
Supporting Information: Fundamental Constants from Constraint
Geometry

Derivations of α, sin²θ_W, c, ℏ, and the Minimum Phase Space Cell

FC.1 Introduction

FC.1.1 Purpose

This Supporting Information provides complete derivations of fundamental physical constants from the
constraint framework. Each constant emerges from the geometric structure that follows from the axiom ◇N →
¬N (nothing cannot exist).

Constants derived:

Constant Formula Value Accuracy

Fine structure constant α √3/(24π² + √(7/30)) 1/137.036 1 ppm

Weinberg angle sin²θ_W 49/212 0.2311 0.03%

Speed of light c √(g_β/g_τ) 1 (natural) Exact

Reduced Planck constant ℏ A_min/2π 1 (natural) Exact

Additional content:

The minimum phase space cell and conjugate variable bounds

The monogamy polytope structure underlying electroweak parameters

Scale dependence (N-dependence) of constants—exploratory analysis

FC.1.2 What This Document Establishes

Derived from the axiom:

Dimensionless constants (α, sin²θ_W) as pure geometric invariants

Dimensional constants (c, ℏ) as unit conversion factors with geometric meaning

The minimum distinguishable cell in phase space
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Exploratory (not fully derived):

The N-dependence of constants at different scales

The mapping between experimental energy and effective N

FC.1.3 The Derivation Strategy

Each derivation follows the same logical chain:

The constants are not fitted to experiment—they emerge from counting and geometry.

FC.1.4 Companion Documents

This document provides derivations. Related material appears in:

Topic Document

Geometric Algebra formulation GA_Unified_Framework_Draft.md

Physical interpretation SI_Section5_Physical_Emergence.md

Connection to Barandes SI_Section5_Bridge_Barandes.md

Constraint space geometry SI_Section3_Constraint_Space_Geometry.md

Axiom (◇N → ¬N)
    ↓
Viable Region (distinguishability bounds)
    ↓
N = 3 Structure (minimal temporal configuration)
    ↓
Monogamy Constraint (finite correlation capacity)
    ↓
Geometric Invariants (the constants)



Part I: The Monogamy Polytope

FC.2 The Monogamy Constraint

FC.2.1 Finite Correlation Capacity

At N = 3, three features A, B, C are mutually related. Each feature has finite capacity for correlation—a
consequence of the axiom requiring features to remain distinguishable from each other.

The constraint: If A is highly correlated with B (large λ_AB), A's capacity for correlation with C is reduced.

Formally, each feature has correlation budget Λ:

FC.2.2 The Polytope Structure

Normalizing by Λ and defining:

x = λ_AB/Λ

y = λ_BC/Λ

z = λ_CA/Λ

The constraints become:

Monogamy constraints:

x + y ≤ 1

y + z ≤ 1

z + x ≤ 1

Non-negativity:

x, y, z ≥ 0

λ ​ +AB λ ​ ≤AC Λ (A’s budget)

λ ​ +AB λ ​ ≤BC Λ (B’s budget)

λ ​ +BC λ ​ ≤AC Λ (C’s budget)



This defines a convex polytope in the unit cube [0,1]³.

FC.2.3 Polytope Properties

The monogamy polytope has:

Property Value Significance

Vertices V 5 Extreme correlation configurations

Edges E 9 Transitions between extremes

Faces F 6 Constraint boundaries

Euler characteristic χ 2 V - E + F (topological invariant)

Volume 1/4 Fraction of unit cube

The five vertices:

Vertex Coordinates (x, y, z) Physical Meaning

V₁ (0, 0, 0) No correlations—maximally distinguishable

V₂ (1, 0, 0) A-B maximally correlated, C isolated

V₃ (0, 1, 0) B-C maximally correlated, A isolated

V₄ (0, 0, 1) C-A maximally correlated, B isolated

V₅ (½, ½, ½) Democratic—all pairs equally correlated

Structure: V = 1 + 3 + 1 (origin + axis vertices + center)

FC.2.4 Why χ = 2 Is Guaranteed

The Euler characteristic χ = 2 follows necessarily from the axiom:

1. Correlation space is 3-dimensional (three pairwise correlations at N = 3)

2. Convexity follows from the linear nature of monogamy constraints

3. Simple connectivity follows from inequality constraints (no holes)

For any convex 3D polytope, χ = V - E + F = 2 by Euler's theorem.



