
Supporting Information: Geometric Algebra Foundations of Ordering
Emergence

GA.1 Introduction

This supporting information develops the mathematical framework for ordering emergence using the language
of Geometric Algebra (GA), also known as Clifford Algebra. The results here are equivalent to those in SI.1-8
(the circulation proof in matrix language) but expressed in a formalism where chirality and grade structure are
built in.

Why Geometric Algebra?

The matrix formulation proves that ordering structure emerges at N ≥ 3 via the failure of simultaneous
diagonalizability. This is correct but somewhat indirect—the chirality that constitutes ordering emerges as a
consequence of matrix non-commutativity.

In GA, chirality is primitive. The graded structure of Clifford algebras directly encodes the distinction between:

Grade-2 objects (bivectors): inherently symmetric, no intrinsic handedness

Grade-3 objects (trivectors): inherently chiral, intrinsic handedness

The N = 2 → N ≥ 3 transition becomes a grade transition, and the emergence of ordering structure becomes
geometrically transparent.

Prerequisites: We assume familiarity with basic linear algebra. GA concepts are introduced as needed.

GA.2 Clifford Algebra Fundamentals

GA.2.1 The Geometric Product

Let V be a real vector space with inner product ⟨·,·⟩. The Clifford algebra Cl(V) is the associative algebra
generated by V with the fundamental relation:

for all v ∈ V. This implies the fundamental identity for the geometric product of two vectors:

v =2 ⟨v, v⟩ ⋅ 1

uv + vu = 2⟨u, v⟩



The geometric product uv can be decomposed:

where:

u · v = ½(uv + vu) is the inner product (scalar, grade 0)

u ∧ v = ½(uv - vu) is the outer product (bivector, grade 2)

GA.2.2 Grades and Multivectors

Elements of Cl(V) are called multivectors. For V = ℝⁿ, multivectors decompose into grades:

where ⟨A⟩_k denotes the grade-k component.

Grade Name Geometric Meaning

0 Scalar Magnitude

1 Vector Directed line segment

2 Bivector Oriented plane segment

3 Trivector Oriented volume segment

k k-vector Oriented k-dimensional volume

n Pseudoscalar Oriented n-volume (unit: I)

The dimension of grade-k subspace is C(n,k). Total dimension of Cl(n) is 2ⁿ.

GA.2.3 The Constraint Algebra Cl(5)

For the five-dimensional constraint space, we work in Cl(5). Let {e₁, e₂, e₃, e₄, e₅} be an orthonormal basis
corresponding to (β, κ, ρ, λ, τ):

uv = u ⋅ v + u ∧ v

A = ⟨A⟩ ​ +0 ⟨A⟩ ​ +1 ⟨A⟩ ​ +2 ⋯ + ⟨A⟩ ​n

e ​e ​ +i j e ​e ​ =j i 2δ ​ij



(We begin with Euclidean signature; the signature question is addressed in GA.6.)

Grade structure of Cl(5):

Grade Dimension Basis Elements

0 1 1

1 5 e₁, e₂, e₃, e₄, e₅

2 10 e₁₂, e₁₃, e₁₄, e₁₅, e₂₃, e₂₄, e₂₅, e₃₄, e₃₅, e₄₅

3 10 e₁₂₃, e₁₂₄, e₁₂₅, e₁₃₄, e₁₃₅, e₁₄₅, e₂₃₄, e₂₃₅, e₂₄₅, e₃₄₅

4 5 e₁₂₃₄, e₁₂₃₅, e₁₂₄₅, e₁₃₄₅, e₂₃₄₅

5 1 e₁₂₃₄₅ = I (pseudoscalar)

Total: 32 dimensions.

Notation: We write e_ij = e_i ∧ e_j = e_i e_j (for i ≠ j), and similarly for higher grades.

GA.2.4 The Pseudoscalar and Duality

The pseudoscalar I = e₁₂₃₄₅ satisfies:

(In Cl(5) with Euclidean signature, I² = +1.)

The pseudoscalar defines a duality operation. For any k-vector A_k:

maps grade k to grade (5-k). This exchanges:

Scalars ↔ Pseudoscalars

Vectors ↔ Quadvectors

Bivectors ↔ Trivectors

I =2 (−1) =5(5−1)/2 (−1) =10 +1

A ​ =k
∗ A ​ ⋅k I−1



GA.3 Features as Vectors, Configurations as Multivectors

GA.3.1 Single Feature: Grade 1

A feature's constraint profile is naturally represented as a vector in Cl(5):

The magnitude is:

GA.3.2 Two Features: Grade 2 (Bivector)

For two features A and B, the natural object characterizing their joint configuration is the bivector:

Components: In terms of basis bivectors:

where:

This is a 10-component object (matching the 10 independent components of a 5×5 antisymmetric matrix).

