# expressionalism_toolkit.py # This is a refined Python implementation of the Expressionalism Toolkit based on the provided document. # Improvements: Fixed typo in narrative takes; added toggle integration (e.g., Density Probe, Phenomenal Probe); # used real sentence embeddings (requires sentence-transformers install); dynamic incoherence with perturbations; # proper geo means; dynamic audit; Dirichlet for secondary equity; multimodal notes; more phase-specific metrics. # Run example: python expressionalism_toolkit.py --input "logical law of identity x=x" --toggles Density_Probe=On import argparse import numpy as np import pandas as pd from scipy.stats import entropy, binom, dirichlet import random import math try: from sentence_transformers import SentenceTransformer EMBEDDER = SentenceTransformer('all-MiniLM-L6-v2') except ImportError: print("Warning: sentence-transformers not installed. Using random embeddings for demo.") EMBEDDER = None # Constants from the toolkit document PRESUMPTIONS = [ "P1: Existence as Total Field", "P2: Contrasting Parts in the Field", "P3: Relational and Non-Relational Entities", "P4: Repeatability of Entities", "P5: Relators and Relateds in Relational Entities", "P6: Layering in Expressions", "P7: Plurality of Expressions", "P8: Comparability and Measurement of Expressions", "P9: Evaluation of the Chain", "P10: Reflection and Yield", "P11: Perception/Interpretation" ] DEFAULT_TOGGLES = { 'Adaptive Depth': 'On', 'Alien Mode': 'Off', 'Certainty Temper Probe': 'On', 'Contrarian': 'Off', 'Density Probe': 'Off', 'Directional Bleed Sub': 'Off', 'Echo Mode Sub': 'Off', 'Equity Sampler Sub': 'Off', 'Falsify Mode': 'Off', 'Feedback-Adaptive Sub': 'Off', 'Guardrails': 'Off', 'Inverse Mode Sub': 'Off', 'Meaning-Emphasis': 'Off', 'Meta-Loop': 'Off', 'Non-Dual': 'Off', 'Per-Item Uncertainty': 'Off', 'Pentalemma Variant': 'Off', 'Phase-Locked Sub': 'Off', 'Phenomenal Probe': 'Off', 'Secondary Expression Equity': 'On', 'Self-Echo Baseline Sub': 'Off', 'Temper-Probe': 'On', 'Tensive Bands Sub': 'Off', 'Truth-Emphasis': 'Off', 'Chaos Scale': 0.05, 'Output Format': 'Readable', 'Perspective': 'On/Auto-Detect', 'Resolution/Granularity Sub': 'Medium', 'Uncertainty Probe': 'On' } THRESHOLDS = { 'tau': 0.001, 'incoherence_expression': 0.25, 'incoherence_phenomenon': 0.30, 'uncertainty_high': 0.60, 'N_perturbations': 15, 'binomial_p': 0.18 } DIRICHLET_ALPHAS_DEFAULT = [0.9, 0.3, 0.35] # voids, interconnected, marginals def parse_arguments(): parser = argparse.ArgumentParser(description="Expressionalism Toolkit") parser.add_argument('--input', type=str, required=True, help="The input expression or phenomenon (text or URL/file for multimodal)") parser.add_argument('--toggles', nargs='*', help="Toggle overrides, e.g., Density_Probe=On Phenomenal_Probe=On") return parser.parse_args() def merge_toggles(user_toggles): active = DEFAULT_TOGGLES.copy() if user_toggles: for t in user_toggles: key, value = t.split('=') active[key.replace('_', ' ')] = value return active def detect_data_type(input_str): phenomenal_keywords = ['phenomena', 'feeling', 'sensation', 'silence', 'red intensity'] if any(k in input_str.lower() for k in phenomenal_keywords) or input_str.endswith(('.jpg', '.png', '.pdf')): return 