
article
Zero-Copy CPU-GPU Pipeline Architecture for Unified
Memory Systems: Design, Implementation, and
Performance Analysis
Abstract This paper presents a novel software architecture for efficient data processing
pipelines between heterogeneous processors (CPU and GPU) on unified memory platforms. I
introduce two complementary synchronization paradigms: event-based orchestration (V1) and
persistent kernel with lock-free job queues (V2). Our approach eliminates explicit memory
copies between host and device through careful exploitation of cache-coherent unified memory,
atomic operations with system-wide memory ordering semantics, and a deterministic finite state
machine for buffer ownership management. The architecture specifically targets the NVIDIA
GB10 Grace-Blackwell platform featuring NVLink-C2C interconnect with 900 GB/s bidirectional
bandwidth. I present detailed algorithmic specifications, comparative analysis of
synchronization strategies, and architectural considerations for big.LITTLE ARM heterogeneous
CPU configurations.

Keywords: Unified Memory, Zero-Copy, CPU-GPU Pipeline, Lock-Free Synchronization,
Persistent Kernels, Heterogeneous Computing, Cache Coherence

Author: Emmanuel Forgues

1. Introduction

1.1 Motivation and Context

Modern heterogeneous computing systems combine general-purpose CPUs with massively
parallel accelerators such as GPUs. Traditional programming models require explicit data
transfers between host (CPU) and device (GPU) memory spaces, introducing significant latency
and bandwidth overhead. The emergence of cache-coherent unified memory architectures,
exemplified by the NVIDIA Grace-Blackwell GB10 System-on-Chip, enables a paradigm shift
toward zero-copy data sharing between processors. The GB10 platform integrates a 20-core
ARM Grace CPU (heterogeneous big.LITTLE configuration) with a Blackwell GPU, connected
via NVLink-C2C providing 900 GB/s bidirectional bandwidth to a shared 128GB LPDDR5X
memory pool. This architectural advancement necessitates new software design patterns that
fully exploit cache coherence while maintaining correct memory ordering semantics.

1.2 Problem Statement

Efficient CPU-GPU collaboration requires solving three fundamental challenges:

1.3 Contributions

This work introduces:

2. System Architecture Overview

2.1 Target Platform: NVIDIA GB10 Grace-Blackwell

1. Ownership Management: At any instant, a shared memory region must have a clearly
defined owner (CPU or GPU) to prevent data races.

2. Synchronization Overhead: Traditional synchronization mechanisms (CUDA events,
stream synchronization) introduce microsecond-scale latencies inappropriate for fine-
grained pipelines.

3. Cache Coherence Exploitation: Unified memory systems require explicit memory barriers
to ensure visibility of writes across processor boundaries.

A five-state finite automaton for deterministic buffer ownership transitions
Two synchronization policies: host-orchestrated (EventsSync) and device-autonomous
(AtomicsSync)
A persistent kernel architecture with lock-free SPMC (Single-Producer Multi-Consumer) job
queue
Memory layout optimizations eliminating false sharing between metadata and payload
Algorithmic specifications for ARM big.LITTLE task scheduling

ARM Grace CPU (20 cores

Efficiency Cluste

Cortex-A725

Cortex-A725

... (8 cores total)

High-Performance Cluster

Cortex-X925

Cortex-X925

... (12 cores total

2.2 High-Level Component Architecture

The library comprises five principal abstractions: | Component | Responsibility | |-----------|---------
-------| | SharedAllocator | Unified memory allocation (cudaMallocManaged) | | BufferPool |
Pre-allocated buffer management with state tracking | | SyncPolicy | Pluggable synchronization
strategy interface | | JobQueue | Lock-free ring buffer for persistent kernel communication | |
Pipeline | Unified API orchestrating all components |

SharedAllocator

+allocate(count) : T
+deallocate(ptr)

BufferPool

-BufferMeta* metas_
-byte* data_block_

+acquire_for_write() : BufferView
+commit_ready(view, bytes)
+wait_done(id) : BufferView
+release(view)

«interface»
ISyncPolicy

+init(config)
+submit(BufferView)
+flush()

EventsSync

-cudaStream_t stream_

+submit(BufferView)

AtomicsSync

+submit(BufferView)

PersistentKerne

+consumer_loop()

JobQueue

-uint64_t head
-uint64_t tail
-uint32_t[] ids

+push(id)
+try_pop() : id

3. Buffer Management and State Machine

3.1 Memory Layout Design

A critical design decision separates metadata from payload to eliminate false sharing. Cache
line invalidations caused by metadata updates (state transitions, sequence counters) must not
affect data cachelines being read or written.

