

Dynamic Constraint Field Theory: From Static Geometry to Relational Dynamics

Working Document — Research in Progress

Date: January 2026

Status: Exploratory framework development

Context: Extension of the relational framework from static constraint geometry to dynamic field theory

1. Motivation and Core Problem

1.1 What We Have: Static Constraint Geometry

The relational framework has established:

1. **The Axiom:** $\diamond N \rightarrow \neg N$ (nothing cannot exist)
2. **Five Constraints:** β (boundary), κ (pattern), ρ (resource), λ (integration), τ (ordering)
3. **Efficiency Potential:** $\Phi = \ln(\Omega/K)$
4. **N-Dependence:** Decomposable at $N=2$, irreducible at $N \geq 3$, statistical at large N
5. **Monogamy Polytope:** $V=5$, $E=9$, $F=6$, $\chi=2$ constraining correlation distribution

This provides a beautiful static picture — like having the geometry of a space without knowing how objects move through it, or like having Minkowski spacetime without Einstein's equations.

1.2 What We Need: Relational Dynamics

The framework currently lacks:

1. **Constraint Coupling:** How do changes in one constraint (e.g., β) affect others ($\kappa, \rho, \lambda, \tau$)?
2. **Consistency Conditions:** What equations must hold between constraint configurations at different relational locations?
3. **N-Transitions:** What governs when N increases (new distinctions emerge) or decreases (distinctions merge)?
4. **The Jacobson Gap:** How do geometric consistency requirements at finite N become Einstein's equations at large N ?

1.3 The Key Insight: Dynamics Without Time

The fundamental move: **dynamics is relational, not temporal.**

At the foundational level ($N=2$), time doesn't exist ($\tau=0$ necessarily). Any "dynamics" must therefore be:

- **Consistency requirements** between configurations
- **Constraint propagation** through relational structure
- **Equilibration** toward compatible states

Time-based evolution emerges only at $N \geq 3$ and becomes dominant only at large N .

Analogy: The progression from special to general relativity — but instead of "geometry responds to matter," we have "constraint geometry responds to constraint content, and this response IS what we call dynamics."

2. Foundational Concepts

2.1 What N Means in a Relationship Field

Critical clarification: N is not "the number of particles in a region" (container thinking).

Definition: N = the local richness of distinguishability structure

More precisely:

- N = rank of the local correlation structure
- N = number of independent "directions" in which distinctions exist locally
- N = dimensionality of the local relational manifold

Key insight: N is a property of the relational field itself at a locus, where "locus" is defined relationally, not spatially.

Analogy: In crystallography, local structure isn't characterized by counting atoms but by measuring the local symmetry group. Similarly, N characterizes the local relational symmetry/complexity.

2.2 Locality as Correlation Proximity

In a relational framework without a spatial container, "local" cannot mean "nearby in space."

Definition: Locality is correlation proximity.

Concept	Relational Meaning
Local	Directly correlated ($\lambda_{AB} > 0$)
Distant	Requires intermediate correlations
Light-like	Direct correlation, no mediation
Time-like	Single or few mediation steps
Space-like	No correlation path exists

The light cone IS the correlation cone.

Propagation is not motion through space but **sequential consistency restoration** through the correlation network.

2.3 The Dissolution of "Action at a Distance"

The phrase "action at a distance" presupposes:

1. Things exist at locations
2. Distance separates them
3. Influence must traverse that distance
4. Speed can be measured

In the relational framework:

1. Relations exist; "things" are patterns in relations
2. "Distance" is correlation structure, not spatial separation
3. "Influence" is consistency constraint, not causal propagation
4. "Speed" only applies once τ emerges ($N \geq 3$)

At $N=2$: A and B are correlated. Their states are jointly constrained. There is no "propagation" — asking "how fast does A affect B?" is a category error because there's no temporal metric.

At $N \geq 3$: Sequential consistency restoration through the correlation network creates the appearance of propagation. The "speed limit" is:

$$c = \frac{\Delta\beta_{min}}{\Delta\tau_{min}}$$

This is the **bandwidth of constraint equilibration**, not motion through a pre-existing space.