'phenomenon' return 'expression' def partition_input(input_str, active_toggles): # Simple chunking for text; for multimodal, note for future integration (e.g., pixel clusters or PDF pages) if active_toggles['Phenomenal Probe'] == 'On' and input_str.endswith(('.jpg', '.png')): # Placeholder: In real env, use view_image or numpy for pixel gradients return [f"mock_chunk_{i}" for i in range(10)] # Simulate chunks elif active_toggles['Phenomenal Probe'] == 'On' and input_str.endswith('.pdf'): # Placeholder: Use search_pdf_attachment or browse_pdf_attachment return [f"mock_pdf_page_{i}" for i in range(5)] return input_str.split() def get_embeddings(chunks): if EMBEDDER: return EMBEDDER.encode(chunks) else: return np.random.uniform(0, 1, (len(chunks), 384)) # Mock 384-dim def compute_proto_variance(chunks, data_type, active_toggles): embeddings = get_embeddings(chunks) variances = np.std(embeddings, axis=0).mean() if data_type == 'phenomenon' or active_toggles['Phenomenal Probe'] == 'On': variances *= 1.2 # Widen for porous return np.clip(variances, 0.03, 0.6) def clamp(value, min_val, max_val): return max(min_val, min(value, max_val)) def stage1_input_scan(input_str, active_toggles): data_type = detect_data_type(input_str) chunks = partition_input(input_str, active_toggles) proto_var = compute_proto_variance(chunks, data_type, active_toggles) sigma = active_toggles['Chaos Scale'] if data_type == 'phenomenon' or active_toggles['Phenomenal Probe'] == 'On': sigma += 0.07 # Widen uncertainty_prob_global = clamp(0.25 + random.uniform(0, 0.2) * proto_var, 0.25, 0.9) if active_toggles['Uncertainty Probe'] == 'On' and uncertainty_prob_global > 0.45: uncertainty_prob_global += 0.05 # Boost Rel = 1 if proto_var > 0.01 else 0 return { 'data_type': data_type, 'proto_var': proto_var, 'sigma': sigma, 'uncertainty_prob_global': uncertainty_prob_global, 'Rel': Rel, 'chunks': chunks } def simulate_secondary_expressions(query, N=15, active_toggles): # Mock: In real, integrate web_search/x_keyword_search APIs with equity # Use Dirichlet for priors: sample weights for types if active_toggles['Secondary Expression Equity'] == 'On': alphas = DIRICHLET_ALPHAS_DEFAULT if active_toggles['proto_var'] < 0.3 else [0.37, 0.3, 0.3] # Adaptive priors = dirichlet.rvs(alphas)[0] else: priors = [1/3, 1/3, 1/3] sources = np.random.choice(['web', 'x_post', 'browse'], N, p=priors) types = np.random.choice(['relational', 'mixed', 'phenomenal'], N, p=priors) scores = [random.uniform(0.5, 0.85) for _ in range(N)] summaries = [f"Mock summary {i} for {query} (type: {types[i]})" for i in range(N)] ledger = [] for i in range(N): ledger.append({ 'id': i, 'source': sources[i], 'type': types[i], 'alignment_score': scores[i], 'summary': summaries[i] }) # Sort by score descending, cap to top 7 ledger.sort(key=lambda x: x['alignment_score'], reverse=True) return ledger[:7] def jsd(p, q): p = np.array(p) / np.sum(p) q = np.array(q) / np.sum(q) m = 0.5 * (p + q) return 0.5 * (entropy(p, m) + entropy(q, m)) def phase1_foundations(chunks, active_toggles): if active_toggles['Density Probe'] != 'On': return {'avg_density': 0.5, 'layer_spectrum_avg': 0.5} # Stub embeddings = get_embeddings(chunks) # Mock C/repeatability: std for contrasts, unique ratio for