
Cryptography

1. Goals and Resources of an
attacker

Contact : kevin.carrier@cyu.fr



Plan

1. Fundamental principle of modern cryptography

2. Why use cryptography ?

3. The attacker model

4. Side Channel Attack

5. The Dolev-Yao model

6. What can compute an attacker ?

7. Quantum computing: a new paradigm 1



Fundamental principle of modern
cryptography



Fundamental principle of modern cryptography

“A cryptosystem should be secure even ifevery-
thing about the system, except the secret key,
is public knowledge.”

[August Kerckhoffs (1883)]

The three items to keep in mind:

1. Computational or Semantical security: The system must be practically, if not
mathematically, indecipherable;

2. Transparency: It should not require secrecy, and it should not be a problem if it
falls into enemy hands;

3. Portability : It must be possible to communicate and remember the key without
using written notes, and correspondents must be able to change or modify it at
will; 2



Why use cryptography ?



Why use cryptography ?

▶ Confidentiality: Protection against disclosure of unauthorized
information. Only authorized persons have access to the content of the
message.

Forward secrecy

For instance, in France, the confidentiality of a classified document
must be guarantee for 50 years.

3



Why use cryptography ?

▶ Confidentiality: Protection against disclosure of unauthorized
information. Only authorized persons have access to the content of the
message.

Forward secrecy

For instance, in France, the confidentiality of a classified document
must be guarantee for 50 years.

3



Why use cryptography ?

▶ Integrity: The message cannot be changed without noticing.

4



Why use cryptography ?

▶ Authentication: It is a process allowing an entity to be sure of the identity
of a second entity based on corroborating evidence.

Strong Authentication
The authentication must lean on at least 2 secret elements that
only the entity to authenticate has. This can be something:
▶ he knows (a password);
▶ he holds (a smartcard);
▶ he is (biometrics).

5



Why use cryptography ?

▶ Authentication: It is a process allowing an entity to be sure of the identity
of a second entity based on corroborating evidence.

Strong Authentication
The authentication must lean on at least 2 secret elements that
only the entity to authenticate has. This can be something:
▶ he knows (a password);
▶ he holds (a smartcard);
▶ he is (biometrics).

5



Why use cryptography ?

▶ Non-repudiation:
– non-repudiation of origin: The sender cannot deny having written the

message and he can prove that he did not do so if this is indeed the case.
– non-repudiation of receipt: The receiver cannot deny having received the

message and he can prove that he did not reuse it if this is indeed the case.
– non-repudiation of transmission: The sender cannot deny having sent the

message and can prove that he did not do so if this is indeed the case.

6



The attacker model



The attacker model
In cryptography, we define several models of attackers. Here are the most
used:

▶ Ciphertext-Only Attack (COA): The attacker has only one or more
ciphertexts that he wishes to decrypt.

▶ Known Plaintext Attack (KPA): The attacker not only has access to
several ciphertexts but also to the corresponding plaintexts.

▶ Chosen Plaintext Attack (CPA): The attacker owns an encryption
machine. So the attacker can encrypt all the messages he wants.

▶ Chosen Ciphertext Attack (CCA): The attacker owns a decryption
machine. So the attacker can choose any ciphertext then decipher it to
get its associated plaintext.

7



The attacker model

What can be the goal of an attacker?

▶ Find the secret/decryption key.
▶ More modestly, decrypt a particular ciphertext without necessarily

discovering the key.

8



The attacker model

An additional requirement: indistinguishability

▶ IND-CPA, IND-CCA
▶ Given two ciphertexts and one plaintext, an attacker should not be able

to know which ciphertext is associated with the plaintext.

9



The attacker model

What does he have access to?

▶ black-box cryptography: Computations are performed remotely (the
attacker does not have access to the encryption or decryption machine).

▶ white-box cryptography: The attacker knows each step of the execution
of the encryption/decryption algorithm (reverse engineering, debugger)

▶ grey-box cryptography: Side channel attack. The attacker have access to
some partial information that leaks during the execution of the
encryption/decryption algorithm.

10



Side Channel Attack



Side Channel Attack

Initiated by Paul Kocker in the 90s.

▶ Time attack: The attacker can measure the running time of the
encryption/decryption algorithm.

▶ Power attack: The attacker can measure the power consumption during
the execution of the algorithm.

▶ Electromagnetic attack: The attacker can measure the electromagnetic
radiation during the execution of the algorithm.

▶ Micro-Ultrasound attack: The attacker can measure the
Micro-Ultrasound during the execution of the algorithm.