2.4 Direct vs Mediated Coupling

This distinction becomes "instantaneous vs propagating" at large N:

Direct Coupling ($\lambda_{AB} > 0$): A and B share correlation capacity. Their constraint states must be jointly consistent:

$$\mathcal{L}(C_A, C_B, \lambda_{AB}) = 0$$

This isn't "instantaneous influence" — it's a constraint both must satisfy simultaneously.

Mediated Coupling ($A \leftrightarrow C \leftrightarrow B, \lambda_{AB} = 0$): A and B have no direct correlation but both correlate with C.

A change in A propagates through sequential consistency restoration:

1. A changes $\rightarrow A \leftrightarrow C$ becomes inconsistent
2. C adjusts to restore $A \leftrightarrow C$ consistency
3. C's change $\rightarrow C \leftrightarrow B$ becomes inconsistent
4. B adjusts to restore $C \leftrightarrow B$ consistency

This sequence creates the appearance of propagation.

3. Constraint Behavior at N-Transitions

3.1 The Critical Transition: $N = 2 \rightarrow 3$

Each constraint transforms qualitatively at this boundary:

β (Boundary Stability)

At $N=2$: One boundary exists — the single distinction between two relata. β measures the robustness of this distinction.

At $N=3$: Three boundaries exist ($A \leftrightarrow B, B \leftrightarrow C, C \leftrightarrow A$), but they share vertices and are not independent.

Transition: β becomes a **network property**. The stability of each boundary depends on the others:

$$\beta_{total}^{(N=3)} \neq \beta_{AB} + \beta_{BC} + \beta_{CA}$$

There is coupling between boundaries through shared relata.

κ (Pattern Complexity)

At N=2: Pattern is the correlation structure between two — decomposable, simple.

At N=3: The trivector $\mathbf{a} \wedge \mathbf{b} \wedge \mathbf{c}$ is **irreducible**. Pattern contains genuinely three-way information absent from pairwise correlations.

Transition: κ jumps discontinuously:

$$\kappa^{(N=3)} = \kappa_{pairwise} + \kappa_{irreducible}$$

The irreducible term is zero at N=2, non-zero at N≥3. This is the **birth of interference**.

ρ (Resource Density)

At N=2: Resources shared between two. No competition — whatever A has, B can access through their correlation.

At N=3: Monogamy activates. Resources become contested. A's correlation capacity spent on B is unavailable for C.

Transition: ρ becomes **locally conserved** in a new sense:

$$\rho_A^{(to B)} + \rho_A^{(to C)} \leq \rho_A^{(total)}$$

This is the birth of **scarcity** in the relational field.

λ (Integration)

At N=2: Integration is trivial — the two are either correlated or not.

At N=3: Integration becomes **structured**:

- Fully integrated (GHZ-like): All three tightly bound
- Partially integrated (W-like): Pairwise correlations but no genuine triadic unity
- Decomposable (classical-like): Just three separate pairs

Transition: λ gains internal structure — no longer a scalar but something measuring different modes of integration.

τ (Ordering)

At N=2: $\tau = 0$ **necessarily.** With only two relata, no third point exists to create circulation. Any "ordering" is symmetric under exchange.

At N=3: τ can be non-zero. The circulation A→B→C→A is distinguishable from A→C→B→A.

Transition: Most dramatic — τ goes from **forbidden** to **possible**:

$$\tau^{(N=2)} = 0 \quad (\text{topological constraint})$$

$$\tau^{(N=3)} \in [0, \tau_{max}] \quad (\text{geometric freedom})$$

Time doesn't "turn on gradually" — it becomes geometrically possible for the first time.

3.2 Higher N-Transitions

Beyond N=3, transitions are more quantitative than qualitative:

N	Character	New Features
3 → 4	Additional circulation modes	Multiple independent τ -orderings possible
4 → 5	Full constraint space accessed	All five constraints independently variable
5 → ~30	Approach to statistical behavior	Fluctuations decrease as $1/\sqrt{N}$
~30 → ∞	Thermodynamic limit	Continuous description valid

3.3 What Governs N-Change?

N increasing locally (distinction emergence):

A new distinction emerges when constraint gradients become steep enough that a single locus "splits" into two distinguishable aspects.