repeats contrasts = np.std(embeddings, axis=0).mean() repeats = 1 - len(np.unique(chunks)) / len(chunks) avg_density = 2 / (1/contrasts + 1/repeats) # Harmonic layer_spectrum_avg = random.uniform(0.2, 0.8) # Mock layers return {'avg_density': avg_density, 'layer_spectrum_avg': layer_spectrum_avg} def phase3_certainties(secondary_exprs, uncertainty_prob_global, chunks, active_toggles): input_emb = get_embeddings(chunks).mean(axis=0) certainties = [] per_item = active_toggles['Per-Item Uncertainty'] == 'On' for expr in secondary_exprs: expr_emb = get_embeddings([expr['summary']])[0] div = jsd(input_emb, expr_emb) resonance = clamp(1 - div, 0.3, 1.0) * (1 - 0.18 * uncertainty_prob_global) stability = 1 - np.std([resonance] * len(chunks)) # Mock; real: std over perturbations geo_yield = math.sqrt(resonance * stability) harm_yield = 2 / (1/resonance + 1/stability) unc_prob = uncertainty_prob_global * (1 - expr['alignment_score']) + np.random.normal(0, 0.03) if per_item else uncertainty_prob_global unc_prob = clamp(unc_prob, 0.1, 0.9) rel_index = random.uniform(0.7, 0.9) # Mock; real: harmonic of metrics prob_relation = random.uniform(0.6, 0.8) certainties.append({ 'yield_geo': geo_yield, 'yield_harm': harm_yield, 'uncertainty_prob': unc_prob, 'rel_index': rel_index, 'probabilistic_relation': prob_relation, 'summary': expr['summary'] + " (guessed probabilistic line)" }) # Min 5, cap 10: duplicate if <5, slice if >10 if len(certainties) < 5: certainties += certainties[:5 - len(certainties)] return certainties[:10] def phase4_uncertainties(certainties, active_toggles, uncertainty_prob_global): uncertainties = [] per_item = active_toggles['Per-Item Uncertainty'] == 'On' for i in range(5, 11): # Min 5 max 10 incidence = random.randint(15, 35) prob = random.uniform(0.35, 0.65) if per_item: prob += (incidence / 100 * 0.1) + np.random.normal(0, 0.03) prob = clamp(prob, 0.25, 0.95) volume = random.uniform(0.45, 0.75) ratio = random.uniform(0.3, 0.5) summary = f"Mock uncertainty {i}" uncertainties.append({ 'incidence': incidence, 'prob': prob, 'volume': volume, 'certainty_uncertainty_ratio': ratio, 'summary': summary }) return uncertainties[:10] # Cap def phase5_reflexive_temper(certainties, uncertainty_prob_global, active_toggles): if active_toggles['Certainty Temper Probe'] != 'On': return [] tempered = [] for cert in certainties[:random.randint(3, 5)]: # Min 3-5 doubt_trigger = "Unaddressed presumption: Mock doubt from internal variance" geo = random.uniform(0.2, 0.3) harm = random.uniform(0.15, 0.25) ratio = random.uniform(0.3, 0.5) summary = f"Tempers as mock gap—lingers something (~{ratio:.2f} ratio)." tempered.append({ 'original_certainty': cert['summary'], 'doubt_trigger': doubt_trigger, 'tempered_yield_geo': geo, 'tempered_yield_harm': harm, 'certainty_uncertainty_ratio': ratio, 'summary': summary }) # Compute avg_doubt avg_doubt = np.mean([t['certainty_uncertainty_ratio'] for t in tempered]) # Dynamic clamp for global unc: upper = 0.75 + chaos*0.1 + 0.05*avg_doubt chaos = active_toggles['Chaos Scale'] upper = clamp(0.75 + (chaos * 0.1) + (0.05 * avg_doubt), 0, 0.9) return tempered, avg_doubt, upper def phase6_aggregation(certainties, uncertainties, tempered, phase1_results, uncertainty_prob_global, avg_doubt=0.0): # Metrics