11



Side Channel Attack

12



Time Attack: Exercise
Let suppose a SmartCard used to authenticate. The user sent a PIN to the SmartCard which
returns ACCEPT if the PIN is the same as the one saved in the card and REJECT otherwise. Here
is the C implementation of the authentication protocol:

Assume we can simulate the use of the
card by executing the SmartCard.exe
binary. However, a device allows us to
measure the execution time of the algo-
rithm.

Propose an attack to find the size of the PIN
then the PIN itself. Then propose a counter-
measure.

13



The Dolev-Yao model



The Dolev-Yao model

An attacker model often consider in Network security is the Dolev-Yao model.
Here it is supposed the attacker:

▶ can get all the messages circulating in the network ;
▶ can initiate a conversation with any member of the network ;
▶ can send a message to any member of the network pretending to be any

member of the network ;
▶ cannot guess a integer which has been chosen uniformly at random ;
▶ cannot guess a private key associated to a public key.

14



What can compute an attacker ?



What can compute an attacker ?

Two notions of “security”:

1) The designer wants to achieve unconditional security: He can proof his cryptosystem is
secure without prejudging the computing power of the attacker that can even be infinite !
→ In particular, if a pair (plaintext,ciphertext) gives no information about the key, then
we say the cryptosystem is perfectly secure. We will see later that is a notion that is
difficult to achieve in practice.

2) The computational security is based on the impossibility to decrypt a message or recover
the secret key in a reasonable time, considering the computing power of a potential
attacker. This notion of security depend on the state-of-the-art at a given moment.
→ To be sure to be computationally secure, we need proof of security or security
reduction. It consists in reducing the fact of “breaking a cryptosystem” to “solving a hard
mathematical problem”

15



What can compute an attacker ?

Two notions of “security”:

1) The designer wants to achieve unconditional security: He can proof his cryptosystem is
secure without prejudging the computing power of the attacker that can even be infinite !
→ In particular, if a pair (plaintext,ciphertext) gives no information about the key, then
we say the cryptosystem is perfectly secure. We will see later that is a notion that is
difficult to achieve in practice.

2) The computational security is based on the impossibility to decrypt a message or recover
the secret key in a reasonable time, considering the computing power of a potential
attacker. This notion of security depend on the state-of-the-art at a given moment.
→ To be sure to be computationally secure, we need proof of security or security
reduction. It consists in reducing the fact of “breaking a cryptosystem” to “solving a hard
mathematical problem”

15



What is a hard problem ?
Definition (Decision Problem)
A decision problem is a type of computational problem where the answer is
either yes or no for a (binary) input of size n.

A decision problem has time complexity f(n) if the number of state transitions
(steps) required by a deterministic Turing machine on an input of (binary) size
n to output the answer yes or no.

▶ Linear: f(n) = an + b = O(n)
▶ Polynomial: f(n) = a0 + a1n +

a2n2 + · · ·+ adnd = O(nd)

▶ Exponential: f(n) = O(2αn)

16



What is a hard problem ?

Definition (Class of P problems)
A decision problem is in the complexity class P if its time complexity is
polynomial.

17



What is a hard problem ?

Definition (Non-Deterministic Turing Machine)
A variant of deterministic Turing machine is non-deterministic Turing
machine. For every input at a state, there can be multiple paths/actions
performed by the Turing machine. So, the transitions are not deterministic.

Definition (Class of NP problems)
A decision problem is in the complexity class NP if the number of state
transitions required by a non-deterministic Turing machine on an input of
size n to output the answer yes or no is polynomial.

Essentially, a decision problem for which we can “verify” that a solution is
right in a polynomial time is in the NP class.

18



What is a hard problem ?

19



What is a hard problem ?

We can consider space instead of time to define some other classes of
problems: PSPACE, NPSPACE...

20



What is a hard problem ?

→ One million dollar: P = NP?

Probably not...

The NP-complete problems is a sub-class of NP. A problem is NP-complete if
all the NP problems are at least as hard as it. In other words, a problem A is
NP-complete if for any NP problem B, there is a polynomial reduction of B to A.
⇒ They are the hardest problems of the NP class.

⇒ For proving P = NP, one only has to choose one NP-complete problem and
prove it is P.

In conclusion, a NP-complete problem is believed to be hard and so we want
to reduce our cryptosystems to such problems.

21



What is a hard problem ?

→ One million dollar: P = NP? Probably not...

