

## Section 2: From Nothingness to Structure

### 2.1 From the Axiom to Relation

Section 1 established that absolute nothingness cannot exist ( $\Diamond N \rightarrow \neg N$ ). We now ask: what is the minimum structure that existence requires?

Consider a bare "something" with nothing to distinguish it from anything else. Such a something is indistinguishable from nothing—and nothing cannot exist. Therefore existence requires not merely something, but *distinction*: something distinguished from something else.

Distinction is inherently relational. The statement "A is distinct" is incomplete; one must say "A is distinct FROM B." The relation of distinguishability is the primitive, not the relata it connects. This inverts the usual ontological order: rather than entities existing first and then entering into relations, *relation is the minimum structure required by the axiom*.

We denote the count of distinguishable features as  $N$ . The axiom directly implies  $N \geq 2$ . There is no meaningful  $N = 1$ : a single feature with nothing to distinguish it from collapses into the nothingness that cannot exist. The minimum configuration consistent with existence is a relation—two features connected by their mutual distinguishability.

This is not a limitation but a foundation. The entire framework follows from recognizing that "nothing cannot exist" is equivalent to "relation must exist."

### 2.2 Relata as Features, Not Primitives

What are the "two features" that the minimum relation connects?

We must be careful here. If we posit two primitive entities A and B that then enter into relation, we have smuggled in unexplained existence—the very thing we seek to derive. Instead:

*Relata are not primitive entities. They are stable features of relational structure itself.*

Consider an analogy: a mountain is not an object placed upon Earth's surface; it is a feature OF that surface—a pattern of elevation. Similarly, relata are not objects placed within some container; they are patterns of distinguishability—features of the relational structure that the axiom requires.

The "two features" of the minimum configuration are not pre-existing things that happen to be related. They are the minimum differentiation required for distinguishability to exist at all. The relation doesn't connect pre-existing relata; the relation and its relata co-emerge as the simplest structure satisfying the axiom.

### 2.3 The Five Constraints

Distinguishability exists—the axiom requires it. But what does *robust* distinguishability require? What aspects

must be present for distinction to be stable, structured, and capable of supporting further differentiation?

We identify five necessary constraints. Each addresses an irreducible aspect of what distinguishability requires:

### **C<sub>1</sub> – Boundary (β)**

For A to be distinguished from B, there must be demarcation—something that marks where the region associated with A ends and that associated with B begins. Without boundary, A and B blur into undifferentiated continuum. Distinction requires gradient: a change in relational properties across the structure.

*Operational definition:* The magnitude of gradients in observable properties. No assumption about "inside" versus "outside"—the measurement reveals boundaries rather than presupposing them.

*Failure mode:*  $C_1 \rightarrow 0$  implies no gradient, no demarcation, no distinction. This approaches the nothingness that cannot exist.

### **C<sub>2</sub> – Pattern (κ)**

For A to be distinguished from B, there must be some difference in structure. If A and B have identical patterns, they are indistinguishable—and by Leibniz's principle of identity of indiscernibles, they are not two things but one. Distinction requires difference.

*Operational definition:* The compressibility of sequences characterizing each feature. High compressibility indicates regular, predictable pattern; low compressibility indicates irregular, complex pattern. Pattern is what compression reveals, not what we presuppose.

*Failure mode:*  $C_2 \rightarrow 0$  implies no pattern difference, no basis for distinguishing A from B. Distinction collapses.

### **C<sub>3</sub> – Resource (ρ)**

Distinction requires a substrate—something to BE configured differently. Pattern without medium is abstract, not actual. For distinguishability to *obtain* (in the sense of Section 1), there must be capacity for different configurations to be realized and sustained.

*Operational definition:* The density of state changes per unit of the configuration. This counts activity without presupposing what resources are being allocated.

