article

Zero-Copy CPU-GPU Pipeline Architecture for Unified
Memory Systems: Design, Implementation, and
Performance Analysis

Abstract This paper presents a novel software architecture for efficient data processing
pipelines between heterogeneous processors (CPU and GPU) on unified memory platforms. |
introduce two complementary synchronization paradigms: event-based orchestration (V1) and
persistent kernel with lock-free job queues (V2). Our approach eliminates explicit memory
copies between host and device through careful exploitation of cache-coherent unified memory,
atomic operations with system-wide memory ordering semantics, and a deterministic finite state
machine for buffer ownership management. The architecture specifically targets the NVIDIA
GB10 Grace-Blackwell platform featuring NVLink-C2C interconnect with 900 GB/s bidirectional
bandwidth. | present detailed algorithmic specifications, comparative analysis of
synchronization strategies, and architectural considerations for big.LITTLE ARM heterogeneous
CPU configurations.

Keywords: Unified Memory, Zero-Copy, CPU-GPU Pipeline, Lock-Free Synchronization,
Persistent Kernels, Heterogeneous Computing, Cache Coherence

Author: Emmanuel Forgues

1. Introduction

1.1 Motivation and Context

Modern heterogeneous computing systems combine general-purpose CPUs with massively
parallel accelerators such as GPUs. Traditional programming models require explicit data
transfers between host (CPU) and device (GPU) memory spaces, introducing significant latency
and bandwidth overhead. The emergence of cache-coherent unified memory architectures,
exemplified by the NVIDIA Grace-Blackwell GB10 System-on-Chip, enables a paradigm shift
toward zero-copy data sharing between processors. The GB10 platform integrates a 20-core
ARM Grace CPU (heterogeneous big.LITTLE configuration) with a Blackwell GPU, connected
via NVLink-C2C providing 900 GB/s bidirectional bandwidth to a shared 128GB LPDDRS5X
memory pool. This architectural advancement necessitates new software design patterns that
fully exploit cache coherence while maintaining correct memory ordering semantics.

1.2 Problem Statement

Efficient CPU-GPU collaboration requires solving three fundamental challenges:

Ownership Management: At any instant, a shared memory region must have a clearly
defined owner (CPU or GPU) to prevent data races.

Synchronization Overhead: Traditional synchronization mechanisms (CUDA events,
stream synchronization) introduce microsecond-scale latencies inappropriate for fine-
grained pipelines.

Cache Coherence Exploitation: Unified memory systems require explicit memory barriers
to ensure visibility of writes across processor boundaries.

1.3 Contributions

This work introduces:

A five-state finite automaton for deterministic buffer ownership transitions

Two synchronization policies: host-orchestrated (EventsSync) and device-autonomous
(AtomicsSync)

A persistent kernel architecture with lock-free SPMC (Single-Producer Multi-Consumer) job
queue

Memory layout optimizations eliminating false sharing between metadata and payload

Algorithmic specifications for ARM big.LITTLE task scheduling

2. System Architecture Overview

2.1 Target Platform: NVIDIA GB10 Grace-Blackwell

ARM Grace CPU (20 core

Efficiency Cluste High-Performance Clustel

Cortex-A725 Cortex-X925

Cortex-A725 Cortex-X925

... (8 cores total ... (12 cores total

2.2 High-Level Component Architecture

The library comprises five principal abstractions: | Component | Responsibility | | |

------- | | SharedAllocator | Unified memory allocation (cudaMallocManaged) | | BufferPool |
Pre-allocated buffer management with state tracking | | SyncPolicy | Pluggable synchronization
strategy interface | | JobQueue | Lock-free ring buffer for persistent kernel communication | |
Pipeline | Unified API orchestrating all components |

EventsSyn PersistentKerne AtomicsSyn:

-cudaStream_t stream_

+consumer_loop() +submit(BufferView)

+submit(BufferView)

A\ 4
BufferPool

«interface» JobQueue

-BufferMeta* metas_ ISyncPolicy
-byte* data_block_

-uint64_t head

-uint64_t tail
. .) -uint32_t[] ids
+acquire_for_write() : BufferView +init(config)
+commit_ready(view, bytes) +submit(BufferView) +push(id)
+wait_done(id) : BufferView +flush() :
+try_pop() : id

+release(view'

SharedAllocatol

+allocate(count) : 1
+deallocate(ptr)

3. Buffer Management and State Machine

3.1 Memory Layout Design

A critical design decision separates metadata from payload to eliminate false sharing. Cache
line invalidations caused by metadata updates (state transitions, sequence counters) must not
affect data cachelines being read or written.

