

Supporting Information: The Geometry of Constraint Space

Section 3 Supporting Information for "Being and Nothingness"

G.1 Introduction

G.1.1 Purpose

This Supporting Information provides rigorous mathematical foundations for Section 3 of the main text. We develop:

1. **The Efficiency Potential Φ :** Rigorous derivation of $\Phi = \ln(\Omega/K)$ from structural requirements
2. **The Dual Structure:** Ω (relational richness) and K (pattern specificity) as intrinsic field properties
3. **Gradient Geometry:** The gradient structure $\nabla\Phi$ as the fundamental geometric object
4. **Flow Structure:** Gradient flow lines as geometric objects (without temporal interpretation)
5. **Critical Points and Curvature:** The landscape structure of constraint space
6. **N-Dependence:** How geometric structure varies with configurational complexity

G.1.2 Central Thesis

The ratio $\Phi = \ln(\Omega/K)$ captures a fundamental geometric duality intrinsic to the relational field—the tension between relational richness and pattern specificity at each locus. The gradient $\nabla\Phi$ defines the geometric structure relating configurations. This structure exists without requiring temporal interpretation; at $N \geq 3$, ordering structure (τ) emerges and temporal language becomes applicable.

G.1.3 Ontological Commitment

Throughout this document, we maintain **field-first ontology**:

- The constraint field is fundamental
- Features, patterns, and loci are what the field is doing, not entities within a container
- Φ , Ω , K , and $\nabla\Phi$ are geometric properties of the field
- There are no entities that "move through" or "experience" the field
- Gradient structure IS the geometry, not a description of something else

We avoid:

- Container language ("in constraint space," "through the field")
- Temporal language at $N = 2$ (where ordering structure is absent)
- Entity language ("systems," "observers," "particles")

We use instead:

- "At locus C" or "the field at C"
- "Gradient relationships between configurations"
- "What the field is doing"

Part I: Derivation of the Efficiency Potential

G.2 Starting Point: The Axiom

Axiom (Impossibility of Nothingness): $\diamond N \rightarrow \neg N$

The possibility of absolute nothingness entails its negation. Therefore, something exists necessarily.

Corollary: Distinguishability structure exists. If something exists, there must be distinguishable features—otherwise "something" collapses to undifferentiated unity, which is indistinguishable from nothing.

Field interpretation: The relational field must have non-trivial structure. Complete uniformity (no distinguishability) violates the axiom.

G.3 The Need for a Measure

Given that distinguishability structure exists, different configurations support different degrees of distinguishability. We seek a scalar measure Φ characterizing the field geometry at each locus, satisfying:

Requirement 1 (Field-Intrinsic): Φ must derive from the relational structure itself, not from external criteria or reference to anything outside the field.

Requirement 2 (Scalar): Φ must be a single real number at each locus, enabling gradient and critical point analysis.

Requirement 3 (Boundary Behavior): $\Phi \rightarrow -\infty$ as the field approaches configurations where the axiom is violated (undifferentiated uniformity).

Requirement 4 (Additivity): For independent field regions A, B: $\Phi(A \oplus B) = \Phi(A) + \Phi(B)$.

Requirement 5 (Efficiency): Φ should characterize how much distinguishability structure the field supports relative to how specific the pattern is.

We now show these requirements uniquely determine $\Phi = \ln(\Omega/K)$.

G.4 Relational Richness: Ω

Definition 1 (Relational Richness):

At a locus C characterized by constraint values, let $\Omega(C)$ denote the measure of distinguishability structure the field supports there:

$$\Omega(C) = \mu(\{C' \in \mathcal{V} : D(C, C') > \epsilon\})$$

where D is the distinguishability metric intrinsic to the field geometry and ϵ is the indistinguishability threshold.

Field interpretation: Ω measures how much the field is "doing" at that locus—how rich the relational structure is. High Ω means the field geometry at that locus participates in extensive distinguishability relations. Low Ω means the field is relationally sparse there.

Properties of Ω :

(a) **Non-negativity:** $\Omega(C) \geq 0$, with $\Omega(C) = 0$ only at boundary configurations.

(b) **Boundary behavior:** As $C \rightarrow \partial V$:

- If the field approaches uniformity (any constraint $\rightarrow 0$): distinguishability fails, so $\Omega \rightarrow 0$
- If the field approaches rigidity (any constraint $\rightarrow \max$): relational structure collapses, so $\Omega \rightarrow 0$

(c) **Multiplicativity for independent regions:** If field regions A and B are relationally independent (no coupling between them), then:

$$\Omega(A \oplus B) = \Omega(A) \times \Omega(B)$$

This follows because the distinguishability structure of the combined region is the product of independent structures.