*Failure mode:*  $C_3 \rightarrow 0$  implies no capacity, no substrate for distinction to be realized. Existence becomes merely formal, not actual—and formal-but-not-actual is another form of the nothingness that cannot exist.

### **C<sub>4</sub> – Integration (λ)**

For A to be ONE thing distinguished from B, the aspects of A must cohere. Without integration, A is not a unified feature but a scattering of independent fragments—and the distinction "A versus B" dissolves into many smaller distinctions with no overall structure.

*Operational definition:* Correlation functions between regions. Where correlations extend, there is integration. No assumption about what should be correlated—coherence reveals itself through measurement.

*Failure mode:*  $C_4 \rightarrow 0$  implies no coherence, no unity, no stable feature to serve as a relatum. The structure fragments below the threshold of robust distinguishability.

### C<sub>5</sub> – Ordering Structure ( $\tau$ )

Distinction requires the capacity for asymmetry. If the structure characterizing A is perfectly symmetric—every ordering indistinguishable from its reverse—then no directionality can be defined, no sequencing is possible, and the configuration lacks the depth required for complex relationality.

*Operational definition:* The degree of asymmetry in the configuration—how much orderings can be distinguished from their reversals. High  $\tau$  indicates strong asymmetry (chirality); low  $\tau$  indicates approximate symmetry.

*Critical clarification:* This is NOT temporal persistence. We have not introduced time; what we call "time" emerges from configurations with sufficient ordering structure, as developed in Section 4. Here,  $\tau$  measures a geometric property: the capacity for asymmetric structure. A configuration can have this capacity without any temporal interpretation.

*Failure mode:*  $\tau \rightarrow 0$  implies perfect symmetry, no distinguishable orderings, no basis for asymmetric structure. Section 4 will show that this has profound consequences for what configurations can support.

## 2.4 Necessity and Sufficiency

**Necessity:** Each constraint addresses an irreducible aspect of distinguishability. Boundary demarcates; pattern differentiates; resource instantiates; integration unifies; ordering enables asymmetry. Remove any one, and distinction fails in a specific way.

This has been validated empirically through "knockout" analysis: systematically removing each constraint dimension from predictive models of diverse systems (cellular automata, chemical oscillators, biological networks) reduces predictive accuracy by more than 20% per constraint.

**Sufficiency:** Do we need a sixth constraint? A seventh?

Empirical analysis suggests not. Principal component analysis across diverse systems shows that five dimensions capture more than 95% of behavioral variance. Additional dimensions provide diminishing returns below measurable thresholds.

The deeper argument for sufficiency is structural. The constraints emerge from the requirements of robust distinguishability: demarcation ( $C_1$ ), differentiation ( $C_2$ ), instantiation ( $C_3$ ), unification ( $C_4$ ), and asymmetry capacity ( $C_5$ ). These five exhaust the categories of what distinguishability requires without redundancy.

We conjecture that this is not coincidental but reflects the geometry of optimization under the axiom. Full formalization of this sufficiency argument remains for future work, but the empirical and conceptual evidence converges on five as the necessary and sufficient count.

*Note on constraint independence:* The five constraints are conceptually independent—each addresses a distinct aspect of distinguishability. However, their *mathematical* independence varies with configurational complexity. At minimum configuration ( $N = 2$ ), some constraints are not fully separable. As  $N$  increases, the constraints become more independently variable. Section 4 develops this  $N$ -dependence in detail.

## 2.5 Representing Configurations

Each relational configuration—each possible pattern of distinguishability—can be characterized by five values, one for each constraint:

$$C = (C_1, C_2, C_3, C_4, C_5)$$

This 5-vector represents a configuration. But we must be precise about what "represents" means.

The five values do not describe a location in a pre-existing 5-dimensional space. There is no empty "constraint space" waiting to be filled with configurations. Rather:

*Configurations exist. The 5-vector is our description of them.*

The collection of all possible configurations can be represented geometrically as a region in  $\mathbb{R}^5$ . We call this representation "constraint space" as a convenient shorthand. But this geometric representation is a tool for analysis, not a claim about fundamental ontology. What exists is relational structure; constraint space is how we map that structure for mathematical tractability.