Threshold condition (speculative):

$$|\nabla C| > \epsilon_{split}$$

When internal constraint variation exceeds a threshold, the locus can no longer be treated as single — it becomes two.

N decreasing locally (distinction merger):

Distinctions merge when correlations become strong enough that two loci become indistinguishable.

Threshold condition (speculative):

$$\lambda_{AB} > \Lambda - \epsilon_{merge}$$

When correlation approaches the maximum, A and B effectively become one.

Connection: This might be what **measurement** does — locally reduces N by creating such strong correlation with the apparatus that system and apparatus become (temporarily) indistinguishable.

4. The Constraint Coupling Matrix

4.1 Definition

At any $N \geq 3$, constraints respond to each other. Define the coupling matrix:

$$M_{ij} = \frac{\partial C_i}{\partial C_j}$$

where $C_i \in \{\beta, \kappa, \rho, \lambda, \tau\}$.

Physical interpretation: If κ changes locally, what happens to the other constraints?

4.2 Proposed Coupling Structure

Change in	β	κ	ρ	λ	τ
\rightarrow					
β increases	—	\downarrow (less pattern across boundary)	concentrates	\downarrow (less integration across)	unchanged?

Change in β	κ	ρ	λ	τ
\rightarrow				
κ increases	may soften	—	distributes	\uparrow (patterns integrate)
ρ increases	\uparrow (resources create distinction)	can increase	—	complicated ?
λ increases	\downarrow (integration erases boundaries)	depends	flows more freely	may decrease (integration \rightarrow equilibration)
τ increases	becomes directional	gains temporal structure	flows along ordering	gains causal structure

4.3 Symmetry Considerations

The coupling matrix need not be symmetric: $M_{ij} \neq M_{ji}$ in general.

Physical meaning: The effect of β on κ differs from the effect of κ on β . Boundaries constrain patterns differently than patterns constrain boundaries.

4.4 Conservation Laws

The monogamy constraint imposes:

$$\sum_X \lambda_{AX} \leq \Lambda$$

This should appear as a constraint on the coupling matrix — certain combinations of changes are forbidden.

Conjecture: The "allowed" constraint variations form a subspace determined by monogamy. The coupling matrix M_{ij} has a null space corresponding to monogamy-forbidden directions.

5. Derivation of Relativistic Invariance from Constraint Geometry

5.1 The Standard Approach: c as Postulate

Einstein's special relativity (1905) takes two postulates as given:

1. The laws of physics are the same in all inertial frames

2. The speed of light c is constant for all observers

From these, the entire structure follows: Lorentz transformations, time dilation, length contraction, $E=mc^2$, relativistic mechanics.

What Einstein did not ask: *Why* should c be constant?

The constancy of light speed was an empirical fact (Michelson-Morley experiment) elevated to axiom. The theory derives consequences brilliantly but does not explain why this particular postulate should hold.

This creates the sense that "time and space conspire to keep c constant" — length contracts, time dilates, but always in just the right way to preserve c . It feels like a coordination that demands explanation.

5.2 The Framework Approach: c as Theorem

In the relational framework, c -constancy is not postulated — **it is derived**.

The key insight: c is not the speed of light traveling through space. It is the **ratio of minimum increments** in the constraint structure:

$$c = \frac{\Delta\beta_{min}}{\Delta\tau_{min}}$$

where:

- $\Delta\beta_{min}$ = minimum distinguishable change in boundary structure
- $\Delta\tau_{min}$ = minimum distinguishable change in ordering structure

Why this ratio is constant:

Both β and τ emerge from the same source — the distinguishability structure required by the axiom $\Diamond N \rightarrow \neg N$:

- Distinguishability requires boundaries $\rightarrow \beta$
- At $N \geq 3$, distinguishability requires ordering $\rightarrow \tau$

Their minimum increments are fixed by the geometry of constraint space. There is nothing that *could* change their ratio, because they are not independent quantities that happen to coordinate — they are aspects of a single relational structure.

5.3 The "Conspiracy" Dissolved

The phrase "time and space conspire to keep c constant" captures a genuine puzzle in the standard formulation. Why should two apparently different things (spatial intervals, temporal intervals) transform in precisely

coordinated ways?

The framework answer: They are not two different things.