G.5 Pattern Specificity: K

Definition 2 (Pattern Specificity):

At a locus C , let $K(C)$ denote the specificity of the field pattern there:

$$K(C) = \text{intrinsic complexity of the field configuration at } C$$

Field interpretation: K measures how particular/constrained the field shape is at that locus. High K means the field is doing something very specific—a sharply defined pattern. Low K means the pattern is generic, simple, or broadly defined.

Properties of K:

(a) **Positivity:** $K(C) > 0$ for all $C \in V$ (every locus has some specificity).

(b) **Boundary behavior:**

- Simple/generic field configurations have moderate K
- Highly constrained configurations (near boundaries) may have high K

(c) **Subadditivity for independent regions:** For independent A, B:

$$K(A \oplus B) \leq K(A) + K(B) + O(\log(K(A) + K(B)))$$

Approximate additivity holds up to logarithmic corrections.

G.6 Why the Ratio Ω/K

Theorem G.1 (Efficiency Form):

Given Requirements 1-5, the measure Φ must be a monotonic function of the ratio Ω/K .

Proof:

(Step 1) By Requirement 1 (Field-Intrinsic), Φ can only depend on Ω and K, which are defined in terms of field geometry.

(Step 2) By Requirement 5 (Efficiency), Φ should:

- Increase with Ω (richer relational structure is "more")
- Decrease with K (more specificity means less efficiency per unit structure)

This rules out $\Omega + K$ (both increasing) and $\Omega \times K$ (both contributing positively).

(Step 3) The ratio Ω/K satisfies:

- Increases with Ω (numerator)

- Decreases with K (denominator)
- Is dimensionless (if Ω and K are normalized consistently)

(Step 4) Alternative forms like $\Omega - K$ fail dimensional consistency.

(Step 5) Any monotonic function $f(\Omega/K)$ satisfies Requirements 1 and 5. Requirement 4 determines the specific form. ■

G.7 Why the Logarithm

Theorem G.2 (Logarithmic Form):

Given Requirement 4 (Additivity) and the ratio form Ω/K , the potential must be:

$$\Phi = a \cdot \ln \left(\frac{\Omega}{K} \right) + b$$

for constants $a > 0$ and b .

Proof:

For independent field regions A and B, by Requirement 4:

$$\Phi(A \oplus B) = \Phi(A) + \Phi(B)$$

From G.4(c) and G.5(c):

$$\frac{\Omega(A \oplus B)}{K(A \oplus B)} \approx \frac{\Omega(A) \cdot \Omega(B)}{K(A) + K(B)}$$

The functional equation $f(xy) = f(x) + f(y)$ has unique continuous solution $f(x) = a \cdot \ln(x) + c$.

Setting $a = 1$ (choice of units):

$\Phi = \ln \left(\frac{\Omega}{K} \right)$ ■

G.8 The Complete Derivation Summary

From the axiom and Requirements 1-5:

1. Distinguishability structure must exist (axiom)
2. Need a field-intrinsic scalar measure (Requirements 1-2)

3. Must respect boundaries (Requirement 3) → depends on Ω, K
4. Must characterize efficiency (Requirement 5) → ratio form Ω/K
5. Must be additive (Requirement 4) → logarithmic form

Result:

$$\Phi = \ln \left(\frac{\Omega}{K} \right) = \ln \Omega - \ln K$$

This is not assumed but *derived* from the axiom and structural requirements.

Part II: The Dual Structure

G.9 The Intrinsic Duality

The ratio $\Phi = \ln(\Omega/K)$ reveals a duality intrinsic to the field geometry:

Ω -aspect (Relational Richness):

- How much distinguishability structure exists at this locus
- The "extensiveness" of the field pattern
- What relations the field supports here

K-aspect (Pattern Specificity):

- How constrained/particular the pattern is at this locus
- The "intensiveness" of the field pattern
- How sharply defined the field configuration is

Neither aspect is more fundamental. Together they characterize the field geometry at each locus.

G.10 Multiple Characterizations of Ω

Level 1 (Set-theoretic):

$$\Omega(C) = \#\{C' \in \mathcal{V} : D(C, C') > \epsilon\}$$

The count of distinguishable configurations.