The combination V + χ = 7 captures both:

Local structure (V = 5 vertices where constraints saturate)

Global topology (χ = 2 encoding how pieces connect)

Part II: The Fine Structure Constant

FC.3 Derivation of α

FC.3.1 The Formula

Agreement with experiment: 1 part per million

FC.3.2 Component Analysis

Factor Value Geometric Origin

√3 1.732 Equilateral triangle—minimal N = 3 structure

(2π)² 39.48 Two independent U(1) phases (third fixed by closure)

3! = 6 6 Permutation symmetry of three indistinguishable features

24π² 236.87 Combined: (2π)² × 3!

7 7 V + χ of monogamy polytope

30 30 5 constraints × 3! permutations

√(7/30) 0.483 Monogamy correction

FC.3.3 The Derivation

Step 1: The Axiom → Viable Region

From ◇N → ¬N, configurations must be distinguishable from both extremes:

α = =
24π +2 7/30

3
137.036

1



From nothing: Σᵢ gᵢCᵢ² ≥ ε²

From contradiction: Σᵢ gᵢ(1-Cᵢ)² ≥ ε²

This creates a shell V between two ellipsoids in 5D constraint space.

Setting ε = 1 as the unit of distinguishability provides natural normalization—addressing the fatal flaw in
Wyler's 1969 derivation, which required arbitrary R = 1.

Step 2: N = 3 Existence

For ordering structure (circulation) to emerge, minimum 3 features are required:

N = 2 is genuinely atemporal (no chirality, no ordering direction)

N ≥ 3 allows irreducible circulation → ordering emergence

The minimal N = 3 configuration is an equilateral triangle in constraint space with side length a = ε/√g.

Step 3: Phase Structure

Each pair of features has a correlation with magnitude and phase:

Phase closure (Chern class c₁ = 1):

This fixes one phase, leaving 2 independent U(1) degrees of freedom → factor (2π)².

Step 4: Permutation Symmetry

The 3 features are indistinguishable, giving S₃ symmetry with 3! = 6 elements.

Step 5: The Base Formula

The packing efficiency of minimal N = 3 structures in constraint-phase space:

λ ​ =AB ∣λ ​∣eAB
iθAB

θ ​ +AB θ ​ +BC θ ​ =CA 2π

α ​ =base =
(2π) × 3!2

3
=

24π2

3
136.78

1



This captures the triangle geometry, phase structure, and permutation symmetry. The remaining geometric
structure—the monogamy constraint—provides the final factor.

Step 6: The Monogamy Correction

The monogamy constraint restricts the valid configuration space further.

The correction factor:

Interpretation: The ratio of polytope topological weight (7) to embedding space complexity (30).

Step 7: The Complete Formula

FC.3.4 Why α Is Small

Most of configuration space cannot support valid N = 3 structures. The denominator ≈ 237 reflects the
"wastage" from:

Phase space constraints (2π per independent phase)

Symmetry requirements (3! permutations)

Monogamy constraints (7 polytope vertices in 30-dimensional embedding)

α ≈ 1/137 because only about 1/237 of the available structure supports electromagnetic coupling.

FC.3.5 Comparison with Wyler (1969)

Wyler derived α ≈ 1/137.036 from bounded complex domains:

Correction = =
5 × 3!
V + χ

30
7

α = =
24π +2 7/30

3
=

237.35
1.732

137.036
1

α ​ =W 8π4

9 (
2 ⋅ 5!4

π5

)
1/4



Aspect Wyler This Framework

Normalization Arbitrary R = 1 Fixed by viable region

Symmetry factor 5! = 120 3! = 6

Geometric factor 9 (unexplained) √3 (equilateral triangle)

Correction None √(7/30) from monogamy

Physical basis Bounded domains Constraint geometry

The critical difference: Wyler's normalization was arbitrary (Robertson's 1971 critique). Here, the viable region
bounds fix all scales from the axiom.

Part III: The Weinberg Angle

FC.4 Derivation of sin²θ_W

FC.4.1 The Formula

Vertex-only formula:

Full topological formula:

Experimental value (at M_Z): 0.23121

Agreement: 0.03% (3 parts in 10,000)

FC.4.2 The Physical Picture

The Weinberg angle measures the mixing between electromagnetic (U(1)) and weak (SU(2)) interactions. In the
framework:

sin θ ​ =2
W =

5 × 3!
V + χ

=
30
7

0.2333

sin θ ​ = = = 0.23112
W 5 × 3! + V +χ

χ

V + χ

212
49



U(1) structure:

Associated with the λ-sector (correlation/phase structure)

Exists at N ≥ 3 where pairwise correlations are defined

Subject to monogamy constraint

SU(2) structure:

Associated with N = 2 spinor/doublet structure

Exists at N = 2, before monogamy emerges

Not subject to monogamy constraint

The Weinberg angle is the boundary coupling between these two regimes:

FC.4.3 The Derivation

Step 1: The Mixing Ratio

The Weinberg angle measures what fraction of electroweak structure is "electromagnetic" (U(1), monogamy-
constrained) versus "weak" (SU(2), monogamy-free).

