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Introduction

Problem with One-Time-Pad:

▶ KPA, CPA or CCA attacker models: the attacker can recover the key with
only one pair plaintext/ciphertext.

▶ But we want to reuse the key so as not to have to renew the key for each
exchange.
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Strategy 1: Stream Cipher



Strategy 1: Stream Cipher

▶ An algorithm generates the bits of a string cipher one by one
▶ The encryption/decryption algorithm consists in XORing the message

with the string cipher

For instance, there is lots of way to design a Pseudo Random Generator (PRG)
function. We use one of them to generate the string cipher and so, the key will
be the seed of the PRG function.
Known Plaintext Attacks

If the string cipher is independent on the plaintext, then there
are trivial attacks when the attacker knows some pairs plain-
text/ciphertext.

The string cipher must be dependent on the plaintext
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Stream Cipher: Examples

▶ A5/1: Published in 1994 and broken few years later. It is used in the mobile phone
network of type GSM, in particular for the radio communication between the phone and
the relay antenna. Even if A5/1 has been completely broken, it is still very used in Europe
and Africa. It uses 3 LFSR. The cipher key is of size 64 bits (but only 54 bits are non-zero in
GSM).

▶ RC4: Designed by Ronald Rivest (very famous cryptologist) in 1987. RC4 is the most used
stream cipher to date. It is in particular used in the WEP, WPA, TLS... The size of the cipher
key can be between 8 and 2048 bits.

▶ Py: More secure and efficient than RC4. The size of the cipher key is at most 256 bits.
▶ E0: It is in particular used in the Bluetooth protocol. It uses 4 LFSR. The size of the cipher

key is 128 bits (but it is actually arbitrary).
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Stream Cipher: LFSR

Mathematical recall. The Finite field (or Galois Field) F2 (or GF(2)) is the set
{0, 1} equipped with the following operation:

▶ + : the addition modulo 2
▶ × : the multiplication modulo 2
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Stream Cipher: LFSR (definition)
Definition (Linear Feedback Shift Register)
An LFSR of length n is made of:

▶ an initial state :−→r0 := (rn−1, rn−2, · · · , r1, r0) ∈ Fn2
▶ a feedback polynomial : P(X) := 1 + c1X + c2X2 + · · ·+ cnXn ∈ F2[X]≤n

The sequence of registers
(−→rt )t≥0 is computed recursively: for each instant

t ≥ 0,−−→rt+1 := (rt+n, rt+n−1, · · · , rt+2, rt+1) ∈ Fn2 where

rt+n :=
n∑
i=1

ci × rt+n−i

The cipher string is (rt)t≥0 := (r0, r1, · · · , rt, · · · )
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Stream Cipher: LFSR (graphical representation)

The LFSR are very easy to implement, in particular thanks to a representation
of them which uses logical circuit:

rn−1 rn−2 rn−3 r1 r0
feedback bit output bit
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Stream Cipher: LFSR (periodicity)

We want to avoid to repeat the same pattern in the cipher string.

Can the cipher string generated by an LFSR be of arbitrary length before to be
repeated?

No!

The value of the register of an LFSR is in Fn2 which is of cardinality 2n.

So the number of value that can take the register is finite...
Theorem (period of an LFSR)
The maximal period of an LFSR is 2n − 1.

Moreover, if the feedback polynomial is of degree n and irreducible, then the
LFSR achieves the maximal period 2n − 1 for any non-zero initial register.

Proof. It is the maximal number of different registers we can have. The second
part of the theorem is admit.
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Stream Cipher: LFSR (attack)

Berlekamp-Massey

The Berlekamp-Massey algorithm can find the feedback polyno-
mial by only knowing 2n bits of the cipher string.

Proof. It essentially consists in solving a linear system of n equations and n
unknowns (see exercise sheet).

Consequences. Attacks in the KPA, CPA, CCA models or even any attacker
models where one pair plaintext/ciphertext is known.
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Stream Cipher: LFSR (A5/1)

A5/1 is a standard encryption of the GSM. Even if it is broken today, it is still
used in particular in Europe and Africa.

A5/1 combines the output of 3 LFSRsL1,L2 andL3 having respectively the
following feedback polynomials:

P1 = 1 + X14 + X17 + X18 + X19

P2 = 1 + X21 + X22

P3 = 1 + X8 + X21 + X22 + X23
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Stream Cipher: LFSR (A5/1)

The LFSRs are not incremented synchronously... One bit per register is used
to know if a LFSR has to be incremented or not at an instant t.