Level 2 (Measure-theoretic):

$$\Omega(C) = \int_{\mathcal{V}} \mathbf{1}_{D(C,C') > \epsilon} d\mu(C')$$

The measure of the distinguishability neighborhood.

Level 3 (Information-theoretic):

$$\ln \Omega(C) = H(\text{distinguishable configurations})$$

The entropy of the distinguishability structure.

All three levels describe the same geometric property: how much relational structure the field supports at that locus.

G.11 Multiple Characterizations of K

Level 1 (Kolmogorov-like):

$$K(C) = \text{minimum specification of } C$$

The intrinsic complexity of the pattern.

Level 2 (Information-theoretic):

$$K(C) = -\log P_{\text{generic}}(C)$$

How "surprising" or non-generic the configuration is.

Level 3 (Geometric):

$$K(C) \sim \text{curvature sharpness at } C$$

How specific/peaked the field structure is.

All three describe how particular/constrained the field geometry is at that locus.

G.12 Φ as Field Geometry

Φ is a geometric property of the field, not a property "of" anything.

Just as:

- Curvature is what geometry is doing at a location
- Temperature is what molecular motion is doing in a region
- Pressure is what fluid dynamics is doing at a point

So too:

- Φ is what the constraint field is doing at a locus

There is no entity that "has" Φ or "computes" Φ . Φ IS the field geometry at that locus, characterized by the ratio of relational richness to pattern specificity.

Part III: Gradient Geometry

G.13 The Gradient Field

At each locus C, the efficiency potential $\Phi(C)$ defines a scalar field. The gradient of this field:

$$\nabla\Phi = \left(\frac{\partial\Phi}{\partial\beta}, \frac{\partial\Phi}{\partial\kappa}, \frac{\partial\Phi}{\partial\rho}, \frac{\partial\Phi}{\partial\lambda}, \frac{\partial\Phi}{\partial\tau} \right)$$

is a vector field over the space of configurations.

This gradient field IS the fundamental geometric structure.

The gradient $\nabla\Phi$ at each locus characterizes how Φ varies with each constraint. It defines the geometric relationships between nearby configurations.

G.14 Gradient Relationships Without Time

In temporal language, we might say "the system changes from configuration A to configuration B." This presupposes time as a background.

In field-geometric language:

Gradient relationships are geometric facts, not temporal processes.

- Configuration A and configuration B both exist as loci

- The gradient $\nabla\Phi$ at A points toward (or away from) B
- This gradient relationship IS the geometric structure—not something that "happens"

Analogy: Consider a landscape. The slope at each point exists as geometric fact. We don't need to invoke time to say "this point is uphill from that point." The slope relationship just IS.

Similarly, $\nabla\Phi$ at each configuration is geometric fact. Configurations are "uphill" or "downhill" from each other in Φ . This structure exists without temporal ordering.

G.15 Decomposing the Gradient

The gradient $\nabla\Phi$ is a 5-vector. Its components along each constraint dimension:

$$\nabla\Phi = \frac{\partial\Phi}{\partial\beta}\hat{\beta} + \frac{\partial\Phi}{\partial\kappa}\hat{\kappa} + \frac{\partial\Phi}{\partial\rho}\hat{\rho} + \frac{\partial\Phi}{\partial\lambda}\hat{\lambda} + \frac{\partial\Phi}{\partial\tau}\hat{\tau}$$

Each component characterizes how Φ varies along that constraint dimension:

Component	Geometric Meaning
$\partial\Phi/\partial\beta$	Rate of Φ -change with boundary structure
$\partial\Phi/\partial\kappa$	Rate of Φ -change with pattern structure
$\partial\Phi/\partial\rho$	Rate of Φ -change with resource structure
$\partial\Phi/\partial\lambda$	Rate of Φ -change with integration structure
$\partial\Phi/\partial\tau$	Rate of Φ -change with ordering structure

Note: At $N = 2$, the τ -component is identically zero because $\tau = 0$ necessarily. The gradient effectively lives in 4 dimensions at minimum configuration.

G.16 The Gradient in Terms of Ω and K

From $\Phi = \ln\Omega - \ln K$:

$$\nabla\Phi = \frac{\nabla\Omega}{\Omega} - \frac{\nabla K}{K}$$

$\nabla\Omega/\Omega$: Direction of increasing relational richness (normalized).

$\nabla K/K$: Direction of increasing pattern specificity (normalized).

$\nabla \Phi$: Direction of increasing efficiency—where the field achieves more relational structure with less specificity.

The gradient $\nabla \Phi$ represents the balance between these two tendencies.