Unified Memory Space
(cudaMallocManaged)Data Block (256-byte

aligned)
Metadata Block (128-byte

aligned)
Buffer[0]

configurable size
BufferMeta[0]

128 bytes

BufferMeta[1]
128 bytes

Buffer[1]
configurable size

BufferMeta[2]
128 bytes

Buffer[2]
configurable size

....

Alignment Rationale:

3.2 Buffer Metadata Structure

Each buffer carries associated metadata for synchronization: | Field | Type | Purpose | |-------|----
--|---------| | state | atomic<uint32_t> | Current state in the finite automaton | | seq_ready |
atomic<uint64_t> | Monotonic counter incremented when CPU commits | | seq_done |
atomic<uint64_t> | Monotonic counter incremented when GPU completes | | bytes_valid |
atomic<uint32_t> | Actual payload size for current job |

3.3 Five-State Finite Automaton

Buffer ownership transitions follow a deterministic finite state machine:

128-byte metadata alignment matches GPU L2 cache sector size
256-byte data alignment ensures coalesced GPU memory access
Separation guarantees that state and seq_* fields reside in distinct cachelines from
payload

Initialization

CPU acquire_for_write(

CPU commit_ready(

GPU pickup

GPU completion

CPU release(

FREE

WRITING

READY

COMPUTE

DONE

Buffer available for
acquisition

CPU exclusive write acces

Data committed, awaiting
GPU

GPU exclusive processin

Results available for CPU

State Transition Rules: | Transition | Actor | Precondition | Memory Ordering | |------------|-------|-
-------------|-----------------| | FREE -> WRITING | CPU | CAS(state, FREE|DONE, WRITING) |
acquire-release | | WRITING -> READY | CPU | After data write completion | release | | READY
-> COMPUTE | GPU | seq_ready observed | acquire | | COMPUTE -> DONE | GPU | After
kernel completion | release | | DONE -> FREE | CPU | After result consumption | release |

4. Synchronization Strategies

4.1 Strategy Comparison

We implement two distinct synchronization paradigms with complementary characteristics:

Pipeline V2: Persistent
Kernel

Unsupported markdown: list

Unsupported markdown: list

Unsupported markdown: list

Unsupported markdown: list

CPU

Buffer

Lock-Free Queue

Persistent Kerne

Pipeline V1: Event-Base

Unsupported markdown: list

Unsupported markdown: list Unsupported markdown: list

CPU

Buffer

Unsupported markdown: list

GPU

CUDA Even

Characteristic EventsSync (V1) AtomicsSync/Persistent
(V2)

Kernel launch overhead Per-job (3-10 us) Once at startup

Synchronization
mechanism

CUDA Events + Host
callbacks

Atomic flags + polling

CPU blocking Yes (event wait) Optional (polling)

Minimum latency ~5-10 microseconds ~0.5-2 microseconds

Implementation complexity Low High

Debugging difficulty Low High

Resource utilization Variable SM occupancy Dedicated SM reservation

4.2 Event-Based Synchronization (V1)

The event-based strategy uses CUDA's native synchronization primitives:

GPU SMsCUDA StreamCPU Thread

GPU SMsCUDA StreamCPU Thread

Phase 1: Data Preparation

Phase 2: Kernel Submission

Phase 3: GPU Execution

Phase 4: Completion Notification

Write buffer payload

store(state=READY, release)

cudaLaunchKernel()

cudaLaunchHostFunc(callback)

Dispatch kernel

Read pay

Process data

Wr

Kernel complete

Execute host callback

store(state=DONE, release)

Algorithm: EventsSync Submit

4.3 Atomic-Based Synchronization with Persistent Kernel (V2)

The persistent kernel strategy eliminates per-job launch overhead:

PROCEDURE EventsSync.submit(buffer)

INPUT: BufferView buffer with state=READY

OUTPUT: Asynchronous GPU processing initiated

1. Store state <- COMPUTE with release semantics

2. Read bytes_valid from buffer.meta

3. Calculate grid dimensions: blocks <- ceil(bytes_valid / threads_per_block)

4. Launch kernel on stream with (grid, block, stream) parameters

5. Enqueue host callback on stream:

 a. On callback execution:

 - Increment seq_done with release semantics

 - Store state <- DONE with release semantics

6. Return (non-blocking)

Persistent KernelJobQueueCPU Producer

Persistent KernelJobQueueCPU Producer

Startup Phase

Job N Processing

Launch persistent kernel (once)

Enter infinite loop

Write buffer[N] payload

store(state[N]=READY, release)

push(N) atomically

pop() -> N (CAS on head)

load(state

Process

store(state[N]=

threadfenc

Poll state[N] == DONE

Read results

Algorithm: Lock-Free Queue Push (CPU Side)

Algorithm: Lock-Free Queue Pop (GPU Side)

Algorithm: Persistent Kernel Main Loop

PROCEDURE JobQueue.push(buffer_id)

INPUT: buffer_id - identifier of ready buffer

OUTPUT: buffer_id enqueued for GPU consumption

1. LOOP forever:

 a. t <- atomic_load(tail, relaxed)

 b. h <- atomic_load(head, acquire)

 c. IF t - h < capacity THEN:

 - ids[t mod capacity] <- buffer_id

 - atomic_store(tail, t + 1, release)

 - RETURN success

 d. ELSE:

 - Yield CPU (backpressure handling)

 - Continue loop

PROCEDURE JobQueue.try_pop()

OUTPUT: (success, buffer_id) or (failure, _)

1. LOOP forever:

 a. h <- atomic_load(head) via atomicAdd(&head, 0)

 b. Execute threadfence_system()

 c. t <- atomic_load(tail) via atomicAdd(&tail, 0)

 d. Execute threadfence_system()

 e. IF h >= t THEN:

 - RETURN (false, _) // Queue empty

 f. old <- atomicCAS(&head, h, h + 1)

 g. IF old == h THEN:

 - buffer_id <- ids[h mod capacity]

 - RETURN (true, buffer_id)

 h. ELSE:

 - Continue loop // Contention retry

PROCEDURE PersistentKernel.consumer_loop(queue, metas, data_block)

INPUT: Shared queue, metadata array, data block pointer

EXECUTION: Runs until termination signal

1. backoff_iteration <- 0

2. LOOP forever:

 a. Execute threadfence_system()

 b. IF atomic_load(queue.stop) != 0 THEN:

 - BREAK

 c. IF thread_index == 0 THEN:

 - (ok, id) <- queue.try_pop()

5. Memory Ordering and Coherence Protocol

5.1 Memory Barrier Requirements

Cache-coherent unified memory does not eliminate the need for explicit memory ordering. The
following barriers ensure correct visibility:

 - Store to shared memory: sh_ok, sh_id

 d. Execute syncthreads()

 e. IF sh_ok AND sh_id == POISON_PILL THEN:

 - BREAK // Graceful termination

 f. IF NOT sh_ok THEN:

 - Execute adaptive_backoff(backoff_iteration)

 - backoff_iteration <- backoff_iteration + 1

 - CONTINUE

 g. backoff_iteration <- 0

 h. buffer <- get_buffer(sh_id, metas, data_block)

 i. atomic_exchange(buffer.meta.state, COMPUTE)

 j. Execute parallel_process(buffer)

 k. Execute syncthreads()

 l. IF thread_index == 0 THEN:

 - atomic_exchange(buffer.meta.state, DONE)

 - Execute threadfence_system()

GPU (Blackwell)Cache HierarchyCPU (ARM)

GPU (Blackwell)Cache HierarchyCPU (ARM)

CPU Write -> GPU Read Protocol

Coherence protocol propagates

GPU Write -> CPU Read Protocol

Coherence protocol propagates

Write payload bytes

__sync_synchronize() or atomic_store(release)

atomic_load(acquire) or __threadfe

Read payload bytes

Write result bytes

__threadfence_system

atomic_load(acquire)

Read result bytes

5.2 Memory Ordering Semantics

Operation CPU (C++11/20) GPU (CUDA) Purpose

Producer
commit

store(seq_ready,

release)
N/A Ensure payload

visible before
signaling

Consumer
acquire

N/A atomicAdd(&seq, 0) +
__threadfence_system()

Ensure signal
observed before
reading

Consumer
completion

N/A atomicExch(state, DONE) +
__threadfence_system()

Ensure results
visible before
signaling

Result read load(state,

acquire)
N/A Ensure signal

observed before
reading results

5.3 Adaptive Backoff Strategy

Polling-based synchronization requires careful backoff to balance latency against power
consumption: Algorithm: Adaptive Backoff (GPU)