Unified Memory Space

Metadata Block (128-byte 3MallocMz Data Block (256-byte
BufferMeta[0] N Buffer[0]
128 bytes configurable size
BufferMeta[1] N Buffer[1]
128 bytes configurable size
BufferMeta[2] N Buffer[2]
128 bytes configurable size

Alignment Rationale:

128-byte metadata alignment matches GPU L2 cache sector size
256-byte data alignment ensures coalesced GPU memory access

Separation guarantees that state and seq_x fields reside in distinct cachelines from
payload

3.2 Buffer Metadata Structure

Each buffer carries associated metadata for synchronization: | Field | Type | Purpose | |------- [----
|- | | state | atomic<uint32_t> | Current state in the finite automaton | | seq_ready |
atomic<uint64_t> | Monotonic counter incremented when CPU commits | | seq_done |
atomic<uint64_t> | Monotonic counter incremented when GPU completes | | bytes_valid |
atomic<uint32_t> | Actual payload size for current job |

3.3 Five-State Finite Automaton

Buffer ownership transitions follow a deterministic finite state machine:

?

Initialization

CPU acquire_for_write(

Buffer available for
- WRITINC
acquisition -

CPU commit_ready(
CPU exclusive write acces READ" CPU releasel

GPU pickur

D . -
ata committed, awaiting COMPUTI
GPU

GPU completion

GPU exclusive processin DONE

Results available for CP|

State Transition Rules: | Transition | Actor | Precondition | Memory Ordering | | | |-
| | | FREE -> WRITING | CPU | CAS(state, FREE|DONE, WRITING) |
acquire-release | | WRITING -> READY | CPU | After data write completion | release | | READY
-> COMPUTE | GPU | seq_ready observed | acquire | | COMPUTE -> DONE | GPU | After
kernel completion | release | | DONE -> FREE | CPU | After result consumption | release |

4. Synchronization Strategies

4.1 Strategy Comparison

We implement two distinct synchronization paradigms with complementary characteristics:

Pipeline V2: Persistent

Unsupported markdown: list

Buffer

Unsupported markdown: list Unsupported markdown: list

Lock-Free Queus

Unsupported markdown: list

Persistent Kerne

Pipeline V1: Event-Base

Unsupported markdown: list

Buffer

Unsupported markdown: list Unsupported markdown: list

GPL

Unsupported markdown: list

CUDA Even

Characteristic

Kernel launch overhead

Synchronization
mechanism

CPU blocking

Minimum latency
Implementation complexity
Debugging difficulty

Resource utilization

EventsSync (V1)

Per-job (3-10 us)

CUDA Events + Host
callbacks

Yes (event wait)
~5-10 microseconds
Low

Low

Variable SM occupancy

4.2 Event-Based Synchronization (V1)

AtomicsSync/Persistent
(V2)

Once at startup

Atomic flags + polling

Optional (polling)
~0.5-2 microseconds
High

High

Dedicated SM reservation

The event-based strategy uses CUDA's native synchronization primitives:

CPU Thread CUDA Stream GPU SMs

Phase 1: Data Preparation

Write buffer payload

store(state=READY, release)

Phase 2: Kernel Submission

cudaLaunchKernel()

cudalLaunchHostFunc(callback)

>
Phase 3: GPU Execution

Dispatch kernel

Read pay

Process data

<

Phase 4: Completion Notification

Kernel complete

Execute host callback

store(state=DONE, release)

CPU Thread CUDA Stream GPU SMs

Algorithm: EventsSync Submit

PROCEDURE EventsSync.submit(buffer)
INPUT: BufferView buffer with state=READY
OUTPUT: Asynchronous GPU processing initiated

1.

Store state <- COMPUTE with release semantics

2. Read bytes_valid from buffer.meta

[B =~ VN]

6.