G.17 Gradient Flow Lines

Definition 3 (Gradient Flow Line):

A gradient flow line is a curve $\gamma(\lambda)$ satisfying:

$$\frac{d\gamma}{d\lambda} = \nabla \Phi|_{\gamma(\lambda)}$$

where λ is a path parameter (arc length or similar).

Critical distinction:

- λ orders points along the curve geometrically
- λ is NOT time—it's like "distance along the path"
- The curve exists as a geometric object
- We can parameterize it with λ , but λ doesn't "flow"

The curve IS. It is a geometric object, not a process.

G.18 Properties of Gradient Flow Lines

Proposition G.1: Gradient flow lines connect configurations related by steepest ascent/descent in Φ .

Proposition G.2: Gradient flow lines are perpendicular to level sets of Φ .

Proposition G.3: Φ increases monotonically along flow lines (in the direction of $\nabla \Phi$).

Proposition G.4: Flow lines terminate at critical points (where $\nabla \Phi = 0$) or at the boundary ∂V .

These are geometric facts about the Φ landscape, independent of any temporal interpretation.

G.19 The Status of "Dynamics"

We can translate between temporal and geometric language:

Temporal Language

Field-Geometric Language

"System evolves from A to B"	"Gradient connects A to B"
"Force pushes system"	"Gradient structure at this locus"
"Rate of change"	"Gradient magnitude"
"Equilibrium"	" $\nabla\Phi = 0$ "
"Trajectory"	"Gradient flow line"

The field-geometric language is more fundamental. It applies at all N, including N = 2 where temporal concepts don't apply.

Part IV: Critical Points and Landscape Structure

G.20 Critical Points

Definition 4 (Critical Point):

A critical point is a locus C^* where $\nabla\Phi = 0$.

At critical points:

$$\frac{\nabla\Omega}{\Omega} = \frac{\nabla K}{K}$$

The richness and specificity gradients are proportionally balanced.

G.21 Classification of Critical Points

The Hessian matrix at a critical point:

$$H_{ij} = \left. \frac{\partial^2 \Phi}{\partial C_i \partial C_j} \right|_{C^*}$$

classifies the critical point by its eigenvalue signature:

Eigenvalue Signature	Type	Character
All positive	Local minimum	Stable attractor
All negative	Local maximum	Unstable
Mixed signs	Saddle point	Metastable

G.22 The Hessian as Curvature

The Hessian H characterizes the local curvature of the Φ landscape:

- **Positive eigenvalue:** Φ curves upward in that direction (bowl-like)
- **Negative eigenvalue:** Φ curves downward in that direction (dome-like)
- **Zero eigenvalue:** Φ is flat in that direction (neutral)

The eigenvectors of H define the principal directions of curvature.

G.23 Basins of Attraction

Definition 5 (Basin of Attraction):

The basin of attraction of a local minimum C^* is:

$$\mathcal{B}(C^*) = \{C : \text{gradient flow from } C \text{ terminates at } C^*\}$$

Basins partition the viable region V into regions "attracted to" different minima.

Geometric interpretation: Each basin represents a family of configurations geometrically related to the same stable configuration.

G.24 The Viable Region Structure

The viable region V has characteristic structure:

Boundaries: Where constraints approach 0 or maximum, $\Phi \rightarrow -\infty$. These are the "edges" forbidden by the axiom.

Interior: The region where all constraints are properly bounded.

Critical points: Local extrema and saddles organizing the gradient flow.

Basins: Regions flowing toward common minima.

This structure is intrinsic to the field geometry, not imposed from outside.

G.25 The Fisher Information Metric

The natural metric on the space of configurations is the Fisher information metric:

$$g_{ij} = \mathbb{E} \left[\frac{\partial \ln p}{\partial C_i} \frac{\partial \ln p}{\partial C_j} \right]$$

where p is the probability distribution associated with distinguishability at each locus.

Properties:

- Positive definite (defines genuine distances)
- Invariant under reparameterization
- Measures distinguishability between nearby configurations

The gradient $\nabla\Phi$, expressed in this metric, has invariant geometric meaning.

G.26 Geodesics

Definition 6 (Geodesic):

A geodesic is a curve $\gamma(s)$ satisfying:

$$\frac{d^2\gamma^i}{ds^2} + \Gamma_{jk}^i \frac{d\gamma^j}{ds} \frac{d\gamma^k}{ds} = 0$$

where Γ are the Christoffel symbols of the Fisher metric.