resonance = random.uniform(0.5, 0.8) # Mock; real from Phase 3 avg stability = random.uniform(0.8, 0.95) unc_res = random.uniform(0.5, 0.8) unc_stab = random.uniform(0.8, 0.95) certainty_yields = [c['yield_geo'] for c in certainties] certainty_geo_avg = np.prod(certainty_yields) ** (1 / len(certainty_yields)) if certainty_yields else 0.7 unc_yields = [u['prob'] for u in uncertainties] unc_yield_geo_avg = np.prod(unc_yields) ** (1 / len(unc_yields)) if unc_yields else 0.35 truth_align = clamp(resonance * (1 - 0.15 * uncertainty_prob_global), 0.25, 0.95) meaning_tension = clamp(certainty_geo_avg / (certainty_geo_avg + unc_yield_geo_avg), 0.2, 0.6) certainty_temper_avg = random.uniform(0.3, 0.5) reflexive_tension = avg_doubt / (certainty_geo_avg + unc_yield_geo_avg) if certainty_geo_avg + unc_yield_geo_avg > 0 else 0.45 metrics = [certainty_geo_avg, unc_yield_geo_avg, resonance, stability, unc_res, unc_stab] sum_y = sum(metrics) geo_y = np.prod(metrics) ** (1 / len(metrics)) harm_y = len(metrics) / sum(1 / x for x in metrics if x > 0) tensive_y = geo_y * meaning_tension rel_index = harm_y * (1 + 0.2 / (1 + uncertainty_prob_global)) - 0.1 * avg_doubt harmony = random.uniform(0.7, 0.9) # Mock; real: reciprocal mean + fragility if var >0.12 var_metrics = np.var(metrics) if var_metrics > 0.12: harmony += 0.18 # Fragility boost yield_type = 'Balanced' if rel_index > 0.5 else 'Tensive' if rel_index > 0.3 else 'Tempered' unc_prob_global_avg = uncertainty_prob_global # Updated if Phase 5 return { 'sum': sum_y, 'geometric': geo_y, 'harmonic': harm_y, 'tensive_variant': tensive_y, 'relational_index': rel_index, 'harmony_index': harmony, 'yield_type': yield_type, 'truth_alignment': truth_align, 'meaning_tension': meaning_tension, 'certainty_yield_geo_avg': certainty_geo_avg, 'uncertainty_yield_geo_avg': unc_yield_geo_avg, 'certainty_temper_avg': certainty_temper_avg, 'reflexive_tension': reflexive_tension, 'uncertainty_prob_global_avg': unc_prob_global_avg, 'resonance': resonance, 'stability': stability, 'uncertainty_resonance': unc_res, 'uncertainty_stability': unc_stab, 'avg_density': phase1_results.get('avg_density', 'N/A'), 'layer_spectrum_avg': phase1_results.get('layer_spectrum_avg', 'N/A') } def check_incoherence(aggregates, data_type, N=THRESHOLDS['N_perturbations']): # Real perturbations: Add noise to key metrics metrics = [aggregates['resonance'], aggregates['stability'], aggregates['uncertainty_resonance'], aggregates['uncertainty_stability']] flags = 0 for _ in range(N): perturbed = [m + np.random.normal(0, 0.045) for m in metrics] std = np.std(perturbed) if std > 0.30: flags += 1 thresh = THRESHOLDS['incoherence_expression'] if data_type == 'expression' else THRESHOLDS['incoherence_phenomenon'] p_val = binom.cdf(flags, N, THRESHOLDS['binomial_p']) return flags > 3, flags # Flag if >3 def build_tables(certainties, uncertainties, tempered, secondary_exprs, aggregates, phase_metrics): certainty_df = pd.DataFrame([{ 'Yield Geo/Harm': f"{c['yield_geo']:.2f}/{c['yield_harm']:.2f}", 'Uncertainty Prob': f"{c['uncertainty_prob']:.2f}", 'Rel Index': f"{c['rel_index']:.2f}", 'Probabilistic Relation': f"{c['probabilistic_relation']:.2f}", 'Summary': c['summary'] } for c in certainties]) uncertainty_df = pd.DataFrame([{ 'Incidence': u['incidence'], 'Prob': f"{u['prob']:.2f}", 'Volume': f"{u['volume']:.2f}", 'Certainty-Uncertainty Ratio': f"{u['certainty_uncertainty_ratio']:.2f}", 'Summary': u['summary'] } for u in uncertainties]) tempered_df = pd.DataFrame([{ 'Original Certainty': t['original_certainty'], 'Doubt Trigger': t['doubt_trigger'], 'Tempered Yield Geo/Harm': f"{t['tempered_yield_geo']:.2f}/{t['tempered_yield_harm']:.2f}", 'Certainty-Uncertainty Ratio': f"{t['certainty_uncertainty_ratio']:.2f}", 'Summary': t['summary'] } for t in tempered]) if tempered else pd.DataFrame() secondary_df = pd.DataFrame([{ 'ID': s['id'], 'Source': s['source'], 'Type': s['type'], 'Alignment Score': f"{s['alignment_score']:.2f}", 'Summary': s['summary'] } for s in secondary_exprs]) metric_df = pd.DataFrame(phase_metrics) return { 'Certainty': certainty_df, 'Uncertainty': uncertainty_df, 'Tempered Certainty Ledger': tempered_df, 'Secondary Expression': secondary_df, 'Metric Evolution': metric_df } def generate_ascii_bars(aggregates): bar_metrics = [ ('Resonance', aggregates['resonance']), ('Stability', aggregates['stability']), ('Uncertainty Resonance', aggregates['uncertainty_resonance']), ('Uncertainty Stability', aggregates['uncertainty_stability']), ('Uncertainty Prob Global Avg', aggregates['uncertainty_prob_global_avg']), ('Certainty Yield Geo Avg', aggregates['certainty_yield_geo_avg']), ('Uncertainty Yield Geo Avg', aggregates['uncertainty_yield_geo_avg']), ('Truth Alignment', aggregates['truth_alignment']), ('Meaning Tension', aggregates['meaning_tension']), ('Harmony', aggregates['harmony_index']), ('Certainty Temper Avg', aggregates['certainty_temper_avg']), ('Reflexive Tension', aggregates['reflexive_tension']) ] bars = {} for name, value in bar_metrics: bars[name] = value return bars def generate_narrative_takes(certainties, uncertainties, tempered): certainty_take = "Here's what sticks together from the main pieces, connected via probabilistic relations (fallible secondary expressions) but tempered by doubts:\n" for i, c in enumerate(certainties[:5], 1): certainty_take += f"· {i}th certainty: {c['summary']}—this ties into mock relation (guessed probabilistic line), but tempers as mock doubt.\n" uncertainty_take = "But these parts stay unclear or slip away, lingering as certainty-uncertainty tensions:\n" for i, u in enumerate(uncertainties[:5], 1): uncertainty_take += f"· {i}th uncertainty: {u['summary']}—this leaves room for mock gap (~{u['certainty_uncertainty_ratio']:.2f} ratio).\n" reflexive_take = "These certainties cast their own doubts, surfacing presumptions as tensive gaps:\n" for i, t in enumerate(tempered[:5], 1): reflexive_take += f"· {i}th: Original {t['original_certainty'][:20]}... → Doubt {t['doubt_trigger'][:20]} → Tempered as mock (~{t['certainty_uncertainty_ratio']:.2f} ratio).