The U(1) sector lives in the monogamy polytope:

Topological weight = V + χ = 5 + 2 = 7

The total embedding space:

5 constraint dimensions × 3! permutation symmetry = 30

The base ratio:

N = 2:  SU(2) structure exists
        Monogamy does NOT exist
        
N = 3:  U(1) phase structure exists
        Monogamy DOES exist
        7-vertex polytope constrains correlations

sin θ ​ =2
W =

Total electroweak structure
U(1) constrained contribution

​ =
5 × 3!
V + χ

​

30
7



Step 2: Why V + χ, Not Just V

The Euler characteristic χ = 2 appears because the Weinberg angle measures global structure, not just local
extremes:

V = 5: Local structure—where constraints saturate

χ = 2: Global connectivity—how local pieces fit together

For a quantity measuring overall coupling between sectors, both local and global structure contribute.

Step 3: The Topological Correction

The base formula 7/30 = 0.2333 captures the vertex structure. The full topological structure includes the distinct
role of the Euler characteristic χ:

This represents "the global structure's fractional contribution to the topological weight."

Adding to the denominator:

FC.4.4 Connection to α

Both α and sin²θ_W emerge from the same monogamy polytope:

Constant Formula Role of Polytope

α √3/(24π² + √(7/30)) √(7/30) as correction in denominator

sin²θ_W 7/(30 + 2/7) 7/30 as direct ratio

The difference:

α measures coupling strength—involves full N = 3 structure (geometry, phase space, symmetry)

sin²θ_W measures mixing ratio—a pure partition of electroweak structure

Topological refinement = ​ =
V + χ

χ
​

7
2

sin θ ​ =2
W ​ =

30 + ​7
2

7
​ =

30 × 7 + 2
7 × 7

​ =
212
49

0.2311



α requires the full geometry (√3 from triangle, (2π)² from phases). sin²θ_W requires only the counting structure
(7/30).

FC.4.5 Summary

The Weinberg angle sin²θ_W ≈ 0.23 emerges because:

1. The electromagnetic component of electroweak is constrained by monogamy

2. The monogamy polytope has topological weight V + χ = 7

3. The embedding space has complexity 5 × 3! = 30

4. The ratio 7/30 ≈ 0.23 is the natural "electromagnetic fraction"

5. The refinement 2/7 accounts for global vs. local structure

Part IV: The Speed of Light

FC.5 Derivation of c

FC.5.1 The Formula

In natural units, c = 1.

FC.5.2 The Geometric Meaning

The speed of light relates spatial displacement to ordering displacement. In constraint geometry:

g_β: Metric stiffness (Fisher information) in boundary direction

g_τ: Metric stiffness in ordering direction

The maximum propagation speed is achieved when spatial and ordering costs are equal:

giving:

c =2
​

g ​τ

g ​β

g ​ ⋅β (Δβ) =2 g ​ ⋅τ (Δτ)2



FC.5.3 Why c = 1 in Natural Units

The axiom treats all constraint directions symmetrically with respect to distinguishability. There is no preferred
direction in the viable region.

Therefore: g_β = g_τ = g, and c = 1.

Physical interpretation: The speed of light is not a "speed" in the usual sense—it is the ratio of metric
stiffnesses in spatial and ordering directions. The equality c = 1 reflects the symmetric role of these constraints
in the axiom.

FC.5.4 SI Units

The SI value c ≈ 299,792,458 m/s is a unit conversion factor between:

Human-scale length units (meters)

Human-scale time units (seconds)

The framework does not "derive" this number—it explains why c can be set to 1 in natural units and what that
means geometrically.

Part V: The Minimum Phase Space Cell

FC.6 The Bound on Conjugate Variables

FC.6.1 Conjugate Structure

The constraint space naturally partitions into conjugate pairs—variables whose joint specification determines a
configuration but which trade off under the distinguishability metric.