β (spatial/boundary structure) and τ (temporal/ordering structure) are both projections of the same 5D constraint geometry. Their "coordination" is simply the fact that consistent projection preserves geometric relationships.

The constraint coupling matrix makes this explicit:

$$M_{\beta\tau} = \frac{\partial \beta}{\partial \tau}$$

When you attempt to change one, the other responds. The Lorentz transformation is the statement that β and τ must transform together to maintain consistency.

Attempted Change	Response	Net Effect
Increase relative velocity	τ dilates, β contracts	$\Delta\beta/\Delta\tau$ preserved
Change reference frame	Both β and τ transform	Ratio invariant

There is no conspiracy because there was never independence.

5.4 Deriving vs Postulating: The Hierarchy

Level	What's Given	What's Derived
Standard Relativity	c constant (postulate)	Lorentz transformations, relativistic mechanics
Relational Framework	$\diamond N \rightarrow \neg N$ (axiom)	Constraint geometry $\rightarrow \beta, \tau$ structure $\rightarrow c$ constant \rightarrow Lorentz transformations

The framework pushes the foundation one level deeper. Relativistic invariance becomes a theorem about constraint geometry rather than an empirical postulate.

5.5 Parallel to Jacobson's Derivation

This represents the same intellectual move as Jacobson's derivation of gravity:

Domain	Standard Approach	Deeper Derivation
Gravity	Einstein field equations (postulated)	Thermodynamic consistency → Einstein equations (Jacobson)
Relativity	c constant (postulated)	Constraint geometry → c constant (framework)
Quantum Mechanics	Hilbert space (postulated)	N=2 structure → quantum formalism (framework)

In each case, what appeared to be a fundamental postulate becomes a derivable consequence of relational structure.

5.6 Implications

1. Relativity becomes necessary, not contingent.

If c-constancy follows from the axiom, there is no possible universe with different relativistic structure. Any universe with distinguishability has β and τ , and their ratio is fixed.

2. The value of c becomes geometric.

In SI units, $c \approx 3 \times 10^8$ m/s reflects human conventions (meter, second). The framework suggests c is fundamentally a pure ratio — potentially calculable in relation to other geometric quantities (α , $\sin^2\theta_W$, etc.).

3. The Lorentz group is derived, not imposed.

The symmetry group of special relativity (Lorentz transformations) is the symmetry group of constraint coupling between β and τ . It is not an additional assumption but a consequence of constraint geometry.

4. General relativity connection.

If β and τ couple through M_{ij} , and this coupling can vary across the constraint field, then the *local* structure of β - τ coupling defines local geometry. Variable coupling IS curvature. This suggests a path from the framework to general relativity beyond special relativity.

5.7 Open Questions

- 1. Explicit derivation of Lorentz transformations:** Can we write the transformation laws directly from constraint coupling?
- 2. The value of c:** What geometric features determine $\Delta\beta_{\min}$ and $\Delta\tau_{\min}$ individually (not just their ratio)?

3. **Connection to α :** Both c and α are constraint-geometric. Is there a relationship? (Note: α involves κ -sector coupling, c involves β - τ coupling — different constraint pairs.)
4. **General covariance:** How does variable β - τ coupling produce the full structure of GR, not just SR?

6. Consistency Conditions

5.1 The General Form

At any two correlated loci A and B, their constraint configurations must satisfy:

$$\mathcal{L}(C_A, C_B, \lambda_{AB}) = 0$$

where \mathcal{L} is the **consistency Lagrangian**.

Physical interpretation: $\mathcal{L} = 0$ is satisfied when configurations are mutually compatible given their correlation strength.

5.2 Properties of \mathcal{L}

Symmetry: $\mathcal{L}(C_A, C_B, \lambda) = \mathcal{L}(C_B, C_A, \lambda)$ (no preferred direction at N=2)

Limiting cases:

- $\lambda_{AB} = 0$: No constraint, any configurations compatible
- $\lambda_{AB} = \Lambda$: Maximum constraint, $C_A = C_B$ required

Form (speculative):

$$\mathcal{L} = \lambda_{AB} \cdot \|C_A - C_B\|^2 + \text{higher order terms}$$

At weak correlation, configurations can differ. At strong correlation, they must align.