The NP-complete problems is a sub-class of NP. A problem is NP-complete if
all the NP problems are at least as hard as it. In other words, a problem A is
NP-complete if for any NP problem B, there is a polynomial reduction of B to A.
⇒ They are the hardest problems of the NP class.

⇒ For proving P = NP, one only has to choose one NP-complete problem and
prove it is P.

In conclusion, a NP-complete problem is believed to be hard and so we want
to reduce our cryptosystems to such problems.

21



What is a hard problem ?

→ One million dollar: P = NP? Probably not...

The NP-complete problems is a sub-class of NP. A problem is NP-complete if
all the NP problems are at least as hard as it. In other words, a problem A is
NP-complete if for any NP problem B, there is a polynomial reduction of B to A.
⇒ They are the hardest problems of the NP class.

⇒ For proving P = NP, one only has to choose one NP-complete problem and
prove it is P.

In conclusion, a NP-complete problem is believed to be hard and so we want
to reduce our cryptosystems to such problems.

21



What is a hard problem ?

→ One million dollar: P = NP? Probably not...

The NP-complete problems is a sub-class of NP. A problem is NP-complete if
all the NP problems are at least as hard as it. In other words, a problem A is
NP-complete if for any NP problem B, there is a polynomial reduction of B to A.
⇒ They are the hardest problems of the NP class.

⇒ For proving P = NP, one only has to choose one NP-complete problem and
prove it is P.

In conclusion, a NP-complete problem is believed to be hard and so we want
to reduce our cryptosystems to such problems.

21



What is a hard problem ?

→ One million dollar: P = NP? Probably not...

The NP-complete problems is a sub-class of NP. A problem is NP-complete if
all the NP problems are at least as hard as it. In other words, a problem A is
NP-complete if for any NP problem B, there is a polynomial reduction of B to A.
⇒ They are the hardest problems of the NP class.

⇒ For proving P = NP, one only has to choose one NP-complete problem and
prove it is P.

In conclusion, a NP-complete problem is believed to be hard and so we want
to reduce our cryptosystems to such problems.

21



What is a hard problem ?
Boolean satisfiability problem (SAT) is NP-complete

Determine if there exists an interpretation (Boolean inputs) that satisfies a
given Boolean formula.

3-SAT is NP-complete

SAT with Boolean formula in conjonctive normal form.

Travelling Salesman Problem (TSP) is NP-complete
Given a length L, the task is to decide whether a graph has a tour whose
length is at most L.

The decoding problem is NP-complete [McEliece, 78]

Decide if there is a solution to a linear system with an Hamming weight
constraint on this solution.

22



What is a hard problem ?

Contrary to popular belief, the factorization problem and the dis-
creet logarithm problem (which are the main mathematical prob-
lems on which is based the modern cryptography) are NP-hard but
not NP-complete!

23



Computational security
Definition (bits of security)
When we say a cryptosystem has x bits of security, that means an attacker
needs O(2x) elementary operations to break it.

▶ O(230): reasonable limit of what a powerful computer can do.
▶ ≥ 280: we consider it is secure.
▶ ≥ 2128 or ≥ 2256: what standardization organisms ask.

Theorem (bits of security and key size)
If the key we want to recover is encoded with n bits, then the cryptosystem has
at most n bits of security.

Proof. Brute force attack

The converse is false!

24



Computational security
Definition (bits of security)
When we say a cryptosystem has x bits of security, that means an attacker
needs O(2x) elementary operations to break it.

▶ O(230): reasonable limit of what a powerful computer can do.
▶ ≥ 280: we consider it is secure.
▶ ≥ 2128 or ≥ 2256: what standardization organisms ask.

Theorem (bits of security and key size)
If the key we want to recover is encoded with n bits, then the cryptosystem has
at most n bits of security.

Proof. Brute force attack

The converse is false!

24



Computational security
Definition (bits of security)
When we say a cryptosystem has x bits of security, that means an attacker
needs O(2x) elementary operations to break it.

▶ O(230): reasonable limit of what a powerful computer can do.
▶ ≥ 280: we consider it is secure.
▶ ≥ 2128 or ≥ 2256: what standardization organisms ask.

Theorem (bits of security and key size)
If the key we want to recover is encoded with n bits, then the cryptosystem has
at most n bits of security.

Proof. Brute force attack

The converse is false!
24



Quantum computing: a new
paradigm



Quantum computing: a new paradigm
The quantum attacker model

An attacker which has access to a quantum computer defined a new at-
tacker model.

