جامعة نيويورك أبوظي **NYU ABU DHABI**

Advancing Healthcare in Low-Resource Environments Through an Optimization and Deployment Framework for Medical Multimodal LLMs

Aya El Mir, Lukelo Thadei Luoga, Boyuan Chen, Muhammad Abdullah Hanif, Muhammad Shafique {ae2195, ltl2113, bc3194, mh6117, muhammad.shafique}@nyu.edu eBRAIN Lab, Division of Engineering, New York University Abu Dhabi (NYUAD), UAE

Introduction and Motivation

□ Severe shortage of healthcare professionals in **low-resource countries:**

- **Example:** Niger has only 0.03 doctors per 1,000 people, compared to 2.46 in Canada.
- Growing patient demands far exceed the

Motivation

□ How can we enable the use of medical MLLMs in resource-constrained regions?

Global distribution of doctors per 1,000 people reveals significant shortages in many African countries

Challenges

- □ State-of-Art Medical MLLMs (e.g. LLaVA-Med) have high computational demands usually requiring HPC infrastructures.
- □ Low resource areas with only access to

number of available healthcare providers.

□ Role of AI in addressing healthcare gaps:

- Enhances diagnostic accuracy and efficiency by reducing errors from fatigue, thus, supporting overburdened medical staff.
- Multimodal Large Language Models (MLLMs), a subset of AI, can combine textual information with medical images to help doctors interpret the images more quickly and accurately in real time.

consumer-grade GPUs, cannot benefit from MLLMs for the healthcare domain and beyond.

Novel Contributions:

Optimized Medical MLLM Framework: TinyLLaVA-Med-F and Quantized models (4-bit, 8bit), fine-tuned for efficient deployment on consumer-grade GPUs for the healthcare domain. Performance-Memory Trade-off: Models on the Pareto front, balancing accuracy and memory. **Foundation for Future Research**: Accessible

MLLMs for healthcare on consumer GPUs.

Proposed Methodology

Optimization: fine-tuning and quantization to create efficient MLLMs for consumer-grade GPUs. □ **Evaluation** by medical VQA datasets and GPT-4 alongside Memory usage analysis.

□ Proposed **deployment** to integrate the MLLMs for medical decision-making support (e.g. radiology).

Experimental Results

I D Medical VQA Performance:

□ TinyLLaVA-Med-F and quantized variants (FQ4, FQ8) achieved competitive accuracy with minimal drop.

Model	VQA	VQA-RAD		SLAKE		PathVQA		
model	Open	Closed	Open	Closed	Open	Closed		
TinyLLaVA-1.5B (Baseline)	19.15	59.93	35.22	60.1	11.16	63.7		
Our Supervised finetuning results (MLLM Based Methods)								
LLAVA	50	65.07	78.18	63.22	7.74	63.2		
LLAVA-Med (LLama7B)	61.52	84.19	85.34	85.34	37.95	91.21		
LLAVA-Med (Vicuna7B)	64.39	81.98	84.71	83.17	38.87	91.65		
Med-Moe (Phi2:3.6B)	58.55	82.72	85.06	85.58	34.74	91.98		
Med-Moe (StableLM:2.0B)	50.08	80.07	83.16	83.41	33.79	91.3		
TinyLLaVA-Med-F (1.5B)	50.6	81.25	85.34	85.43	39.25	90.56		

□ Memory Analysis:

EdgeAl Prototype:

□ TinyLLaVA-Med deployed on a consumer-grade GPU, enhancing medical AI accessibility in lowresource environments.

GPT-4 Evaluation:

□ The TinyLLaVA-Med family of models demonstrates overall robust accuracy in medical conversations.

Model	Conv.	Desc.	X-Ray	MRI	Histology	Gross	CT Scan	Overall
TinyLLaVA (1.5B)-Baseline	40.87	35.11	45.08	39.65	39.86	35.03	37	39.38
LLaVA-Med (Mistral7b)	59.57	52.59	64.04	48.82	63.68	54.31	56.89	57.77
LLaVA-Med-Q8 (Mistral7b)	60.03	50.23	61.71	48.52	63.21	58.2	55.22	57.49
LLaVA-Med-Q4 (Mistral7b)	58.65	48.94	61	47.96	53.33	53.33	53.88	56.14
Med-Moe (Phi2:3.6B)	55.49	43.79	60.37	46.68	55.91	47.11	51.4	52.46
Med-Moe (StableLM:2.0B)	52.99	40.81	56.44	44.29	54.03	50.37	43.91	49.83
TinyLLaVA-Med-F (1.5B)	52.92	41.04	63.85	40.7	51.43	52.02	41.97	49.84
TinyLLaVA-Med-FQ8 (1.5B)	53.8	39.89	63.13	42.09	54.96	46.55	40.83	50.2
TinyLLaVA-Med-FQ4 (1.5B)	51.6	38.07	59.42	41.94	49.43	49.93	40.42	48.09

□ Memory-accuracy Tradeoff:

III Examples					
	Describe the lung abnormalities?				
How would you describe the abnor	How would you describe the abnormalities?				
		Enter text and press	ENTER		Send
Parameters		•	Regenerate	0 Clear	
Terms of use By using this service, users a harmful, violent, racist, or se	ire required to agree to the following terms: The service is a resear exual purposes. For an optimal experience, please use desirbop co	rch preview intended for non-co mputers for this demo, as mobi	ammercial use only. It only provides limite le devices may compromise its quality.	d safety measures and may generate offensive content. It must not be u	sed for any illegal,
License					
The service is a research pre	view intended for non-commercial use only, subject to the model	License of LLaMA, Terms of Use	of the data generated by OpenAI, and Pro	acy Practices of ShareGPT. Please contact us if you find any potential vi	olation.
Acknowledgement					
The template for this web de	emo is from LLaWA, and we are very grateful to LLaWA for their ope	n source contributions to the co	ammunity1		
		Use via API 🧳	Built with Gradio 🤒		

Key References:

- A. El Mir and L. T. Luoga et al., "Advancing healthcare in low-resource environments through an optimization and deployment framework for medical multimodal large language models," in IEEE-EMBS BHI, 2024.
- B. Zhou et al., "Tinyllava: A framework of small-scale large multimodalmodels," arXiv preprint arXiv:2402.14289, 2024.
- C. Li et al., "Llava-med: Training a large language-and-vision assistantfor biomedicine in one day," Advances in Neural Information ProcessingSystems, vol. 36, 2024
- S. Jiang et al., "Moe-tinymed: Mixture of experts for tiny medical largevisionlanguage models," arXiv preprint arXiv:2404.10237, 2024
- W. Bank, "Medical doctors per 1,000 people," Jun. 2024, multiplesources compiled by World Bank – processed by Our World in Data