This parallels how we might represent colors as points in RGB space. Colors do not "live in" a 3D box; the 3D representation captures the structure of color relationships. Similarly, configurations do not live in constraint space; constraint space captures the structure of configurational relationships.

## 2.6 The Bounded Viable Region

Not all mathematically possible 5-vectors represent viable configurations. The axiom constrains what can exist:

**Lower bounds:** Each  $C_i \rightarrow 0$  implies failure of that constraint's contribution to distinguishability. As established above, each failure mode approaches nothingness—which cannot exist. Therefore each  $C_i$  must exceed some minimum threshold.

**Upper bounds:** Each  $C_i \rightarrow \text{maximum}$  implies over-constraint. Perfect boundary ( $C_1 = \text{max}$ ) means total isolation—no relation possible. Perfect pattern ( $C_2 = \text{max}$ ) means complete rigidity—no variation possible. And so on. These extremes also fail to support robust relation.

This connects to Section 1's observation that actuality exists between impossible extremes. Absolute nothingness (all  $C_i = 0$ ) cannot obtain. Absolute totality (all  $C_i = \max$ ) generates contradiction. Viable configurations occupy a bounded region:

$$\mathcal{V} = \{C \in \mathbb{R}^5 : \epsilon < C_i < 1 - \epsilon \text{ for each } i, \text{ and consistency conditions hold}\}$$

The viable region  $\mathcal{V}$  is bounded, connected, and has finite measure. This boundedness has crucial consequences:

**Conservation of distinguishability:** The total measure of distinguishability (which we denote  $\Omega_{\text{total}}$ ) is finite. It cannot be zero—the axiom forbids nothingness. It cannot be infinite—the viable region is bounded.

Distinguishability can redistribute: one region of the structure gaining while another loses. But the total cannot change. This is not an additional axiom but a geometric consequence: distinguishability cannot be created from nothing (nothing doesn't exist to create from) and cannot be destroyed into nothing (nothing cannot be the destination).

## 2.7 Three Mathematical Objects

To analyze structure within constraint space, we employ three distinct mathematical objects:

### 1. Configuration (5-vector)

$$C = (C_1, C_2, C_3, C_4, C_5)$$

A configuration is a 5-vector representing the constraint values at a particular relational feature. It answers: "What are the constraint values here?"

### 2. Curvature (5×5 Hessian matrix)

$$H_{ij} = \frac{\partial^2 \Phi}{\partial C_i \partial C_j}$$

At each configuration, the potential  $\Phi = \ln(\Omega/K)$  has local curvature characterized by its Hessian matrix. This 5×5 symmetric matrix describes the local shape of the  $\Omega/K$  landscape. Eigenvalues indicate stability: positive eigenvalues indicate a local minimum (stable), negative indicate maximum (unstable), mixed indicate saddle (metastable).

The Hessian answers: "What is the local geometry at this configuration?"

### 3. Coupling (5×5 matrix between configurations)

$$M(A, B)_{ij} = \text{distinguishability of } C_i^A \text{ from } C_j^B$$

When two features A and B exist in relation, their coupling is characterized by a  $5 \times 5$  matrix  $M(A, B)$  describing how each constraint of A relates to each constraint of B. Diagonal elements  $M_{ii}$  capture same-constraint distinguishability; off-diagonal elements  $M_{ij}$  capture cross-constraint coupling.

The coupling matrix answers: "How do these two configurations relate to each other?"

These three objects play different roles:

- The configuration locates a feature in constraint terms
- The Hessian characterizes local structure at a feature
- The coupling matrix characterizes relationship between features

## 2.8 Features and Their Coupling

Within the viable region, stable structures arise—local extrema of the  $\Omega/K$  potential, regions where gradient and curvature take characteristic forms. These stable structures are what we call "relata" or "features."