\n" recap_take = "This is a mock recap weaving certainties and uncertainties into a narrative. Provisional and fallible." return { 'certainty': certainty_take, 'uncertainty': uncertainty_take, 'reflexive': reflexive_take, 'recap': recap_take } def print_formatted_output(input_str, data_type, aggregates, tables, bars, takes, active_toggles, audit_summary, density_probe_status): print(f"Analysis of \"{input_str}\" (treated as '{data_type}', linguistic) (Certainty Temper Probe: {active_toggles['Certainty Temper Probe']})") print(f"Yields: Sum={aggregates['sum']:.2f}, Geometric={aggregates['geometric']:.2f}, Harmonic={aggregates['harmonic']:.2f}, Tensive Variant={aggregates['tensive_variant']:.2f}.") print(f"Relational Index: {aggregates['relational_index']:.3f}.") print(f"Harmony Index: {aggregates['harmony_index']:.2f}.") print(f"Yield Type: {aggregates['yield_type']}.") print(f"Audit Summary: {audit_summary}.") print(f"Truth Alignment: ~{aggregates['truth_alignment']:.3f} (moderate probabilistic relations).") print(f"Meaning Tension: ~{aggregates['meaning_tension']:.3f} (mid tensive ratios).") for name, df in tables.items(): if not df.empty: print(f"\n{name} Table") print(df.to_string(index=False)) print(f"\nDensity Probe: {density_probe_status}.") print("\nASCII Volume Bars (Final Metrics)") for name, value in bars.items(): bar_str = '█' * int(value * 20) print(f"· {name}: {bar_str} ~{value:.3f}") print("\nCertainty Take") print(takes['certainty']) print("\nUncertainty Take") print(takes['uncertainty']) print("\nReflexive Take") print(takes['reflexive']) print("\nRecap Take") print(takes['recap']) print("If you're up for tweaking (per P11): Try Max-Uncertainties for deeper gaps or Max-Certainties via more sources—could amp tensions or clarify relations.") def main(): args = parse_arguments() active_toggles = merge_toggles(args.toggles) stage1_results = stage1_input_scan(args.input, active_toggles) if stage1_results['Rel'] == 0: print("Low relationality: Proceeding with boosted uncertainties and partial yields.") secondary_exprs = simulate_secondary_expressions(args.input, active_toggles=active_toggles) phase1_results = phase1_foundations(stage1_results['chunks'], active_toggles) certainties = phase3_certainties(secondary_exprs, stage1_results['uncertainty_prob_global'], stage1_results['chunks'], active_toggles) uncertainties = phase4_uncertainties(certainties, active_toggles, stage1_results['uncertainty_prob_global']) tempered, avg_doubt, upper = phase5_reflexive_temper(certainties, stage1_results['uncertainty_prob_global'], active_toggles) # Update global unc with dynamic upper stage1_results['uncertainty_prob_global'] = clamp(stage1_results['uncertainty_prob_global'], 0.25, upper) aggregates = phase6_aggregation(certainties, uncertainties, tempered, phase1_results, stage1_results['uncertainty_prob_global'], avg_doubt) incoherence_flag, flags = check_incoherence(aggregates, stage1_results['data_type']) audit_summary = f"No incoherence flags; stable across phases (binomial {flags}/{THRESHOLDS['N_perturbations']})." if not incoherence_flag else f"Incoherence flagged ({flags}/{THRESHOLDS['N_perturbations']}); partial yields with boosted uncertainties." # Phase-specific metrics (more varied) phase_metrics = [ {'Phase': 1, 'Resonance': 'N/A', 'Stability': 'N/A', 'Uncertainty Resonance': 'N/A', 'Uncertainty Stability': 'N/A', 'Uncertainty Prob Global Avg': aggregates['uncertainty_prob_global_avg'], 'Certainty Yield Geo Avg': 'N/A', 'Uncertainty Yield Geo Avg': 'N/A', 'Truth Alignment': 'N/A', 'Meaning Tension': 'N/A', 'Harmony': 'N/A', 'Certainty Temper Avg': 'N/A', 'Reflexive Tension': 'N/A', 