Geodesics are the "straightest" paths between configurations—paths of minimal length in the Fisher metric.

Note: Geodesics differ from gradient flow lines. Geodesics minimize distance; gradient flow lines follow steepest ascent/descent.

Part V: N-Dependence of Geometry

G.27 The Parameter N

N denotes the count of distinguishable features in a configuration. The axiom requires $N \geq 2$ (see SI):

Categorical Exhaustion, CE.2).

The geometric structure varies with N:

G.28 Geometry at N = 2

At minimum configuration (N = 2):

Constraint status:

- β (boundary): defined—demarcation exists between the two features
- κ (pattern): maximal—no factorization possible through intermediate features
- ρ (resource): defined—capacity sustains the distinction
- λ (integration): not independent of β —correlation and boundary are aspects of the same structure
- τ (ordering): identically zero—no asymmetric structure possible

Effective dimensionality: The configuration is characterized by effectively 4 independent parameters, not 5.

Gradient structure:

$$\nabla\Phi|_{N=2} = \left(\frac{\partial\Phi}{\partial\beta}, \frac{\partial\Phi}{\partial\kappa}, \frac{\partial\Phi}{\partial\rho}, \frac{\partial\Phi}{\partial\lambda}, 0 \right)$$

The τ -component is identically zero.

Character: Purely geometric, tenseless. No ordering structure exists to ground temporal language.

G.29 The Transition at N = 3

At N = 3, qualitative changes occur:

Mathematical fact: Three coupling matrices (one for each pair of features) cannot generically be simultaneously diagonalized.

Consequence: Irreducible structure emerges that cannot be decomposed into independent pairwise relations.

For τ : The ordering constraint can become non-zero. Circulation around the three-feature loop can be non-vanishing:

$$\oint_{A \rightarrow B \rightarrow C \rightarrow A} \nabla\Phi \cdot d\ell \neq 0$$

Effective dimensionality: All five constraints become independently variable.

G.30 Geometry at $N \geq 3$

At $N \geq 3$:

Constraint status:

- All five constraints ($\beta, \kappa, \rho, \lambda, \tau$) are independently variable
- τ can be non-zero, enabling asymmetric structure

Gradient structure:

$$\nabla \Phi|_{N \geq 3} = \left(\frac{\partial \Phi}{\partial \beta}, \frac{\partial \Phi}{\partial \kappa}, \frac{\partial \Phi}{\partial \rho}, \frac{\partial \Phi}{\partial \lambda}, \frac{\partial \Phi}{\partial \tau} \right)$$

All five components can be non-zero.

Character: The full 5-dimensional geometry. Ordering structure ($\tau > 0$) enables what Section 4 will develop as temporal and causal structure.

G.31 The Geometric Origin of Ordering

The emergence of $\tau > 0$ at $N \geq 3$ is not imposed but follows from geometry:

At $N = 2$: Two features A, B have symmetric relationship. A-to-B is geometrically identical to B-to-A. No "direction" is distinguishable.

At $N \geq 3$: Three features A, B, C form a loop. The circulation around the loop can be non-zero:

- $A \rightarrow B \rightarrow C \rightarrow A$ may differ from $A \rightarrow C \rightarrow B \rightarrow A$
- This asymmetry IS ordering structure
- τ measures the magnitude of this asymmetry

This is developed fully in Section 4 of the main text and SI: Circulation Proof.

G.32 Constraint Independence and N

The independence of constraints varies with N:

N	Independent Constraints	Coupled Constraints
2	β, κ, ρ	$\lambda \sim \beta, \tau = 0$
3	$\beta, \kappa, \rho, \lambda, \tau$	(all independent)
Large	$\beta, \kappa, \rho, \lambda, \tau$	(all independent, classical limit)

The full five-dimensional structure requires $N \geq 3$.

Part VI: Conservation and Symmetry

G.33 Symmetries of Φ

The functional form $\Phi = \ln(\Omega/K)$ has symmetries:

Scale invariance: If $\Omega \rightarrow \alpha\Omega$ and $K \rightarrow \alpha K$, then Φ is unchanged. The ratio is what matters, not absolute magnitudes.

Sign invariance: Ω and K are positive quantities. Φ is insensitive to sign conventions.

Additivity: $\Phi(A \oplus B) = \Phi(A) + \Phi(B)$ for independent regions.

G.34 Conservation of Distinguishability

Theorem G.3 (Conservation):

The total distinguishability measure Ω_{total} is conserved.