. Calculate grid dimensions: blocks <- ceil(bytes_valid / threads_per_block)

Launch kernel on stream with (grid, block, stream) parameters
Enqueue host callback on stream:
a. On callback execution:
- Increment seq_done with release semantics
- Store state <- DONE with release semantics
Return (non-blocking)

4.3 Atomic-Based Synchronization with Persistent Kernel (V2)

The persistent kernel strategy eliminates per-job launch overhead:

CPU Producer JobQueue Persistent Kernel

Startup Phase

Launch persistent kernel (once)

>

Enter infinite loop

O

Job N Processing

Write buffer[N] payload

store(state[N]=READY, release)

push(N) atomically

>
pop() -> N (CAS on head)
<

load(state

Proces:

store(state[N]-
threadfen

Poll state[N] == DONE
Read results
CPU Producer JobQueue Persistent Kernel

Algorithm: Lock-Free Queue Push (CPU Side)

PROCEDURE JobQueue.push(buffer_id)
INPUT: buffer_id - identifier of ready buffer
OUTPUT: buffer_id enqueued for GPU consumption
1. LOOP forever:
a. t <- atomic_load(tail, relaxed)
b. h <- atomic_load(head, acquire)
c. IF t - h < capacity THEN:
- ids[t mod capacity] <- buffer_id
- atomic_store(tail, t + 1, release)
— RETURN success
d. ELSE:
- Yield CPU (backpressure handling)
- Continue loop

Algorithm: Lock-Free Queue Pop (GPU Side)

PROCEDURE JobQueue.try_pop()
OUTPUT: (success, buffer_id) or (failure, _)
1. LOOP forever:
a. h <- atomic_load(head) via atomicAdd(&head, 0)
b. Execute threadfence_system()
c. t <- atomic_load(tail) via atomicAdd(&tail, 0)
d. Execute threadfence_system()
e. IF h >= t THEN:
— RETURN (false, _) // Queue empty
f. old <- atomicCAS(&head, h, h + 1)
g. IF old == h THEN:
- buffer_id <- ids[h mod capacity]
- RETURN (true, buffer_id)
h. ELSE:
- Continue loop // Contention retry

Algorithm: Persistent Kernel Main Loop

PROCEDURE PersistentKernel.consumer_loop(queue, metas, data_block)
INPUT: Shared queue, metadata array, data block pointer
EXECUTION: Runs until termination signal
1. backoff_iteration <- 0
2. LOOP forever:
a. Execute threadfence_system()
b. IF atomic_load(queue.stop) != 0 THEN:
- BREAK
c. IF thread_index == 0 THEN:
- (ok, id) <- queue.try_pop()

- Store to shared memory: sh_ok, sh_id
d. Execute syncthreads()
e. IF sh_ok AND sh_id == POISON_PILL THEN:
- BREAK // Graceful termination
f. IF NOT sh_ok THEN:
- Execute adaptive_backoff(backoff_iteration)
- backoff_iteration <- backoff_iteration + 1
— CONTINUE
. backoff_iteration <- 0
buffer <- get_buffer(sh_id, metas, data_block)
atomic_exchange(buffer.meta.state, COMPUTE)
Execute parallel_process(buffer)
Execute syncthreads()
. IF thread_index == 0 THEN:
- atomic_exchange(buffer.meta.state, DONE)
- Execute threadfence_system()

— X Rk oS Q

5. Memory Ordering and Coherence Protocol

5.1 Memory Barrier Requirements

Cache-coherent unified memory does not eliminate the need for explicit memory ordering. The
following barriers ensure correct visibility:

CPU (ARM) Cache Hierarchy GPU (Blackwell)

CPU Write -> GPU Read Protocol

Write payload bytes

__sync_synchronize() or atomic_store(release)

<

Coherence protocol propagates

atomic_load(acquire) or __threadfe

<

Read payload bytes
«

GPU Write -> CPU Read Protocol

Write result bytes

__threadfence_systenr

<

Coherence protocol propagates

atomic_load(acquire)

Read result bytes

>

CPU (ARM) Cache Hierarchy GPU (Blackwell)

5.2 Memory Ordering Semantics

Operation

Producer
commit

Consumer
acquire

Consumer
completion

Result read

5.3 Adaptive Backoff Strategy

CPU (C++11/20)

store(seq_ready,
release)

N/A

N/A

load(state,
acquire)

GPU (CUDA)
N/A

atomicAdd(&seq, 0) +
__threadfence_system()

atomicExch(state, DONE) +
__threadfence_system()

N/A

Purpose

Ensure payload
visible before
signaling

Ensure signal
observed before
reading

Ensure results
visible before
signaling

Ensure signal
observed before
reading results

Polling-based synchronization requires careful backoff to balance latency against power
consumption: Algorithm: Adaptive Backoff (GPU)

