysis is not fully derived but indicates how constants might depend on effective feature count.

FC.7.1 The Physical Question

Experimental measurements show constants "run" with energy:

Constant	Low Energy	High Energy (M_Z)
α^{-1}	137.036	128
$\sin^2\theta_W$	0.238	0.231

What does this mean in the framework?

FC.7.2 Two Interpretive Pictures

Picture 1: N-Dependence (Dilution)

Energy scale corresponds to effective feature count N_{eff} :

- High energy $\rightarrow N_{\text{eff}}$ close to 3 (minimal structure)
- Low energy $\rightarrow N_{\text{eff}} > 3$ (more features resolved)

Coupling "dilutes" over $O(N^2)$ pairs as N increases:

$$\alpha(N) \sim \frac{\Lambda}{N^2} \times (\text{geometric factors})$$

Picture 2: Monogamy Tightening

High energy \rightarrow features closer in constraint space \rightarrow monogamy more restrictive

Low energy \rightarrow features further apart \rightarrow monogamy looser

Both pictures describe the same physics from different perspectives.

FC.7.3 The Central Limit Connection

The statistical observation that many quantities saturate by $N \approx 7$ follows from the central limit theorem—sample distributions approach their asymptotic form rapidly, with most convergence occurring by $N \approx 7$.

Applied to constants:

N	Regime	Expected Behavior
3	Fundamental	Bare geometric values
4-6	Transition	Rapid approach to asymptote
7+	Saturated	Essentially asymptotic

The running "mostly happens" between $N = 3$ and $N \approx 7$.

FC.7.4 Speculative Formulas

For α (speculative):

$$\alpha(N)^{-1} = \alpha_{\infty}^{-1} - \frac{\Delta}{1 + (N - 3)/N_{scale}}$$

where:

- $\alpha_{\infty}^{-1} = 137.036$ is the large- N asymptote
- $\Delta \approx 10$ is the total running range
- $N_{scale} \approx 4$ is the characteristic transition scale

For $\sin^2\theta_W$ (speculative):

$$\sin^2 \theta_W(N) = \frac{V(N) + 2}{30 + \frac{2}{V(N)+2}}$$

where $V(N)$ is the vertex count of the monogamy polytope at N features.

FC.7.5 What Remains to Be Derived

A complete theory of running requires:

1. $N_{\text{eff}}(E)$: The map from experimental energy to effective feature count
2. $V(N)$: The polytope vertex count at general N
3. $g(N)$: Geometric efficiency factors at general N
4. **The spacetime emergence bridge:** How probing at energy E translates to constraint space operations

The analogy: The current framework provides "special relativity"—static geometry with fixed constants. Explaining running requires "general relativity"—geometry that responds to context.

The Jacobson connection (thermodynamics → Einstein equations) may provide this bridge, but the full development is incomplete.

FC.7.6 What Our Derived Values Represent

The formulas $\alpha = \sqrt{3}/(24\pi^2 + \sqrt{7/30})$ and $\sin^2\theta_W = 49/212$ give values matching low-energy experiments.

Interpretation: These are the large- N (low-energy) asymptotic values. The framework derives what experiments measure at macroscopic scales, where N_{eff} is effectively large.

The high-energy (small N) regime requires the additional structure outlined above.

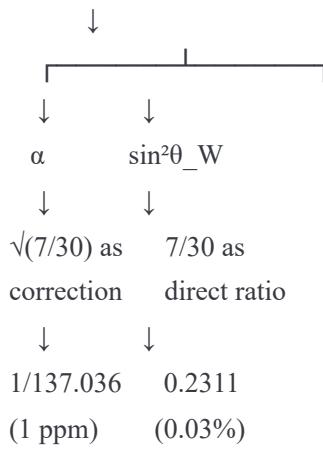
Part VII: Summary

FC.8 The Unified Picture

FC.8.1 All Constants from One Structure

The monogamy polytope underlies both electroweak parameters:

Monogamy Polytope ($V = 5, \chi = 2$, embedded in 30)



FC.8.2 Dimensional vs. Dimensionless

Type	Constants	Status
Dimensionless	$\alpha, \sin^2\theta_W$	Derived as geometric invariants
Dimensional	c, \hbar	Explained as unit conversions with geometric meaning

The dimensionless constants are predictions. The dimensional constants explain why natural units ($c = \hbar = 1$) are natural.

FC.8.3 The Logical Chain

↓

Distinguishability requirement ($\varepsilon > 0$)

↓

Five constraints (categorical exhaustion)

↓

Viable region (shell in constraint space)

↓

N = 3 structure (minimal circulation)

↓

Monogamy polytope ($V = 5, \gamma = 2$)

↓

Phase structure ($U(1) \times U(1)$)

1

Permutation symmetry (S_3)

1

Geometric invariants

↓

$\alpha = 1/137.036$, $\sin^2\theta_W = 0.2311$, $c = 1$, $\hbar = 1$

FC.8.4 What This Establishes

The framework predicts:

- The fine structure constant to 1 ppm
- The Weinberg angle to 0.03%
- The existence of a minimum phase space cell
- The equality of spatial and temporal stiffnesses ($c = 1$)

The framework explains:

- Why these particular numbers (geometric counting)
- Why α is small (packing efficiency)
- Why $\sin^2\theta_W \approx 0.23$ (monogamy fraction)
- Why conjugate variables have minimum products (distinguishability)

Open questions:

- The hierarchy problem (why $G \ll \alpha$)
- Particle masses (m_e/m_p)
- The strong coupling α_s
- Complete theory of running

Appendix: Notation Summary

Symbol	Meaning
$\diamond N \rightarrow \neg N$	The axiom: if nothing were possible, nothing would obtain
V	Viable region in constraint space
$(\beta, \kappa, \rho, \lambda, \tau)$	The five constraints

Symbol	Meaning
Φ	Efficiency potential $\ln(\Omega/K)$
Λ	Correlation capacity (monogamy bound)
V	Vertex count of monogamy polytope ($= 5$)
χ	Euler characteristic ($= 2$)
g_i	Metric stiffness in constraint direction i
ϵ	Distinguishability threshold
N	Number of features
α	Fine structure constant
θ_W	Weinberg angle

References

Framework Documents

- [GA_Unified_Framework_Draft.md](#) — Clifford algebra formulation
- [SI_Section5_Physical_Emergence.md](#) — Physical interpretation
- [SI_Section5_Bridge_Barandes.md](#) — Connection to indivisible stochastic processes
- [SI_Section3_Constraint_Space_Geometry.md](#) — Φ derivation and gradient structure

External References

- Jacobson, T. (1995). "Thermodynamics of Spacetime." *Physical Review Letters* 75, 1260.
- Barandes, J. (2023). "The Stochastic-Quantum Correspondence."
- Wyler, A. (1969). "L'espace symétrique du groupe des équations de Maxwell." *C. R. Acad. Sci. Paris* 269A, 743.
- Robertson, B. (1971). "Wyler's Expression for the Fine-Structure Constant." *Physical Review Letters* 27, 1545.