5.3 The "Equations of Motion"

The "dynamics" is gradient flow toward consistent configurations:

$$\frac{\delta C}{\delta s} = -\frac{\partial \mathcal{L}}{\partial C}$$

where s is a **relational parameter** (not time!) measuring "progress toward consistency."

Critical point: This isn't $\frac{dC}{dt}$ — time doesn't exist at the fundamental level. The parameter s measures relational proximity to equilibrium.

5.4 Multi-Body Consistency

For $N \geq 3$, consistency conditions couple:

$$\mathcal{L}_{AB}(C_A, C_B, \lambda_{AB}) = 0$$

$$\mathcal{L}_{BC}(C_B, C_C, \lambda_{BC}) = 0$$

$$\mathcal{L}_{CA}(C_C, C_A, \lambda_{CA}) = 0$$

These are not independent — they share variables. The **joint consistency requirement** is:

Find (C_A, C_B, C_C) such that all three $\mathcal{L} = 0$ simultaneously

This is a well-posed mathematical problem with potentially zero, one, or multiple solutions depending on the correlation structure.

5.5 Consistency Propagation

When configurations are inconsistent:

1. $\mathcal{L}_{AB} \neq 0$ creates a "force" on C_A and C_B
2. A and B adjust in the direction $-\partial\mathcal{L}/\partial C$
3. But A's change affects \mathcal{L}_{AC} , forcing C to adjust
4. The adjustment propagates through the network

This IS "dynamics" in the relational sense — not motion through time, but consistency restoration through the correlation network.

7. Horizons and Thermodynamics Across N

6.1 The Horizon at Each N

Definition: The horizon for locus A is the boundary of A's correlation reach:

$$\text{Horizon}_A = \{X : \lambda_{AX} = 0\}$$

The monogamy constraint creates horizons:

$$\sum_X \lambda_{AX} \leq \Lambda$$

A cannot be correlated with everything. The boundary of A's correlations is A's horizon.

6.2 Horizon Structure by N

N	Horizon Character	Geometry
2	Just $\lambda \leq \Lambda$ bound	Trivial (only one other relatum)
3	Directional (τ creates ordering)	Discrete, 0-dimensional
4-10	Multiple boundaries	Discrete, low-dimensional
~30	Statistical surface	Proto-continuous
∞	Continuous causal horizon	2D surface with area law

6.3 The Geometric Jacobson Relation

At $N \geq 3$, define:

ρ -flux across boundary: $F_\rho(\partial S)$ — the flow of resource constraint across a horizon

Φ -capacity of boundary: $C_\Phi(\partial S)$ — the efficiency potential associated with the horizon

Geometric factor: G_N — the ratio:

$$F_\rho(\partial S) = G_N \cdot \Delta C_\Phi(\partial S)$$

This relation holds at all $N \geq 3$. It is the relational analog of Jacobson's $\delta Q = TdS$.

6.4 Thermodynamic Quantities by N

Temperature

$N = 2$: No temperature. No ordering means no "before/after" for heat flow.

$N = 3$: Discrete temperature:

$$T^{(3)} = \frac{F_\rho^{(3)}}{\Delta C_\Phi^{(3)}}$$

This is a ratio of small integers, not continuous. "Temperature" fluctuates across boundaries.

$N \sim 30$: Statistical temperature:

$$T^{(N)} \approx T_\infty + \mathcal{O}(1/\sqrt{N})$$

Different boundaries give approximately the same T .

$N \rightarrow \infty$: Thermodynamic temperature:

$$T = \frac{\partial E}{\partial S}$$

Smooth, universal, Jacobson's regime.

Entropy

$N = 2$: Essentially undefined. One correlation, minimal configuration count.

$N = 3$: $S \sim k_B \ln(\omega_3)$ where ω_3 is the number of distinct correlation configurations. Small — single digits.

$N \rightarrow \infty$: $S = A/(4l_P^2)$ — the Bekenstein-Hawking area law.