Geometric meaning: The bivector B_AB represents the oriented plane spanned by C^(A) and C^(B) in
constraint space. Its magnitude:

is the squared area of the parallelogram spanned by the two vectors.
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GA.3.3 Three Features: Grade 3 (Trivector)

For three features A, B, C, the natural object is the trivector:

Components: In terms of basis trivectors:

where:

This is a 10-component object.

Geometric meaning: The trivector T_ABC represents the oriented 3-volume spanned by C^(A), C^(B), and
C^(C) in constraint space.

GA.3.4 General N Features: Grade N

For N features, the natural configuration object is the N-vector:

For N ≤ 5, this is a non-trivial object in Cl(5). For N > 5, the wedge product vanishes identically (there are only
5 independent directions).

GA.4 The Chirality Theorem in GA Language

GA.4.1 Bivectors Have No Intrinsic Chirality

Theorem GA.1 (Bivector Symmetry). A bivector B ∈ Cl(5) has no intrinsic handedness: there is no canonical
way to distinguish B from -B using only the structure of Cl(5).
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Proof. Consider a bivector B = u ∧ v for vectors u, v. The reversal operation in Cl(5), denoted by tilde, satisfies:

So B̃  = -B for any bivector. However, the reversal is an involution of Cl(5)—it doesn't select either B or -B as
preferred.

To distinguish B from -B would require either:

1. An external orientation (embedding in a larger structure), or

2. A reference trivector (but at N = 2, no trivector exists)

Neither is available intrinsically at N = 2. ∎

Corollary GA.1. At N = 2, the configuration B_AB and its reversal -B_AB (corresponding to exchanging A ↔
B) are geometrically equivalent. There is no ordering.

GA.4.2 Trivectors Have Intrinsic Chirality

Theorem GA.2 (Trivector Chirality). A non-zero trivector T ∈ Cl(5) has intrinsic handedness: T and -T are
geometrically distinguishable.

Proof. The pseudoscalar I = e₁₂₃₄₅ provides a reference orientation for all of Cl(5). For any trivector T, we can
compute:

which is a bivector (grade 2). The sign of T determines the orientation of T* relative to I.

Alternatively: the trivector T can be written as T = u ∧ v ∧ w for vectors u, v, w. The scalar:

(when properly normalized) gives ±1 depending on the orientation of the frame {u, v, w} relative to the
pseudoscalar I.

This is intrinsic: no external reference is needed beyond the algebraic structure of Cl(5). ∎

Corollary GA.2. At N = 3, the configuration T_ABC and its reversal -T_ABC (corresponding to reversing the
cyclic order) are geometrically distinguishable. Ordering structure exists.

GA.4.3 The Grade Transition as Ordering Emergence

=u ∧ v ∧v =u v ∧ u = −u ∧ v = −B

T ⋅ I =−1 T ∗

σ = T ⋅ (T ) ⋅∗ −1 I



Theorem GA.3 (Ordering Emergence). The transition from N = 2 to N ≥ 3 corresponds to the transition from
grade-2 to grade-3 objects in Cl(5). This grade transition is precisely the emergence of intrinsic chirality, i.e.,
ordering structure.

Proof. Combines Theorems GA.1 and GA.2:

N = 2 → bivector → no intrinsic chirality → τ = 0

N ≥ 3 → trivector (or higher) → intrinsic chirality → τ can be non-zero ∎

Remark. This is the same result as Theorem 6 in SI.1-8 (the circulation proof), but the mechanism is
transparent: bivectors lack handedness; trivectors have it. The emergence of ordering is a grade transition.

GA.5 Reformulating Key Results

GA.5.1 The Configuration Magnitude

For an N-feature configuration, define the configuration magnitude:

This measures the N-dimensional "volume" spanned by the features in constraint space.

Properties:

Ω_N = 0 iff the features are linearly dependent (degenerate configuration)

Ω_N > 0 for generic configurations

Ω_N relates to distinguishability: larger volume means features are more spread out in constraint space

GA.5.2 The Ordering Constraint in GA

Definition GA.1 (Ordering Constraint). For N ≥ 3 features, define:

where T_ABC is the trivector for any three features, and Ω_3^(max) is a normalization factor.