PROCEDURE adaptive_backoff(iteration)
INPUT: iteration counter
EFFECT: Delays execution to reduce power consumption

1. base_delay <- 100 nanoseconds

2. variable_delay <- (iteration mod 64) * 50 nanoseconds
3. total_delay <- base_delay + variable_delay
4. IF GPU_ARCHITECTURE >= SM_70 THEN:

- Execute

5. ELSE:

_nanosleep(total_delay)

- Execute volatile spin loop for equivalent cycles

6. ARM big.LITTLE Task Scheduling

6.1 Heterogeneous Core Utilization

The GB10's ARM Grace CPU employs a big.LITTLE architecture requiring workload-aware

scheduling:

Incoming Tasks

Decompression Parsing I/O Read Prefetch
\B Task Cigssifie /
Analyze computational
intensity

-

High IPC

Cortex-X925 Pool (12 cores

Heavy compute

Latency-sensitive

6.2 Task Classification Criteria

Task Type Target Cluster
Decompression (zstd, 1z4) Cortex-X925 (Big)
Tokenization/Parsing Cortex-X925 (Big)
Buffer preparation Cortex-X925 (Big)
File 110 Cortex-A725 (Little)
Memory prefetch Cortex-A725 (Little)
Monitoring/Logging Cortex-A725 (Little)

Algorithm: Task Scheduling

Rationale

High IPC, branch-heavy
Complex control flow
Latency-sensitive
I/O-bound, low compute
Memory-bound

Background, low priority

PROCEDURE schedule_task(task)
INPUT: Task with type and priority
OUTPUT: Task assigned to appropriate core pool
1. intensity <- analyze_computational_intensity(task)
2. is_latency_sensitive <- task.priority == HIGH
3. IF intensity > THRESHOLD_HIGH OR is_latency_sensitive THEN:
- pool <- big_core_pool
4. ELSE:
- pool <- little_core_pool
5. IF pool.available_cores == 0 THEN:
- IF allow_work_stealing THEN:
- pool <- alternate_pool
- ELSE:
- Wait for core availability
6. Assign task to pool with CPU affinity (pthread_setaffinity_np)

7. Performance Model and Analysis

7.1 Latency Components

The end-to-end latency for processing a single buffer comprises:

Total Latency Breakdowr

Buffer Acquisition
~0.1-1 us

CPU Data Preparatiol
Variable

Commit + Signal
~0.1 us

Sync Overheac
V1: 3-10 us
V2: 0.5-2 us

GPU Processin
Variable

Completion Signal
~0.1-0.5 us

7.2 Throughput Model

For a pipeline with N buffers processing jobs of size S bytes: Maximum Throughput (Event-
Based V1):

N-S
max(tcpu, taru) + tsyne

Ty, =

Where:

tcpy = CPU preparation time per buffer
tqepy = GPU processing time per buffer

tsyne = Synchronization overhead (3-10 us for events) Maximum Throughput (Persistent
V2).

N.S

Tys =
max (tC'PUa tG’PU) + tatomic

Where:
tatomic = Atomic polling overhead (0.5-2 us)

7.3 Optimal Buffer Count

The optimal number of buffers N balances pipeline depth against memory consumption: $$N* =
\left\Iceil \frac{max(t{CPU}, {GPU})Kmin(t{CPU}, {GPU})} \right\rceil + 1$
Forbalancedworkloadswhere$tcpy ~ tgpy, double-buffering (N=2) is optimal. For imbalanced
workloads, additional buffers smooth throughput variability.

8. Comparative Analysis with Traditional Approaches

8.1 Memory Transfer Comparison

Approach CPU->GPU GPU->CPU Total
Transfer Transfer Overhead
Explicit cudaMemcpy Full copy + sync Full copy + sync 2x data size
Pinned Memory + DMA DMA transfer DMA transfer PCle latency
Unified Memory (migration) Page faults Page faults Variable
Our Approach (zero- None None Barrier only

copy)