Proof sketch:

1. Ω_{total} cannot be zero (axiom forbids nothingness)
2. Ω_{total} cannot be infinite (viable region is bounded)
3. Ω_{total} cannot change discontinuously (continuity of field geometry)
4. No source or sink exists for total Ω (field is all there is)

Therefore, Ω_{total} is constant. ■

Note: This is conservation of *total* Ω . Local Ω can redistribute—one region gaining while another loses.

G.35 Noether Structure

Continuous symmetries of Φ correspond to conserved quantities along gradient flow lines:

Symmetry	Conserved Quantity
Translation in β	Boundary flux
Translation in κ	Pattern measure
Translation in ρ	Resource total
Translation in λ	Correlation total
Rotation in (β, τ)	Angular momentum analog

This is the geometric analog of Noether's theorem, applied to the Φ landscape.

Part VII: Summary

G.36 What We Have Established

The Efficiency Potential (Parts I-II):

- $\Phi = \ln(\Omega/K)$ is derived from the axiom and five structural requirements
- Ω measures relational richness; K measures pattern specificity
- Φ is an intrinsic geometric property of the field

Gradient Geometry (Part III):

- $\nabla\Phi$ is the fundamental geometric structure relating configurations
- Gradient flow lines are geometric objects, not temporal processes
- The 5-vector structure decomposes into constraint components

Landscape Structure (Part IV):

- Critical points where $\nabla\Phi = 0$
- Hessian characterizes local curvature
- Basins of attraction organize the geometry
- Fisher metric provides natural distances

N-Dependence (Part V):

- At $N = 2$: 4 effective dimensions, $\tau = 0$, tenseless geometry
- At $N \geq 3$: full 5 dimensions, τ can be non-zero, ordering structure emerges
- The transition is geometric, not imposed

Conservation (Part VI):

- Total Ω is conserved
- Symmetries of Φ correspond to conserved quantities

G.37 What This Document Does Not Establish

- Physical interpretation of gradient components (see SI: Physical Emergence)
- The emergence of temporal structure from τ (see Section 4 and SI: Circulation Proof)
- Connection to specific physical theories (see Section 5 and SI: Framework Bridges)
- Quantitative values of Φ parameters (open problem)

G.38 Connection to Main Text

This Supporting Information provides mathematical foundations for Section 3 of the main text, which introduces the Φ potential and its geometric structure in less technical terms.

Key correspondences:

- Main text §3.1 → SI Parts I-II (derivation)
- Main text §3.2 → SI Part III (gradient structure)
- Main text §3.3 → SI Part IV (landscape)
- Main text §3.4 → SI Parts V-VI (N-dependence, conservation)

References

- Fisher, R.A. (1925). "Theory of Statistical Estimation." *Proceedings of the Cambridge Philosophical Society* 22, 700-725.

- Kolmogorov, A.N. (1965). "Three approaches to the quantitative definition of information." *Problems of Information Transmission* 1, 1-7.
- Shannon, C.E. (1948). "A Mathematical Theory of Communication." *Bell System Technical Journal* 27, 379-423.
- Jaynes, E.T. (1957). "Information Theory and Statistical Mechanics." *Physical Review* 106, 620-630.
- Amari, S. (1985). *Differential-Geometrical Methods in Statistics*. Springer.

Appendix: Glossary of Geometric Terms

Basin of attraction: The set of configurations whose gradient flow lines terminate at a given critical point.

Configuration: A point in the space of constraint values; what the field is doing at a locus.

Critical point: A locus where $\nabla\Phi = 0$; gradient flow lines terminate here.

Efficiency potential (Φ): The scalar field $\ln(\Omega/K)$ characterizing field geometry at each locus.

Fisher metric: The natural Riemannian metric on configuration space, measuring distinguishability between nearby configurations.

Geodesic: A curve of minimal length in the Fisher metric; the "straightest" path between configurations.

Gradient ($\nabla\Phi$): The 5-vector field characterizing how Φ varies with each constraint; the fundamental geometric structure.

Gradient flow line: A curve tangent to $\nabla\Phi$ at each point; connects configurations related by steepest ascent/descent.

Hessian (\mathbf{H}): The matrix of second derivatives of Φ ; characterizes local curvature at critical points.

Pattern specificity (\mathbf{K}): How constrained/particular the field configuration is at a locus.

Relational richness (Ω): How much distinguishability structure the field supports at a locus.

Viable region (\mathbf{V}): The bounded region where all constraints are properly bounded; where the axiom is satisfied.