6. ARM big.LITTLE Task Scheduling

6.1 Heterogeneous Core Utilization

The GB10's ARM Grace CPU employs a big.LITTLE architecture requiring workload-aware
scheduling:

PROCEDURE adaptive_backoff(iteration)

INPUT: iteration counter

EFFECT: Delays execution to reduce power consumption

1. base_delay <- 100 nanoseconds

2. variable_delay <- (iteration mod 64) * 50 nanoseconds

3. total_delay <- base_delay + variable_delay

4. IF GPU_ARCHITECTURE >= SM_70 THEN:

 - Execute __nanosleep(total_delay)

5. ELSE:

 - Execute volatile spin loop for equivalent cycles

Task Classifie

Incoming Tasks

High IPC

Cortex-X925 Pool (12 cores

Heavy compute

Latency-sensitive

Decompression Parsing I/O Read Prefetch

Analyze computational
intensity

6.2 Task Classification Criteria

Task Type Target Cluster Rationale

Decompression (zstd, lz4) Cortex-X925 (Big) High IPC, branch-heavy

Tokenization/Parsing Cortex-X925 (Big) Complex control flow

Buffer preparation Cortex-X925 (Big) Latency-sensitive

File I/O Cortex-A725 (Little) I/O-bound, low compute

Memory prefetch Cortex-A725 (Little) Memory-bound

Monitoring/Logging Cortex-A725 (Little) Background, low priority

Algorithm: Task Scheduling

7. Performance Model and Analysis

7.1 Latency Components

The end-to-end latency for processing a single buffer comprises:

PROCEDURE schedule_task(task)

INPUT: Task with type and priority

OUTPUT: Task assigned to appropriate core pool

1. intensity <- analyze_computational_intensity(task)

2. is_latency_sensitive <- task.priority == HIGH

3. IF intensity > THRESHOLD_HIGH OR is_latency_sensitive THEN:

 - pool <- big_core_pool

4. ELSE:

 - pool <- little_core_pool

5. IF pool.available_cores == 0 THEN:

 - IF allow_work_stealing THEN:

 - pool <- alternate_pool

 - ELSE:

 - Wait for core availability

6. Assign task to pool with CPU affinity (pthread_setaffinity_np)

Total Latency Breakdown

Buffer Acquisition
~0.1-1 us

CPU Data Preparation
Variable

Commit + Signal
~0.1 us

Sync Overhead
V1: 3-10 us
V2: 0.5-2 us

GPU Processing
Variable

Completion Signal
~0.1-0.5 us

7.2 Throughput Model

For a pipeline with N buffers processing jobs of size S bytes: Maximum Throughput (Event-
Based V1):

TV 1 =
N ⋅ S

max(tCPU, tGPU) + tsync

Where:

7.3 Optimal Buffer Count

The optimal number of buffers N balances pipeline depth against memory consumption: $$N^ =
\left\lceil \frac{max(t{CPU}, t{GPU})}{min(t{CPU}, t{GPU})} \right\rceil + 1$
Forbalancedworkloadswhere$tCPU ≈ tGPU, double-buffering (N=2) is optimal. For imbalanced
workloads, additional buffers smooth throughput variability.

8. Comparative Analysis with Traditional Approaches

8.1 Memory Transfer Comparison

Approach CPU->GPU
Transfer

GPU->CPU
Transfer

Total
Overhead

Explicit cudaMemcpy Full copy + sync Full copy + sync 2x data size

Pinned Memory + DMA DMA transfer DMA transfer PCIe latency

Unified Memory (migration) Page faults Page faults Variable

Our Approach (zero-
copy)

None None Barrier only

tCPU = CPU preparation time per buffer
tGPU = GPU processing time per buffer
tsync = Synchronization overhead (3-10 us for events) Maximum Throughput (Persistent
V2):

TV 2 =
N ⋅ S

max(tCPU, tGPU) + tatomic

Where:
tatomic = Atomic polling overhead (0.5-2 us)

8.2 Synchronization Comparison

0 5 10 15 20 25 30 35 40 45 50

Full sync

Stream sync

Event record/wait

Event + callback

Atomic polling

cudaDeviceSynchronize

cudaStreamSynchronize

CUDA Events

Our V1 (Events)

Our V2 (Atomics)