Quantum computers immerse us in a new world where:

▶ The NP-completeness no longer makes sense
▶ The factorization and the discreet logarithm problem can be solved in a

polynomial time with the Shor algorithm (1994)
▶ Searching a particular element in an unstructured set of 2N elements has

often a cost of order ≤ 2N/2 operations thanks to the Grover algorithm
(1996)

25



Quantum computing: a new paradigm
How does a classical computer work?

For instance:

1: electric current passes

0 : electric current does not passe

It forms a Turing-complete machine.
Example of an algorithm performing an addi-
tion in base 2:

a

b

c

d

x

y

z

a b
+ c d
= x y z 26



Quantum computing: a new paradigm
And with the quantum superposition?

27



Quantum computing: a new paradigm
Bit vs Qubit (Bloch sphere)

A bit is 1 or 0 :

1

or

0

A qubit is both 1 and 0...

or or or · · ·

It is only when we measure that we can determine if the qubit is:

– in the north hemisphere: we then consider the value is 1

– in the south hemisphere: we then consider the value is 0 28



Quantum computing: a new paradigm

We consider new quantum gates:

... and so the algorithmic is different. 29



Quantum computing: a new paradigm

Let a function that takes a binary string of size n as input:

▶ a classical computer can test the 2n inputs one after another;
▶ a quantum computer can test the 2n inputs in the same time thanks to

the principles of state superposition and quantum entanglement.

Attention
The outputs are also in a state of quantum superposition. When
we measure the output, we get one output among all the possible
outputs without knowing what is the corresponding input...

30



Quantum computing: a new paradigm

Let a function that takes a binary string of size n as input:

▶ a classical computer can test the 2n inputs one after another;
▶ a quantum computer can test the 2n inputs in the same time thanks to

the principles of state superposition and quantum entanglement.

Attention
The outputs are also in a state of quantum superposition. When
we measure the output, we get one output among all the possible
outputs without knowing what is the corresponding input...

30



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a classical computer, at each intersection, you can go
right or go left.

31



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

Labyrinth example: with a quantum computer, at each intersection, you can go
right and go left.

32



Quantum computing: a new paradigm

About solving the labyrinth problem with a quantum computer:

1. If there is several exits, then the measure only allows to get one of them
drawn randomly from all the possible exits.

2. The quantum computer find one exit of the labyrinth without holding
back the path.

33



Quantum computing: a new paradigm

Some famous quantum algorithms:

1. Grover 1996 : find a particular element in an unstructured set of 2N

elements with O
(√

2N
)
= O

(
2N/2) operations

2. Shor 1994 : factorize an integer N with only O
(
log(N)3) operations. The

Shor algorithm can also be used to solve the Discrete Logarithm problem
over Zn or on an Elliptic Curve.

34



Quantum computing: a new paradigm
The problem of decoherence

The larger the number of qubits, the more difficult it is to maintain them in a
state of entanglement and quantum superposition for long enough.

▶ protect the computing environment: cool to absolute zero, ...
▶ use quantum error correcting codes: the surface codes require a large

number of physical qubits per logical qubit.

35



Quantum computing: a new paradigm
What technical solutions?

▶ The superconducting qubit
▶ The silicon qubit
▶ The trapped ion qubit
▶ The photonic qubit

36



Quantum computing: a new paradigm
Where we are?

logial qubits / physical qubits

In the figure above, we count physical qubits. It is necessary to combine many
physical (error-prone) qubits to obtain a logical (error-free) qubit. We are talking
about quantum corrector codes.

37



Quantum computing: a new paradigm
Where we are?

logial qubits / physical qubits

In the figure above, we count physical qubits. It is necessary to combine many
physical (error-prone) qubits to obtain a logical (error-free) qubit. We are talking
about quantum corrector codes. 37



Quantum computing: a new paradigm
Where we are?

Forward secrecy

Even if the number of logical qubits is insufficient today to break RSA, we must
protect ourselves now to guarantee the forward secrecy.

38



Quantum computing: a new paradigm
The ANSSI recommendations

security
guarantees

time≃ 2025 ≃ 2030
phase 1 phase 2 phase 3

pre-quantum

post-q
uantum

Quantum transition plan of the ANSSI presented at PQCrypto 2021. 39



Quantum computing: a new paradigm
The NIST competitions

https://csrc.nist.gov/projects/post-quantum-cryptography

40

https://csrc.nist.gov/projects/post-quantum-cryptography

	Fundamental principle of modern cryptography
	Why use cryptography ?
	The attacker model
	Side Channel Attack
	The Dolev-Yao model
	What can compute an attacker ?
	Quantum computing: a new paradigm