6.5 The Jacobson Gap

What Jacobson's derivation requires:

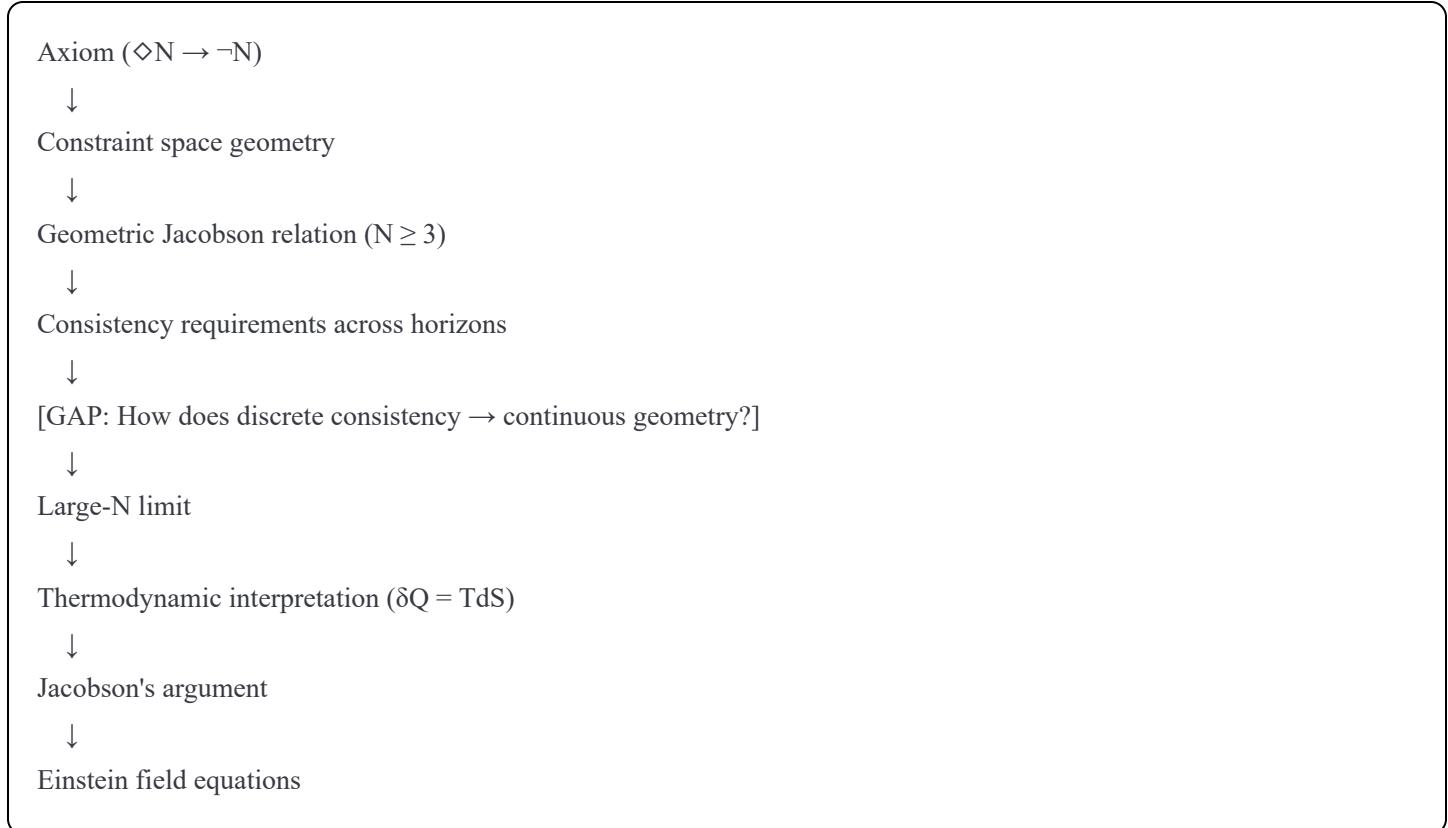
1. Local Rindler horizons exist
2. $\delta Q = TdS$ holds across them

3. Entropy scales with area
4. Require consistency \rightarrow Einstein equations emerge

What each requirement needs in our framework:

Requirement	Framework Translation	N-Threshold
Horizons exist	Correlation boundaries ($\lambda \rightarrow 0$)	$N \geq 3$
$\delta Q = TdS$ holds	Statistical T defined	$N \gtrsim 30$
$S \propto \text{Area}$	Continuous boundary	$N \rightarrow \infty$
Consistency \rightarrow Einstein	Smooth geometry	$N \rightarrow \infty$

The gap: We have the geometric Jacobson relation at all $N \geq 3$, but Einstein equations require the large- N limit. The derivation chain is:



Closing the gap requires: Showing how discrete consistency conditions at finite N converge to the smooth constraints that Jacobson's derivation assumes.