8.2 Synchronization Comparison

Synchronization Latency Comparison

cudaDeviceS

cudaStream$ Stream sync

CUDA Events Event record/wait ‘ ‘ ‘ ‘ ‘ ‘ ‘

Our V1 (Even Event + callback

Our V2 (Atorr- Atomic %olling
0

5 10 15 20 25 30 35 40 45 50

9. Implementation Considerations

9.1 Common Pitfalls

Pitfall Symptom Solution

False sharing on Performance 128-byte alignment

metadata degradation

Missing memory barriers Corrupted data Proper acquire/release semantics

Aggressive polling CPU/GPU power waste Adaptive backoff

Buffer size too small Overhead domination Increase buffer size

Buffer size too large Cache thrashing Tile-based processing

Insufficient buffers Pipeline stalls Increase N or implement
backpressure

9.2 Graceful Shutdown Protocol

The persistent kernel requires a clean termination mechanism: Algorithm: Pipeline Shutdown

PROCEDURE shutdown_pipeline()
OUTPUT: A1l GPU threads terminated, resources released
1. FOR i <= 1 TO num_consumer_ctas DO:

- queue.push(POISON_PILL) // OxFFFFFFFF
2. Wait for kernel completion (cudaStreamSynchronize)
. Verify all buffers in FREE or DONE state
4. Deallocate unified memory resources

w

10. Conclusion and Future Work

10.1 Summary

| have presented a comprehensive software architecture for zero-copy CPU-GPU data pipelines
on cache-coherent unified memory platforms. The dual-strategy approach (event-based V1 and
persistent kernel V2) provides flexibility for different use cases:

V1 (EventsSync): Recommended for development, debugging, and workloads with variable
kernel complexity

V2 (PersistentKernel): Recommended for production streaming workloads requiring
minimal latency The architecture's key innovations include:

Five-state ownership automaton ensuring race-free buffer access
Physical separation of metadata and payload eliminating false sharing
Lock-free SPMC queue enabling efficient multi-CTA consumption

Adaptive backoff balancing latency against power consumption

10.2 Future Research Directions

Multi-GPU Extension: Extend the job queue to support multiple GPU consumers across
NVLink fabrics

Adaptive N-Buffering: Runtime adjustment of buffer count based on workload
characteristics

CUDA Graph Integration: Capture repetitive kernel sequences for reduced launch
overhead in V1

Quantum/Photonic Accelerator Generalization: Abstract synchronization primitives for
emerging accelerator paradigms

Formal Verification: Apply model checking to verify absence of deadlocks and data races

References

NVIDIA Corporation. "CUDA C++ Programming Guide." Version 12.x, 2024.
Harris, M. "Unified Memory for CUDA Beginners." NVIDIA Developer Blog, 2017.

Herlihy, M. and Shavit, N. "The Art of Multiprocessor Programming." Morgan Kaufmann,
2012.

ARM Limited. "ARM Cortex-X925 Technical Reference Manual." 2024.
NVIDIA Corporation. "NVIDIA Grace CPU Superchip Architecture." Technical Brief, 2024.

Boehm, H.J. and Adve, S.V. "Foundations of the C++ Concurrency Memory Model." PLDI
2008.

McKenney, P.E. "Memory Barriers: a Hardware View for Software Hackers." Linux
Technology Center, 2010.

Appendix A: Complexity Analysis
A.1 Space Complexity

Component Memory Footprint

BufferPool (N buffers, S bytes each) O(N -S4+ N -128)

JobQueue (capacity C) O(C -4+ 32)

Per-kernel shared memory O(blockDim. x)
A.2 Time Complexity

Operation Best Case Worst Case

Buffer acquisition O(1) O(N) contention

Queue push O(1) O(o0) backpressure

Queue pop O(1) O(C) contention

State transiton ~ O(1) 0(1)

Appendix B: Synchronization Correctness Proof Sketch
Theorem: The five-state automaton with acquire-release semantics guarantees that:

No buffer is simultaneously written by CPU and read by GPU

All CPU writes are visible to GPU before processing begins

All GPU writes are visible to CPU before result consumption Proof Sketch: /nvariant 1
(Mutual Exclusion): The CAS operation on state transitions ensures atomic ownership
changes. Only one actor can successfully transition from FREE/DONE to WRITING, and
from READY to COMPUTE. Invariant 2 (Write Visibility): The release semantics on
seq_ready store and READY state store establish a happens-before relationship. The
acquire semantics on GPU's observation of seq_ready ensures all prior CPU writes are
visible. Invariant 3 (Result Visibility): The __threadfence_system() followed by DONE

state store (release) ensures GPU writes complete before signaling. CPU's acquire load of
state=DONE observes the DONE store only after GPU's fence, ensuring results are visible.

Manuscript prepared for submission to a peer-reviewed journal in high-performance computing.