The ordering-energy sector:

τ: Ordering structure

E: Gradient magnitude in τ direction (its conjugate)

The spatial-momentum sector:

​ =
Δτ

Δβ
​ =​

g ​β

g ​τ
c



Position x in (β, κ, ρ) subspace

Momentum p: Rate of constraint flow

FC.6.2 The Symplectic 2-Form

On conjugate sectors, the natural area measure:

defines a symplectic structure with properties:

Antisymmetric: ω(u,v) = -ω(v,u)

Non-degenerate: ω(u,v) = 0 for all v implies u = 0

Closed: dω = 0

FC.6.3 The Minimum Distinguishable Cell

For two configurations to be distinct features, they must satisfy:

In the symplectic (x, p) sector:

The minimum area enclosing a distinguishable feature:

FC.6.4 Connection to N = 3 Structure

From the α derivation, the minimal N = 3 triangle has area:

ω = dp ∧ dx

D(A,B) =2
​g ​(C ​ −

i

∑ i i
A C ​) ≥i

B 2 ϵ2

D =2 g ​(Δx) +x
2 g ​(Δp) ≥p

2 ϵ2

A ​ =min π ⋅ ​ ⋅
​g ​x

ϵ
=

gp

ϵ
​

​g ​g ​x p

πϵ2

A =triangle ​ ⋅
4

​3
​

g

ϵ2



Projection to the symplectic (τ, E) sector with g_τ = √3/(8π):

Setting ε = 1 (the distinguishability unit):

FC.6.5 The Action Unit ℏ

Define ℏ as action per unit cycle:

In SI units, ℏ ≈ 1.055 × 10⁻³⁴ J·s converts between natural and conventional action units.

ℏ is not a fundamental constant of nature but a unit conversion factor. The fundamental quantity is the
minimum distinguishable cell, which has area 2π in natural units.

FC.6.6 The Conjugate Variable Bound

A single feature occupies at least the minimum cell:

Using standard deviations (σ_x, σ_p) and the Cauchy-Schwarz inequality:

This is a geometric bound, not a measurement limitation.

The bound states: configurations below the minimum cell cannot exist as distinct features. They would be
indistinguishable from nothing—and nothing cannot exist.

FC.6.7 Conceptual Clarification

This derivation does not invoke:

A ​ =min

(τ ,E)
​ ⋅

4
​3

​ ⋅
​3

8π
ϵ =2 2πϵ2

A ​ =min 2π

ℏ ≡ ​ =
2π
A ​min 1 (natural units)

Δx ⋅ Δp ≥ A ​ =min 2πℏ

σ ​ ⋅x σ ​ ≥p ​

2
ℏ



Wave mechanics or wavefunctions

Measurement disturbance

Observer effects

Hilbert spaces

The bound emerges from distinguishability geometry—the structure of what can exist as separate features in
constraint space.

Connection to Barandes' framework: The minimum cell corresponds to the "indivisibility scale" below which
stochastic processes cannot be factorized. What appears as "quantum" behavior is the thermodynamics of
distinguishability at this scale.

Part VI: Scale Dependence of Constants

FC.7 The N-Dependence Structure

Status: Exploratory. The following analysis is not fully derived but indicates how constants might depend on
effective feature count.

FC.7.1 The Physical Question

Experimental measurements show constants "run" with energy:

Constant Low Energy High Energy (M_Z)

α⁻¹ 137.036 128

sin²θ_W 0.238 0.231

What does this mean in the framework?

FC.7.2 Two Interpretive Pictures

Picture 1: N-Dependence (Dilution)

Energy scale corresponds to effective feature count N_eff:

High energy → N_eff close to 3 (minimal structure)

Low energy → N_eff > 3 (more features resolved)



Coupling "dilutes" over O(N²) pairs as N increases:

Picture 2: Monogamy Tightening

High energy → features closer in constraint space → monogamy more restrictive
Low energy → features further apart → monogamy looser

Both pictures describe the same physics from different perspectives.

FC.7.3 The Central Limit Connection

The statistical observation that many quantities saturate by N ≈ 7 follows from the central limit theorem—
sample distributions approach their asymptotic form rapidly, with most convergence occurring by N ≈ 7.

Applied to constants:

N Regime Expected Behavior

3 Fundamental Bare geometric values

4-6 Transition Rapid approach to asymptote

7+ Saturated Essentially asymptotic

The running "mostly happens" between N = 3 and N ≈ 7.

FC.7.4 Speculative Formulas

For α (speculative):

where:

α_∞⁻¹ = 137.036 is the large-N asymptote

Δ ≈ 10 is the total running range

N_scale ≈ 4 is the characteristic transition scale

α(N) ∼ ​ ×
N 2

Λ
(geometric factors)

α(N) =−1 α ​ −∞
−1

​

1 + (N − 3)/N ​scale

Δ



For sin²θ_W (speculative):

where V(N) is the vertex count of the monogamy polytope at N features.

