
Experimental Results
❑ Medical VQA Performance:
❑ TinyLLaVA-Med-F and quantized variants (FQ4, FQ8) 

achieved competitive accuracy with minimal drop.

❑ GPT-4 Evaluation:
❑ The TinyLLaVA-Med family of models demonstrates 

overall robust accuracy in medical conversations.

❑ Memory-accuracy Tradeoff:
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Model

VQA-RAD SLAKE PathVQA

Open Closed Open Closed Open Closed

TinyLLaVA-1.5B (Baseline) 19.15 59.93 35.22 60.1 11.16 63.7
Our Supervised finetuning results (MLLM Based Methods)
LLAVA 50 65.07 78.18 63.22 7.74 63.2
LLAVA-Med (LLama7B) 61.52 84.19 85.34 85.34 37.95 91.21
LLAVA-Med (Vicuna7B) 64.39 81.98 84.71 83.17 38.87 91.65
Med-Moe (Phi2:3.6B) 58.55 82.72 85.06 85.58 34.74 91.98
Med-Moe (StableLM:2.0B) 50.08 80.07 83.16 83.41 33.79 91.3
TinyLLaVA-Med-F (1.5B) 50.6 81.25 85.34 85.43 39.25 90.56

Model Conv. Desc. X-Ray MRI Histology Gross CT Scan Overall
TinyLLaVA (1.5B)-Baseline 40.87 35.11 45.08 39.65 39.86 35.03 37 39.38
LLaVA-Med (Mistral7b) 59.57 52.59 64.04 48.82 63.68 54.31 56.89 57.77
LLaVA-Med-Q8 (Mistral7b) 60.03 50.23 61.71 48.52 63.21 58.2 55.22 57.49
LLaVA-Med-Q4 (Mistral7b) 58.65 48.94 61 47.96 53.33 53.33 53.88 56.14
Med-Moe (Phi2:3.6B) 55.49 43.79 60.37 46.68 55.91 47.11 51.4 52.46
Med-Moe (StableLM:2.0B) 52.99 40.81 56.44 44.29 54.03 50.37 43.91 49.83
TinyLLaVA-Med-F (1.5B) 52.92 41.04 63.85 40.7 51.43 52.02 41.97 49.84
TinyLLaVA-Med-FQ8 (1.5B) 53.8 39.89 63.13 42.09 54.96 46.55 40.83 50.2
TinyLLaVA-Med-FQ4 (1.5B) 51.6 38.07 59.42 41.94 49.43 49.93 40.42 48.09 Med-Moe FamilyTinyLLaVA-MED Family LLaVA-MED Family
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❑ EdgeAI Prototype:
❑ TinyLLaVA-Med deployed on a consumer-grade 

GPU, enhancing medical AI accessibility in low-
resource environments. 

❑ Memory Analysis:
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Introduction and Motivation
❑ Severe shortage of healthcare professionals in 

low-resource countries:
 Example: Niger has only 0.03 doctors per 

1,000 people, compared to 2.46 in Canada.
 Growing patient demands far exceed the 

number of available healthcare providers.

 Role of AI in addressing healthcare gaps:
 Enhances diagnostic accuracy and efficiency 

by reducing errors from fatigue, thus, 
supporting overburdened medical staff.

 Multimodal Large Language Models 
(MLLMs), a subset of AI, can combine 
textual information with medical images to 
help doctors interpret the images more 
quickly and accurately in real time.

Proposed Methodology 

 Motivation
 How can we enable the use of medical 

MLLMs in resource-constrained regions?

Novel Contributions:
❑ Optimized Medical MLLM Framework: 

TinyLLaVA-Med-F and Quantized models (4-bit, 8-
bit), fine-tuned for efficient deployment on 
consumer-grade GPUs for the healthcare domain.

❑ Performance-Memory Trade-off: Models on the 
Pareto front, balancing accuracy and memory.

❑ Foundation for Future Research: Accessible 
MLLMs for healthcare on consumer GPUs.

 Challenges
 State-of-Art Medical MLLMs (e.g. LLaVA-Med) 

have high computational demands usually 
requiring HPC infrastructures.

 Low resource areas with only access to 
consumer-grade GPUs, cannot benefit from 
MLLMs for the healthcare domain and beyond.

❑ Proposed deployment to integrate the MLLMs for 
medical decision-making support (e.g. radiology). 

❑ Optimization: fine-tuning and quantization to 
create efficient MLLMs for consumer-grade GPUs.

❑ Evaluation by medical VQA datasets and GPT-4
alongside Memory usage analysis.

Regions with critical shortage of healthcare workforce
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60K image-text pairs from PMC-15M
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SLAKE
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Consumer 
Embedded GPU 
• Jetson AGX Orin 
• AI Performance: 275 

TOPS 
• GPU: 2048-core
• Memory: 64GB 

Consumer
Moderate-End GPU 
• NVIDIA GeForce RTX 

3050 
• GPU Memory: 6GB 

Efficiently 
processes
multiple 
diagnostic 
requests 
simultaneously. 

Static Memory 
Usage:

Fixed GPU memory 
used to load a 
model's parameters 
and resources for 
inference, excluding 
runtime allocations.

Dynamic Memory 
Usage: 

Temporary GPU 
memory for model 
parameters, 
intermediate data, 
activations, and 
additional data 
during inference.

Memory Analysis Evaluation by Benchmark Datasets

Medical VQA (Slake, VQA-Rad, PathVQA) 

Biomedical 
Alignment 

Instruction 
Tuning

Downstream 
Finetuning

4-bit 8-bit 4-bit 8-bit
Normalize and compare the performance of various 
models using a validation script. 

Consumer
Higher-End GPU 
• NVIDIA GeForce RTX 

3080 Mobile 
• GPU Memory: 16GB 

Offer detailed explanations on the evaluation process and 
model performance using GPT-4 to ensure clarity. 

Evaluate the correctness and assign scores using GPT-4 to 
our model’s responses. 

Generate reference predictions from our model on questions 
based on image context and captions. 
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Global distribution of doctors per 1,000 people reveals 
significant shortages in many African countries
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