Ω ​ =N ∣C ∧(1) C ∧(2) ⋯ ∧C ∣(N)

τ = ​

Ω ​3
(max)

∣T ​∣ABC



More generally, for N ≥ 3, τ can be defined as the average normalized trivector magnitude over all feature
triples:

Relation to circulation: The trivector magnitude |T_ABC| is related to the circulation C(γ_ABC) of the matrix
formulation:

The exact relationship depends on how the gradient structure is encoded, but both measure the same geometric
property: the "oriented volume" of the three-feature configuration.

GA.5.3 The Gradient in GA

The potential Φ: V → ℝ has gradient:

This is a vector (grade 1) in Cl(5).

Circulation reformulated: For a triangular path γ_ABC, the circulation can be written:

where ∇ ∧ ∇Φ is the "curl" of the gradient (a bivector), and dS is the surface element.

In flat constraint space, ∇ ∧ ∇Φ = 0 identically. The non-zero circulation arises from the coupling structure—
the way the total potential Φ_total on M_N depends on inter-feature relationships.

GA.5.4 Coupling as Rotors

In GA, orthogonal transformations are represented by rotors: even-grade multivectors R satisfying RR̃  = 1.

Conjecture GA.1. The coupling between features α and β can be represented by a rotor R^(αβ) ∈ Cl(5):
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describing how feature β's constraint profile is "rotated" by its coupling to feature α.

The failure of simultaneous diagonalizability (Theorem 3 in SI) would then correspond to:

i.e., the rotors do not commute. Non-commuting rotors generate a non-trivial holonomy around closed paths—
this is the GA version of non-zero circulation.

GA.6 The Signature Question

GA.6.1 Euclidean vs. Non-Euclidean Signatures

So far we have assumed Euclidean signature: all basis vectors square to +1. But physics suggests non-Euclidean
signatures may be relevant.

Possible signatures for Cl(p,q) with p + q = 5:

Signature Algebra I² Notes

(5,0) Cl(5,0) +1 Euclidean

(4,1) Cl(4,1) -1 One timelike direction

(3,2) Cl(3,2) +1 Two timelike directions

(2,3) Cl(2,3) -1 Three timelike directions

(1,4) Cl(1,4) +1 Four timelike directions

(0,5) Cl(0,5) -1 All timelike (anti-Euclidean)

GA.6.2 Physical Motivation for Signature Choice

If the five constraints map to physics as suggested in Section 5 of the main text:

β → spatial structure

κ → quantum coherence

C ​ =coupled

(β)
R C(αβ) (β)R(αβ)

R R =(AB) (BC)  R R(BC) (AB)



ρ → energy-momentum

λ → entanglement

τ → time/causality

Then τ might naturally have opposite signature to the others, suggesting:

Cl(4,1): Four spacelike constraints (β, κ, ρ, λ), one timelike (τ).

This would give:

e₁² = e₂² = e₃² = e₄² = +1

e₅² = -1 (where e₅ corresponds to τ)

The pseudoscalar would satisfy I² = (-1)^(5·4/2) · (-1)^1 = (-1)^11 = -1.

GA.6.3 Consequences of Signature

Theorem GA.4 (Signature and Chirality). The intrinsic chirality of trivectors is preserved regardless of
signature. The distinction between τ = 0 (N = 2) and τ ≠ 0 (N ≥ 3) holds in any signature.

Proof. Chirality depends on the grade structure, not the metric signature. Bivectors remain grade 2; trivectors
remain grade 3. The reversal operation and its properties are signature-independent. ∎

However, signature does affect:

The norm of multivectors (can be positive, negative, or null)

The structure of the rotor group

The relationship to physical quantities

GA.6.4 Connection to Spacetime Algebra

The spacetime algebra of physics is Cl(1,3) or Cl(3,1) (depending on convention), with dimension 2⁴ = 16.

Observation: Cl(4,1) contains Cl(1,3) as a subalgebra (by restricting to four of the five generators). This
suggests a natural embedding:

The "extra" dimension in Cl(4,1) compared to Cl(1,3) might correspond to the κ constraint (quantum coherence)
—the aspect of the framework that distinguishes quantum from classical regimes.

Spacetime Algebra Cl(1, 3) ↪ Cl(4, 1) Constraint Algebra



Conjecture GA.2. The dimensional reduction from 5D constraint space to 4D spacetime corresponds to
projection along the κ direction:

High κ (quantum regime): full 5D structure visible

Low κ (classical regime): effectively 4D, with κ "averaged out"

This remains speculative and requires development.