Synchronization Latency Comparison

9. Implementation Considerations

9.1 Common Pitfalls

Pitfall Symptom Solution

False sharing on
metadata

Performance
degradation

128-byte alignment

Missing memory barriers Corrupted data Proper acquire/release semantics

Aggressive polling CPU/GPU power waste Adaptive backoff

Buffer size too small Overhead domination Increase buffer size

Buffer size too large Cache thrashing Tile-based processing

Insufficient buffers Pipeline stalls Increase N or implement
backpressure

9.2 Graceful Shutdown Protocol

The persistent kernel requires a clean termination mechanism: Algorithm: Pipeline Shutdown

PROCEDURE shutdown_pipeline()

OUTPUT: All GPU threads terminated, resources released

1. FOR i <- 1 TO num_consumer_ctas DO:

 - queue.push(POISON_PILL) // 0xFFFFFFFF

2. Wait for kernel completion (cudaStreamSynchronize)

3. Verify all buffers in FREE or DONE state

4. Deallocate unified memory resources

10. Conclusion and Future Work

10.1 Summary

I have presented a comprehensive software architecture for zero-copy CPU-GPU data pipelines
on cache-coherent unified memory platforms. The dual-strategy approach (event-based V1 and
persistent kernel V2) provides flexibility for different use cases:

10.2 Future Research Directions

References

V1 (EventsSync): Recommended for development, debugging, and workloads with variable
kernel complexity
V2 (PersistentKernel): Recommended for production streaming workloads requiring
minimal latency The architecture's key innovations include:
Five-state ownership automaton ensuring race-free buffer access
Physical separation of metadata and payload eliminating false sharing
Lock-free SPMC queue enabling efficient multi-CTA consumption
Adaptive backoff balancing latency against power consumption

1. Multi-GPU Extension: Extend the job queue to support multiple GPU consumers across
NVLink fabrics

2. Adaptive N-Buffering: Runtime adjustment of buffer count based on workload
characteristics

3. CUDA Graph Integration: Capture repetitive kernel sequences for reduced launch
overhead in V1

4. Quantum/Photonic Accelerator Generalization: Abstract synchronization primitives for
emerging accelerator paradigms

5. Formal Verification: Apply model checking to verify absence of deadlocks and data races

1. NVIDIA Corporation. "CUDA C++ Programming Guide." Version 12.x, 2024.
2. Harris, M. "Unified Memory for CUDA Beginners." NVIDIA Developer Blog, 2017.
3. Herlihy, M. and Shavit, N. "The Art of Multiprocessor Programming." Morgan Kaufmann,

2012.
4. ARM Limited. "ARM Cortex-X925 Technical Reference Manual." 2024.
5. NVIDIA Corporation. "NVIDIA Grace CPU Superchip Architecture." Technical Brief, 2024.
6. Boehm, H.J. and Adve, S.V. "Foundations of the C++ Concurrency Memory Model." PLDI

2008.

Appendix A: Complexity Analysis

A.1 Space Complexity

Component Memory Footprint

BufferPool (N buffers, S bytes each) O(N ⋅ S + N ⋅ 128)

JobQueue (capacity C) O(C ⋅ 4 + 32)

Per-kernel shared memory O(blockDim. x)

A.2 Time Complexity

Operation Best Case Worst Case

Buffer acquisition O(1) O(N) contention

Queue push O(1) O(∞) backpressure

Queue pop O(1) O(C) contention

State transition O(1) O(1)

Appendix B: Synchronization Correctness Proof Sketch
Theorem: The five-state automaton with acquire-release semantics guarantees that:

7. McKenney, P.E. "Memory Barriers: a Hardware View for Software Hackers." Linux
Technology Center, 2010.

1. No buffer is simultaneously written by CPU and read by GPU
2. All CPU writes are visible to GPU before processing begins
3. All GPU writes are visible to CPU before result consumption Proof Sketch: Invariant 1

(Mutual Exclusion): The CAS operation on state transitions ensures atomic ownership
changes. Only one actor can successfully transition from FREE/DONE to WRITING, and
from READY to COMPUTE. Invariant 2 (Write Visibility): The release semantics on
seq_ready store and READY state store establish a happens-before relationship. The
acquire semantics on GPU's observation of seq_ready ensures all prior CPU writes are
visible. Invariant 3 (Result Visibility): The __threadfence_system() followed by DONE

Manuscript prepared for submission to a peer-reviewed journal in high-performance computing.

state store (release) ensures GPU writes complete before signaling. CPU's acquire load of
state=DONE observes the DONE store only after GPU's fence, ensuring results are visible.