Those bits are called clock bits and are:

▶ h1: the 9th bit of the register ofL1;
▶ h2: the 11th bit of the register ofL2;
▶ h3: the 11th bit of the register ofL3;

majority(h1, h2, h3) =

{
1 if h1 + h2 + h3 ≥ 2
0 if h1 + h2 + h3 < 2

If hi = majority(h1, h2, h3), then the register ofLi will be updated at the next
instant. Otherwise, it is unchanged.
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Stream Cipher: LFSR (A5/1)
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Exercise

Exercise sheet on stream cipher
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Strategy 2: Block Cipher



Strategy 2: Block Cipher

▶ A message of fixed size is encrypted.
▶ If the message to encrypt is longer than the size of the encryption

scheme, then the encryption is repeated as often as necessary.
▶ If the size of the message is not a multiple of the size of the encryption

scheme, then a padding is added at the end of the message. It is usually a
random string or a zero string.

Advantages.

– Blocks can be addressed in parallel and in no particular order.

– It is easier to make the ciphertext dependent on the plaintext.
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Block Cipher: Highly non-linear functions

Let an encryption scheme with blocksize n bits.

In a very abstract way, we have:

c = Sk(m)

where

▶ m ∈ Fn2 is the plaintext
▶ c ∈ Fn2 is the ciphertext
▶ Sk : Fn2 → Fn2 is a function which is parameterized by k ∈ Ft2

The whole question is how to design the function Sk with as little
(mathematical) structure as possible?
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Block Cipher: Highly non-linear functions

Recall.
Definition (linear function)
The function Sk : Fn2 → Fn2 is linear if and only if for all messages
m1,m2 ∈ Fn2 and any scalar λ ∈ F2:

Sk(m1 +m2) = Sk(m1) + Sk(m2)

Sk(λm1) = λSk(m1)
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Block Cipher: Highly non-linear functions

Definition (non-linear function)
A function is non-linear if and only if it is not linear.

A function Sk : Fn2 → Fn2 is Highly non-linear if formost messagesm1,m2 ∈ Fn2
andmost scalars λ ∈ F2:

Sk(m1 +m2) ̸= Sk(m1) + Sk(m2)

Sk(λm1) ̸= λSk(m1)
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Block Cipher: Highly non-linear functions

A Highly non-linear function must verify the two following principles:

▶ Confusion: The output must be very different from the input.
More formally,M+ Sk(M) must be distributed uniformly at random in Fn2
ifM is the uniform distribution over Fn2.

▶ Diffusion: The output must depend on every bits of the input.
That is, Sk(M) + Sk(M+ U) must be distributed uniformly at random in Fn2
ifM is the uniform distribution over Fn2 and U is the uniform distribution
on the sphere {x ∈ F2 : |x| = 1}.
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Block Cipher: Highly non-linear functions

It is quite easy to design a highly non-linear function Sk : Fn2 → Fn2. One only has to
generate a random bijection ; a such bijection is simply a shuffle of the table
containing (binary representation of) integers {0, · · · , 2n − 1}.

▶ The key kmust describe Sk; so if we do not use a pseudo-random generator to
make the shuffle, then the key is actually a whole description of the
shuffled table. Thus, the key is of size n× 2n

▶ Brute force attack: To recover the shuffled table, we need to know 2n pairs
plaintext/ciphertext. To achieve a security of 80 bits, we need n = 80 and so the
key would be a table of 280 entries...

▶ Change the key is tedious... We would like to be able to change the key easily.
Here, we need to generate a shuffled table of 2n entries each time we want to
change the key.
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Block Cipher: Highly non-linear functions

How to design a highly non-linear function in practical?

1. Using a key k ∈ Fn2, we build a highly non-linear function:

Sk(m) := S(m+ k)

where S is a fixed highly non-linear function which doesn’t depend on k. S is
called Substitution Box.