8. Regime Structure and Interpolation

8.1 Three Fundamental Regimes

The framework suggests three distinct regimes characterized by which correlations dominate:

Regime	Correlation Character	N-Range	Physics
Quantum	Direct, atemporal	$N = 2$	Entanglement, superposition
Transitional	Mixed, discrete	$3 \leq N \lesssim 30$	Proto-thermodynamic, MOND-like?
Classical	Mediated, statistical	$N \gg 30$	Full thermodynamics, GR

8.2 The Spatial vs Temporal Dominance Criterion

A key insight for regime characterization:

Time-dominant structure: Correlations evolve but are spatially homogeneous. Large N , statistical averaging applies. Cosmological behavior.

Space-dominant structure: Correlations are inhomogeneous, many mediation steps. Finite N effects matter. Gravitationally bound behavior, potentially MOND-like.

8.3 The Interpolation Question

How does the physics interpolate between regimes?

At the boundaries:

- **$N = 2 \leftrightarrow 3$:** Quantum-to-classical transition, measurement, decoherence
- **$N \sim 30$:** Statistical behavior emerges
- **Spatial \leftrightarrow Temporal dominance:** MOND \leftrightarrow Dark-matter-like behavior

Conjecture: The interpolation is governed by a function that suppresses modifications when either:

- N is very small (deep quantum regime)
- N is very large (deep classical regime)

Maximum modifications occur at intermediate N where neither limit applies cleanly.

9. External Connections

9.1 Mapping to Jacobson's Framework

Jacobson Concept	Framework Translation
Spacetime point	Locus in relational field
Local Rindler horizon	Correlation boundary ($\lambda \rightarrow 0$)
Heat flux δQ	ρ -flux across boundary
Temperature T	Geometric factor G_N ($\rightarrow T$ at large N)
Entropy S	Φ -capacity of boundary
$\delta Q = TdS$	$F_\rho = G_N \cdot \Delta C_\Phi$
Einstein equations	Consistency constraints (large- N limit)

Status: Correspondence established; rigorous derivation of Einstein equations incomplete.

9.2 Mapping to Deffayet-Woodard Nonlocal Gravity

The nonlocal MOND model (arXiv:2512.10513) provides a concrete mathematical template:

Deffayet-Woodard	Framework Analog
Nonlocal functional $M[g]$	Constraint configuration C as relational functional
Timelike 4-velocity $u^\mu = \partial^\mu \phi$	τ -structure emergence
\square^{-1} (inverse d'Alembertian)	Integration along correlation paths
$Z[g]$ (invariant)	Measure of spatial vs temporal correlation dominance
$f(Z)$ (interpolation function)	Monogamy constraint effects at different N
$Z < 0$ (cosmological)	Large N , time-dominant
$Z > 0$ small (MOND)	Intermediate N , space-dominant
$Z > 0$ large (Newtonian)	Very large N locally

Key insight from their work: The transition between regimes depends on whether spatial or temporal metric dependence dominates — which maps to our N -dependent correlation structure.

Their Milgrom coincidence: $cH_0 \approx a_0$ might reflect the threshold scale where N-transitions become significant.

9.3 Mapping to Barandes' Indivisible Stochastic Processes

Barandes Concept	Framework Analog
Configuration space	Constraint space
Indivisibility	$N = 2$ irreducibility
Division events	N -transition boundaries
Stochastic evolution	Consistency-driven constraint flow

Key connection: Barandes' indivisibility threshold may coincide with the geometric $N = 3$ threshold.