FC.7.5 What Remains to Be Derived

A complete theory of running requires:

1. N_eff(E): The map from experimental energy to effective feature count

2. V(N): The polytope vertex count at general N

3. g(N): Geometric efficiency factors at general N

4. The spacetime emergence bridge: How probing at energy E translates to constraint space operations

The analogy: The current framework provides "special relativity"—static geometry with fixed constants.
Explaining running requires "general relativity"—geometry that responds to context.

The Jacobson connection (thermodynamics → Einstein equations) may provide this bridge, but the full
development is incomplete.

FC.7.6 What Our Derived Values Represent

The formulas α = √3/(24π² + √(7/30)) and sin²θ_W = 49/212 give values matching low-energy experiments.

Interpretation: These are the large-N (low-energy) asymptotic values. The framework derives what
experiments measure at macroscopic scales, where N_eff is effectively large.

The high-energy (small N) regime requires the additional structure outlined above.

Part VII: Summary

FC.8 The Unified Picture

FC.8.1 All Constants from One Structure

The monogamy polytope underlies both electroweak parameters:

sin θ ​(N) =2
W ​

30 + ​

V (N)+2
2

V (N) + 2



FC.8.2 Dimensional vs. Dimensionless

Type Constants Status

Dimensionless α, sin²θ_W Derived as geometric invariants

Dimensional c, ℏ Explained as unit conversions with geometric meaning

The dimensionless constants are predictions. The dimensional constants explain why natural units (c = ℏ = 1)
are natural.

FC.8.3 The Logical Chain

Monogamy Polytope (V = 5, χ = 2, embedded in 30)
           ↓
    ┌──────┴──────┐
    ↓             ↓
   α            sin²θ_W
    ↓             ↓
√(7/30) as      7/30 as
correction      direct ratio
    ↓             ↓
1/137.036      0.2311
(1 ppm)        (0.03%)

◇N → ¬N (Axiom: nothing cannot exist)
        ↓
Distinguishability requirement (ε > 0)
        ↓
Five constraints (categorical exhaustion)
        ↓
Viable region (shell in constraint space)
        ↓
N = 3 structure (minimal circulation)
        ↓
Monogamy polytope (V = 5, χ = 2)
        ↓
Phase structure (U(1) × U(1))
        ↓
Permutation symmetry (S₃)
        ↓



FC.8.4 What This Establishes

The framework predicts:

The fine structure constant to 1 ppm

The Weinberg angle to 0.03%

The existence of a minimum phase space cell

The equality of spatial and temporal stiffnesses (c = 1)

The framework explains:

Why these particular numbers (geometric counting)

Why α is small (packing efficiency)

Why sin²θ_W ≈ 0.23 (monogamy fraction)

Why conjugate variables have minimum products (distinguishability)

Open questions:

The hierarchy problem (why G << α)

Particle masses (m_e/m_p)

The strong coupling α_s

Complete theory of running

Appendix: Notation Summary

Symbol Meaning

◇N → ¬N The axiom: if nothing were possible, nothing would obtain

V Viable region in constraint space

(β, κ, ρ, λ, τ) The five constraints

Geometric invariants
        ↓
α = 1/137.036, sin²θ_W = 0.2311, c = 1, ℏ = 1



Symbol Meaning

Φ Efficiency potential ln(Ω/K)

Λ Correlation capacity (monogamy bound)

V Vertex count of monogamy polytope (= 5)

χ Euler characteristic (= 2)

g_i Metric stiffness in constraint direction i

ε Distinguishability threshold

N Number of features

α Fine structure constant

θ_W Weinberg angle

References

Framework Documents

GA_Unified_Framework_Draft.md  — Clifford algebra formulation

SI_Section5_Physical_Emergence.md  — Physical interpretation

SI_Section5_Bridge_Barandes.md  — Connection to indivisible stochastic processes

SI_Section3_Constraint_Space_Geometry.md  — Φ derivation and gradient structure

External References

Jacobson, T. (1995). "Thermodynamics of Spacetime." Physical Review Letters 75, 1260.

Barandes, J. (2023). "The Stochastic-Quantum Correspondence."

Wyler, A. (1969). "L'espace symétrique du groupe des équations de Maxwell." C. R. Acad. Sci. Paris
269A, 743.

Robertson, B. (1971). "Wyler's Expression for the Fine-Structure Constant." Physical Review Letters 27,
1545.