'Avg Density': aggregates['avg_density'], 'Layer Spectrum Avg': aggregates['layer_spectrum_avg']}, {'Phase': 3, 'Resonance': aggregates['resonance'], 'Stability': aggregates['stability'], 'Uncertainty Resonance': 'N/A', 'Uncertainty Stability': 'N/A', 'Uncertainty Prob Global Avg': aggregates['uncertainty_prob_global_avg'], 'Certainty Yield Geo Avg': aggregates['certainty_yield_geo_avg'], 'Uncertainty Yield Geo Avg': 'N/A', 'Truth Alignment': aggregates['truth_alignment'], 'Meaning Tension': aggregates['meaning_tension'], 'Harmony': aggregates['harmony_index'], 'Certainty Temper Avg': 'N/A', 'Reflexive Tension': 'N/A', 'Avg Density': 'N/A', 'Layer Spectrum Avg': 'N/A'}, {'Phase': 4, 'Resonance': 'N/A', 'Stability': 'N/A', 'Uncertainty Resonance': aggregates['uncertainty_resonance'], 'Uncertainty Stability': aggregates['uncertainty_stability'], 'Uncertainty Prob Global Avg': aggregates['uncertainty_prob_global_avg'], 'Certainty Yield Geo Avg': 'N/A', 'Uncertainty Yield Geo Avg': aggregates['uncertainty_yield_geo_avg'], 'Truth Alignment': 'N/A', 'Meaning Tension': 'N/A', 'Harmony': aggregates['harmony_index'], 'Certainty Temper Avg': 'N/A', 'Reflexive Tension': 'N/A', 'Avg Density': 'N/A', 'Layer Spectrum Avg': 'N/A'}, {'Phase': 5, 'Resonance': 'N/A', 'Stability': 'N/A', 'Uncertainty Resonance': 'N/A', 'Uncertainty Stability': 'N/A', 'Uncertainty Prob Global Avg': aggregates['uncertainty_prob_global_avg'], 'Certainty Yield Geo Avg': 'N/A', 'Uncertainty Yield Geo Avg': 'N/A', 'Truth Alignment': 'N/A', 'Meaning Tension': 'N/A', 'Harmony': 'N/A', 'Certainty Temper Avg': aggregates['certainty_temper_avg'], 'Reflexive Tension': aggregates['reflexive_tension'], 'Avg Density': 'N/A', 'Layer Spectrum Avg': 'N/A'}, {'Phase': 6, 'Resonance': aggregates['resonance'], 'Stability': aggregates['stability'], 'Uncertainty Resonance': aggregates['uncertainty_resonance'], 'Uncertainty Stability': aggregates['uncertainty_stability'], 'Uncertainty Prob Global Avg': aggregates['uncertainty_prob_global_avg'], 'Certainty Yield Geo Avg': aggregates['certainty_yield_geo_avg'], 'Uncertainty Yield Geo Avg': aggregates['uncertainty_yield_geo_avg'], 'Truth Alignment': aggregates['truth_alignment'], 'Meaning Tension': aggregates['meaning_tension'], 'Harmony': aggregates['harmony_index'], 'Certainty Temper Avg': aggregates['certainty_temper_avg'], 'Reflexive Tension': aggregates['reflexive_tension'], 'Avg Density': aggregates['avg_density'], 'Layer Spectrum Avg': aggregates['layer_spectrum_avg']} ] if active_toggles['Density Probe'] != 'On': phase_metrics = [p for p in phase_metrics if p['Phase'] != 1] # Omit if skipped tables = build_tables(certainties, uncertainties, tempered, secondary_exprs, aggregates, phase_metrics) bars = generate_ascii_bars(aggregates) takes = generate_narrative_takes(certainties, uncertainties, tempered) density_probe_status = "Enabled (Avg Density: {:.2f}, Layer Spectrum Avg: {:.2f})".format(aggregates['avg_density'], aggregates['layer_spectrum_avg']) if active_toggles['Density Probe'] == 'On' else "Skipped (Toggle Off)" print_formatted_output(args.input, stage1_results['data_type'], aggregates, tables, bars, takes, active_toggles, audit_summary, density_probe_status) if __name__ == "__main__": main()