9.4 Mapping to Finster's Causal Fermion Systems

CFS Concept	Framework Analog
Universal measure	Φ -optimization criterion
Causal action principle	Consistency requirement minimization
Spin dimension $n \geq 2$	$N \geq 3$ for Lorentzian structure

10. Open Questions and Research Directions

10.1 Immediate Mathematical Questions

1. **Explicit form of M_{ij} :** Can we derive the constraint coupling matrix from the axiom?
2. **Explicit form of \mathcal{L} :** What is the consistency Lagrangian?
3. **N-change dynamics:** What precise conditions trigger distinction emergence/merger?
4. **Monogamy as constraint on M_{ij} :** How does the correlation budget limit constraint coupling?

10.2 The Jacobson Gap

Specific question: How do discrete consistency conditions at finite N:

$$\mathcal{L}_{AB} = 0, \quad \mathcal{L}_{BC} = 0, \quad \mathcal{L}_{CA} = 0, \quad \dots$$

converge to the smooth requirement that yields Einstein equations?

Approach: May require:

- Continuum limit of consistency conditions
- Identification of relevant coarse-graining
- Connection to renormalization group ideas

10.3 The MOND Connection

Question: Does the intermediate-N regime naturally produce MOND-like phenomenology?

Test: Can we derive something like their $f(Z)$ from constraint geometry?

Prediction: If yes, $a_0 \approx cH_0$ should emerge from the geometry rather than being inserted by hand.

10.4 Experimental Signatures

N-dependent decoherence: Look for discrete transitions at $N = 2 \rightarrow 3$ boundary rather than continuous scaling.

MOND-GR transition: Detailed predictions for systems between deep MOND and Newtonian regimes.

Cosmological-local boundary: Effects in cluster cores and colliding clusters where regimes compete.

11. Summary: The Research Program

11.1 The Goal

Move from **static constraint geometry** to **dynamic constraint field theory** where:

- Dynamics is relational, not temporal
- "Evolution" is consistency restoration through correlation networks
- Time emerges rather than being assumed
- Gravity emerges as thermodynamic consistency at large N

11.2 The Method

1. **Formalize constraint coupling** at $N = 3$ (the minimal non-trivial case)
2. **Write explicit consistency conditions** that configurations must satisfy
3. **Derive N-change dynamics** from constraint geometry
4. **Connect to Jacobson** via the large- N limit
5. **Test against phenomenology** (MOND, cosmology, quantum-classical transition)

11.3 The Promise

If successful, this would:

- **Derive gravity** from pure relational principles
- **Derive relativistic invariance** as a theorem about constraint geometry (c-constancy from $\beta\text{-}\tau$ coupling)
- **Unify quantum and classical** as different N -regimes
- **Explain dark matter** as relational field response at large N
- **Explain MOND** as finite- N effects in gravitationally bound systems
- **Close the Jacobson gap** with a rigorous derivation

11.4 The Challenges

- Making "relational dynamics" mathematically precise
- Deriving (not just asserting) the large- N limit
- Connecting abstract constraint geometry to measurable physics
- Finding testable predictions that distinguish this from alternatives

Appendix A: Notation Summary

Symbol	Meaning
N	Local richness of distinguishability structure
$\beta, \kappa, \rho, \lambda, \tau$	The five constraints

Symbol	Meaning
Λ	Total correlation capacity (monogamy bound)
λ_{AB}	Correlation strength between A and B
C_A	Constraint configuration at locus A
M_{ij}	Constraint coupling matrix
\mathcal{L}	Consistency Lagrangian
Φ	Efficiency potential $\ln(\Omega/K)$
G_N	Geometric temperature factor at N relata
F_ρ	Resource flux across boundary
C_Φ	Φ -capacity of boundary

Appendix B: Key Equations

Monogamy constraint:

$$\sum_X \lambda_{AX} \leq \Lambda$$

Consistency condition (general form):

$$\mathcal{L}(C_A, C_B, \lambda_{AB}) = 0$$

Geometric Jacobson relation:

$$F_\rho(\partial S) = G_N \cdot \Delta C_\Phi(\partial S)$$

Constraint coupling:

$$\frac{\partial C_i}{\partial C_j} = M_{ij}$$

Speed of light as constraint ratio (at $N \geq 3$):

$$c = \frac{\Delta\beta_{min}}{\Delta\tau_{min}}$$

c-constancy is a theorem about constraint geometry, not a postulate.

This document represents work in progress. All proposals marked "speculative" or "conjecture" require rigorous development.