2. We combine several small substitution boxes using Permutations (non-linear
functions).

3. We iterate 1. and 2. several times. One iteration is called Round.

Remark

1. and 3. =⇒ Confusion
2. and 3. =⇒ Diffusion
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Block Cipher: Highly non-linear functions (Exercise)
Let S be a substitution box in F4

2:

x 0 1 2 3 4 5 6 7 8 9 A B C D E F
S(x) 1 3 5 7 9 B D F 0 2 4 6 8 A C E

∀i ∈ {1, · · · , 3} and withm1 := m:

mi

16 bits

ki
16 bits

16 bits

S S S S

16 bits

mi+1

m4

16 bits

k4
16 bits

16 bits

S S S S

16 bits

k5
16 bits

16 bits

c 21



Exercise

Exercise sheet on linear and differential cryptanalysis
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Block Cipher: Feistel Scheme

To decipher, we need to be able to invert “easily” Sk. To do that, we use the
Feistel Scheme.

Let F(k, ·) be a non-linear operator parameterized by a key k.

We consider here a plaintextm := m1||m2 of length 2n bits
(len(m1) = len(m2) = n).

We compute the ciphertext c := c1||c2 such that:

c1 = m2

c2 = F(k,m2) +m1

Then we repeat the operation for several rounds.
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Block Cipher: Feistel Scheme (more formally)

Let F(k, ·) be a non-linear operator parameterized by a key k.

We consider here a plaintextm := m1||m2 of length 2n bits
(len(m1) = len(m2) = n).

We compute recursively the series
(
c(i)

)
i=0..N where N is the number of

rounds:

▶ Initialization. c(0) := c(0)
1 ||c

(0)
2 := m1||m2

▶ Induction. ∀i ∈ {1, · · · ,N− 1}, c(i+1) := c(i+1)
1 ||c(i+1)

2
where

c(i+1)
1 = c(i)2

c(i+1)
2 = F(ki, c

(i)
2 ) + c(i)1

The ciphertext is then c(N).
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Block Cipher: Feistel Scheme

Remark

The various partial keyski are generated by deriving a main key
k using a Pseudo Random Generator.

Theorem (Decryption with a Feistel Scheme)
To decipher a ciphertext that has been encrypted with a Feistel Scheme, one
only has to apply the same Feistel Scheme by inverting the order of using the
partial keys:

k′i = kN−i

where the k′i are the partial decipher keys.
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Block Cipher: Feistel Scheme (more graphically)

Encryption:

c(i)1 c(i)2

ki

F

c(i+1)
1 c(i+1)

2

Decryption:

d(i)1 d(i)2

kN−i

F

d(i+1)
1 d(i+1)

2

where c(0)
1 ||c

(0)
2 := d(N)1 ||d

(N)
2 := m

and c(N)1 ||c
(N)
2 := d(0)

1 ||d
(0)
2 := c
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DES: Data Encryption Standard

See the document DES.pdf
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AES: Advanced Encryption Standard

▶ It encrypts a 128-bits plaintext into a 128-bits ciphertext
▶ The size of the main key can be 128 bits, 192 bits or 256 bits

Size of the main key & number of rounds
The size of the key is relied to the number of rounds to achieve:

128 bits ←→ 11 rounds
192 bits ←→ 13 rounds
256 bits ←→ 15 rounds
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AES: Advanced Encryption Standard

High level description of the encryption algorithm:

1. KeyExpansion
2. AddRoundKey
3. repeat 9, 11 or 13 times:
4. SubBytes
5. ShiftRows
6. MixColumns
7. AddRoundKey
8. SubBytes
9. ShiftRows
10. AddRoundKey
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AES: AddRoundKey

In the AddRoundKey step, each byte of the state is combined with a byte of the
round subkey using the XOR operation.

source: wikipedia

30



AES: SubBytes

In the SubBytes step, each byte in the state is replaced with its entry in a fixed
8-bit lookup table S; bi,j = S(ai,j).

source: wikipedia
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AES: SubBytes (AES-S-Box)

The S function is computed thanks to the following table. The column is determined
by the least significant nibble, and the row by the most significant nibble. For
example, the value 0x9A is converted into 0xB8.

source: wikipedia 32



AES: ShiftRows
In the ShiftRows step, bytes in each row of the state are shifted cyclically to the
left. The number of places each byte is shifted differs incrementally for each
row.

source: wikipedia
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AES: MixColumns
In the MixColumns step, each column of the state is multiplied with a fixed
polynomial c(x).

source: wikipedia 34



AES: MixColumns (more details)