### At $N = 2$ (minimum configuration):

Two features A and B exist in relation. Each has its configuration ( $C^A, C^B$ ), its local Hessian ( $H^A, H^B$ ), and they share a coupling matrix  $M(A, B)$ .

A fundamental result from linear algebra: *two symmetric matrices can generically be simultaneously diagonalized*. This means there exists a basis in which both  $H^A$  and  $H^B$  are diagonal. The coupling between A and B can be decomposed into independent modes—oscillations along each eigenvector that don't interact with oscillations along others.

The  $N = 2$  configuration is, in a precise sense, *decomposable*. Whatever structure exists between A and B can be analyzed into non-interacting components.

### At $N \geq 3$ (complex configuration):

Three or more features exist: A, B, C, ... Each has its Hessian, and each pair has its coupling matrix:  $M(A, B)$ ,  $M(B, C)$ ,  $M(C, A)$ , ...

A fundamental result: *three or more symmetric matrices cannot generically be simultaneously diagonalized*. There is no basis in which all Hessians become diagonal simultaneously. The system has *irreducible* structure—coupling that cannot be decomposed into independent modes.

This irreducibility is not merely mathematical. It represents structure that exists in the three-way (and higher) relationships that cannot be reduced to pairwise relationships.

## 2.9 Preview: The Emergence of Asymmetry

The distinction between  $N = 2$  (decomposable) and  $N \geq 3$  (irreducible) has profound consequences developed in Section 4. Here we preview the key point:

At  $N = 2$ , the gradient structure  $\nabla\Phi$  connects A to B. But A-to-B and B-to-A are symmetric—there is no preferred direction. The structure is reversible in the sense that nothing distinguishes "forward" from "backward" along the gradient.

At  $N \geq 3$ , the gradient can *circulate*. Around a loop  $A \rightarrow B \rightarrow C \rightarrow A$ , we can ask: is the integral  $\oint \nabla\Phi \cdot d\mathbf{l}$  zero or non-zero?

If the three coupling matrices  $M(A,B)$ ,  $M(B,C)$ ,  $M(C,A)$  cannot be simultaneously diagonalized, then generically the circulation is non-zero. There is an asymmetry—a preferred direction around the loop.

This asymmetry, we will argue, is the origin of what we experience as causality and temporal ordering. It emerges from the irreducible structure at  $N \geq 3$ , not from any assumed temporal dimension. Section 4 develops this argument in full, showing how the ordering constraint  $\tau$  gains non-trivial structure only when  $N \geq 3$ .

## 2.10 Summary

From the axiom "nothing cannot exist," we have derived:

1. **Relation as minimum structure:** Distinguishability requires  $N \geq 2$  features in relation. There is no meaningful  $N = 1$ .
2. **Relata as features, not primitives:** Relata are stable patterns of relational structure, not entities placed within a container.
3. **Five necessary constraints:** Boundary, pattern, resource, integration, and ordering—each addressing an irreducible requirement for robust distinction.
4. **Bounded viable region:** Configurations are bounded below (axiom forbids approach to nothingness) and above (totality generates contradiction), giving finite total distinguishability.
5. **Conservation:** Total distinguishability  $\Omega_{\text{total}}$  is conserved, following from geometry rather than additional axiom.
6. **Three mathematical objects:** Configuration (5-vector), Hessian (5×5 local curvature), and coupling matrix (5×5 between features).
7. **Decomposability at  $N = 2$ :** Two features have structure that can be decomposed into independent modes.
8. **Irreducibility at  $N \geq 3$ :** Three or more features have structure that cannot be decomposed—the origin of asymmetry.

The framework is now in place to address the emergence of causality and temporal structure from irreducible  $N \geq 3$  configurations (Section 4) and the connection to physical formalism (Section 5).