GA.7 The Full Multivector Structure

GA.7.1 A Feature as a Full Multivector

So far we have represented features as vectors (grade 1). But the full constraint profile might be a general
multivector:

where:

φ^(α) is a scalar (grade 0): perhaps the local potential Φ(C^(α))

C^(α) is a vector (grade 1): the constraint profile

B^(α) is a bivector (grade 2): perhaps internal "spin" or coupling structure

T^(α) is a trivector (grade 3): perhaps local chirality

Q^(α) is a quadvector (grade 4): dual to vectors

ψ^(α) is a pseudoscalar coefficient (grade 5): overall orientation

GA.7.2 Interpretation of Grades

Grade Possible Interpretation

0 Local potential / energy

1 Constraint profile (position in constraint space)

2 Internal coupling / spin structure

3 Local chirality / time-orientation

F =(α) ϕ +(α) C +(α) B +(α) T +(α) Q +(α) ψ I(α)



Grade Possible Interpretation

4 Dual to constraint profile

5 Overall orientation / parity

This is speculative but suggests that the full 32-dimensional structure of Cl(5) might encode more than just
constraint values—it might encode the complete local physics at each feature.

GA.7.3 The N-Feature Interaction

For N features, each represented as a full multivector F^(α), the total configuration is not simply a wedge
product but a more complex algebraic combination.

Definition GA.2 (Interaction Multivector). Define:

(geometric product, not wedge product). This 32-component object encodes the full interaction structure.

The grade decomposition of I^(N) reveals:

Grade 0: total scalar (energy-like)

Odd grades: vector-like quantities

Even grades: rotor-like quantities (transformations)

The non-commutativity of the geometric product ensures that ordering matters—this is another way to see how
ordering structure enters.

GA.8 Summary and Comparison

GA.8.1 Key Results in GA Language

1. Features as vectors: Constraint profiles are vectors in Cl(5).

2. N-configurations as N-vectors: N features span an N-vector via wedge product.

3. Bivector symmetry (Theorem GA.1): N = 2 configurations (bivectors) have no intrinsic chirality.

I =(N)
​F
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N

(α)



4. Trivector chirality (Theorem GA.2): N ≥ 3 configurations (trivectors and higher) have intrinsic
chirality.

5. Ordering emergence (Theorem GA.3): The N = 2 → N ≥ 3 transition is a grade transition from
symmetric to chiral structure.

6. Signature flexibility (Theorem GA.4): These results hold regardless of metric signature.

GA.8.2 Comparison with Matrix Formulation

Aspect Matrix Formulation (SI.1-8) GA Formulation

N = 2 structure Coupling matrix M^(AB) Bivector B_AB

N = 3 structure Three matrices M^(AB), M^(BC), M^(CA) Trivector T_ABC

Key theorem Simultaneous diagonalizability fails Grade transition brings chirality

Circulation Line integral of gradient Related to trivector magnitude

Chirality Emerges from non-commutativity Built into grade structure

Coordinates Required (matrix indices) Not required (coordinate-free)

GA.8.3 Advantages of the GA Formulation

1. Chirality is primitive: No need to derive it from matrix non-commutativity.

2. Grade = N: The grade of the configuration object directly encodes the number of features.

3. Coordinate-free: Intrinsically geometric, aligning with relational ontology.

4. Unifies structure: Scalars, vectors, bivectors, etc. live in one algebra.

5. Connects to physics: Spacetime algebra, spinors, and Dirac theory all use Clifford algebras.

GA.8.4 What GA Does Not Change

The GA formulation does not alter the fundamental results:

τ = 0 at N = 2 (necessary)

τ > 0 at N ≥ 3 (generic)

The Φ-direction provides ordering direction

The emergence is geometric, not thermodynamic



GA provides a different language—one where the results are perhaps more transparent—but the underlying
mathematics is equivalent.

GA.9 Future Directions

GA.9.1 Rotor Representation of Coupling

Develop the conjecture (GA.1) that coupling matrices correspond to rotors. This would unify the treatment of
features and their interactions within GA.

GA.9.2 Signature Determination

Investigate whether physical considerations uniquely determine the signature of the constraint algebra. The
connection to spacetime algebra suggests Cl(4,1) or Cl(3,2), but this requires further analysis.

GA.9.3 Spinor Structure

Clifford algebras naturally give rise to spinor representations. Explore whether the "features" of the framework
correspond to spinors in some sense—this would connect to Finster's Causal Fermion Systems, which uses
spinorial structures.

GA.9.4 Dynamics in GA

Formulate the gradient flow dynamics entirely within GA. The gradient ∇Φ is a vector; its action on
configuration multivectors could be expressed as geometric products, yielding a fully algebraic dynamics.

GA.9.5 Quantization

The non-commutativity of Clifford algebras is reminiscent of quantum mechanical non-commutativity. Explore
whether quantization of the framework has a natural GA formulation.
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