Here, operations are made in F28 [Z]

where F28 is viewed as F2[X]/(X8 + X4 + X3 + X + 1)

Then a bytes has several representations:

polynomial binary hexadecimal integer
X6 + X5 + X3 + X1 + 1 0b01101011 0x6B 107

b0,j + b1,jZ + b2,jZ2 + b3,jZ3

:=
(
a0,j + a1,jZ + a2,jZ2 + a3,jZ3)× c(Z) mod

(
Z4 + 1

)
where

c(Z) := 3Z3 + Z2 + Z + 2
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AES: KeyExpansion

▶ N: the length of the key in 32-bit words: 4 words for AES-128, 6 words for
AES-192, and 8 words for AES-256

▶ R: the number of round keys needed: 11 round keys for AES-128, 13 keys
for AES-192, and 15 keys for AES-256

▶ K0,K1, · · · ,KN−1: the 32-bit words of the original key
▶ W0,W1, · · · ,W4R−1: the 32-bit words of the expanded key

36



AES: KeyExpansion

▶ RotWord: a one-byte left circular shift

RotWord([b0, b1, b2, b3]) = [b1, b2, b3, b0]

▶ SubWord: an application of the AES S-box to each of the four bytes of the
word

SubWord([b0, b1, b2, b3]) = [S(b0), S(b1), S(b2), S(b3)]

▶ rconi: for each i ∈ {1, · · · , 10}, it is a 32-bits constant word defined as

i 1 2 3 4 5
rconi 0x01000000 0x02000000 0x04000000 0x08000000 0x10000000

6 7 8 9 10
0x20000000 0x40000000 0x80000000 0x1B000000 0x36000000
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AES: KeyExpansion

For all i ∈ {0, · · · , 4R− 1}:

Wi :=


Ki if i < N
Wi−N ⊕ SubWord(RotWord(Wi−1))⊕ rconi if i ≥ N and i ≡ 0 mod N
Wi−N ⊕ SubWord(Wi−1) if i ≥ N > 6 and i ≡ 4 mod N
Wi−N ⊕Wi−1 otherwise
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AES (Exercise)

1. Is AES a Feistel’s network? Describe the decryption algorithm.

2. In AddRoundKey, what are exactly the ki,j bytes? Why do we need to
expand the key into 4R− 1 words of 32 bits ?

3. What guarantees confusion principle? Justify.

4. What guarantees diffusion principle? Justify.

5. What is a cost of a brute force attack on AES-128? on AES-256?
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Block Cipher modes



Block Cipher modes: ECB

source: wikipedia
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Block Cipher modes: ECB

▶ The plaintext is divided into blocks that are encrypted separately.
▶ Lack of diffusion.
▶ two same blocks are encrypted identically.
▶ not recommended.

Original image:

AES-128 (ECB mode):
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Block Cipher modes: CBC

source: wikipedia 42



Block Cipher modes: CBC

▶ Fixes the lack of diffusion problem.
▶ Encryption cannot be parallelized
▶ Decryption can be parallelized

Attack on the IV

The Initialization Vector must be random, secret and it must not
be reused with the same key.

Exercise. Build the attack on the IV.
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Block Cipher modes: CTR

source: wikipedia
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Block Cipher modes: comparison

Type Algorithm
Key size

(bits)

Speed 

(without materiel)

Speed

(with materiel)
Advantages Disadvantages 

Block AES-GCM 128-192-256
 ~ 100 Mo/s

(integrity included)

~ 2 000 Mo/s

(integrity included)

• Fast

• Parallelizable

• Authentication encryption 

(AEAD)

• No padding

• Do not reuse a counter

Block  AES-CBC 128-192-256 ~ 120 Mo/s ~ 2 700 Mo/s

• Parallelizable Decryption

• Errors Propagation (for 

Message Authentication 

Code)

• Encryption cannot be 

parallelized

• unique and secret IV 

• Padding

 Block  AES-CTR 128-192-256 ~ 150 Mo/s ~ 3 000 Mo/s

• Fast

• Parallelizable

• No padding

• No integrity

• Do not reuse a counter

 Stream

 Salsa20 

or

ChaCha

128-256 ~ 700 Mo/s ~ 700 Mo/s

• Very fast without material 

support

• No padding

• Do not reuse a nonce

• Malleable
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Exercise

Exercise sheet on block cipher
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