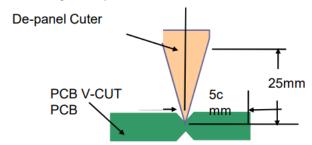
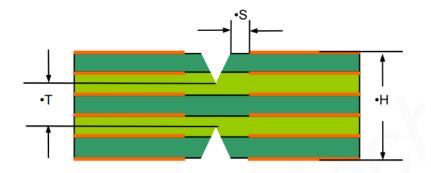

# **PCB Design Guideline**

#### **Purpose**

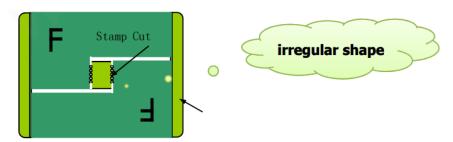

- Based on the requirements of production process, In the layout and circuit board design process, There is a standard to follow, To achieve high efficiency in the production of assembly, Easy assembly, low cost, and high quality target.
- The content is only applicable to the related database, some are for reference only.

#### Content

- PCB layout rules
  - V-Cut layout rule:
- Chips to V-Cut line should be more than 1mm, otherwise will damage chips or will change to use Stamp Cut design, will add the PCB cost

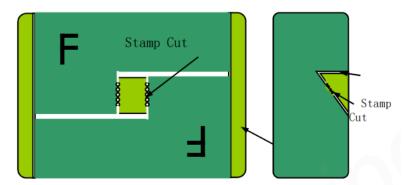



- The distance to PCB edge 0.5mm, cannot layout the trace, The distance to PCB edge 1.0mm, cannot layout the any component
- The distance to PCB edge 5mm, cannot layout the components height over 25mm, otherwise cuter will damage components



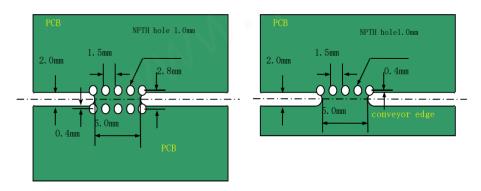

- V-Cut layout rules:
  - PCB trace to V-Cut should be more then S=0.5mm safety buffer, otherwise
     will have the risk to damage the trace.






- When we use V-Cut
- PCB thickness 1.0mm to 3mm (1.0mm to 0.5mm + SMT pallet)
- PCB outline is square type or rectangle type, irregular shape cannot use the V-Cut

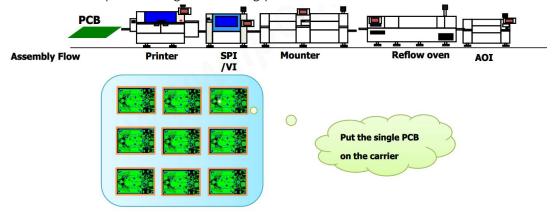



#### > Stamp design:

 Stamp design only for irregular PCB, PCB to PCB layout distance is 2mm, V-Cut only 0.3m

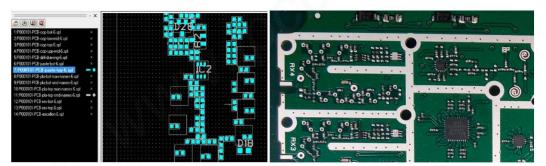


Stamp design parameters





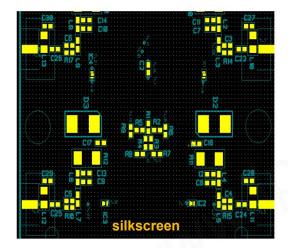

- V-Cut VS Stamp layout:
  - PCS to PCS distance only 0.3mm for V-Cut, we can save the PCB layout cost
  - Stamp Cut design, PCB PCS to PCS distance is 2mm
  - Base on same PCS design with different Cut type (stamp/V –Cut), the PCB cost will impact 10- 25%
  - V-Cut PCB will be cut by machine, but Stamp Cut will broken by OP and have stress then damage the components

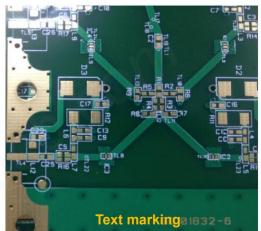



- Why don't choose single PCB for SMT process:
  - We need to put the each single PCB on carrier when do SMT process
  - But carrier cave and single PCB have tolerance, so always happen solder paste printing misalignment then will get the shift/tombstone process issue
  - Sometimes will happen single PCB lift up from SMT carrier and will have the chips mounting shift/missing process issues





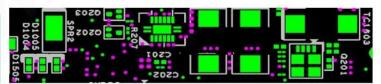

- > Factors of impact PCB Cost
  - PCB layout
    - ♦ Fine pitch components
    - ♦ Panel V-Cut/Stamp Cut/PCB conveyor edge size
    - ♦ PCB drill hole size/quantity
  - PCB material cost
  - PCB process easy/complicated, process spec
  - PCB surface finished process also impact cost, OSP/IMS/EING/IMT
  - PCB outline, regular shape is cheaper than irregular shape
- > Text marking for silkscreen layer
  - The current situation:
    - We received the gerber file for UK design team,no silk layer be found
    - We can not directly confirm Polarity of component on the PCB, can not confirm the location of component, easily to confirm IC shift or not.
    - In the production adjustment X, Y coordinate and confirmation the location completely rely on engineering drawings, Big waste of time.




No silk layers in the gerber file

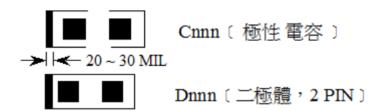
No text mark on the pcb



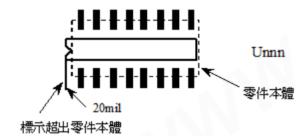




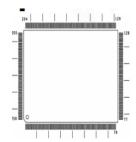

- As the icon text marking design we can accept. We can quickly inspection location where there are problems.
- Component outline& polarity marking design definition:
  - Text marking, keep away from Via Hole or Through Hole as far as possible
  - Text marking, Silk screen printing character, polarity and polarity signs can not components be covered
  - Text height≥25 mil, line width ≥5 mil
  - Beside the BGA/CSP, component outline should not smaller than actual component size
  - The text does not overlap
  - SMD/PTH component text marking include body outline, pin assignment, component name, polarity marking .as below



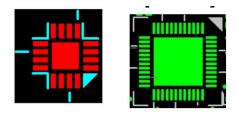


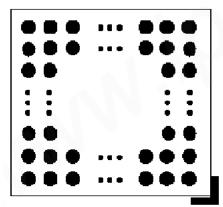

- Component outline& polarity marking
  - a. Tantalum capacitor or diode [3 PIN]







#### b. SOP/SSOP



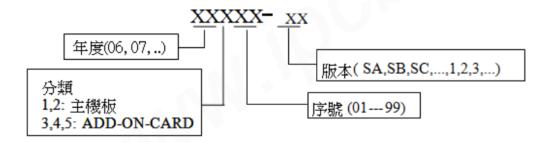

## c. QFP



#### d. QFN



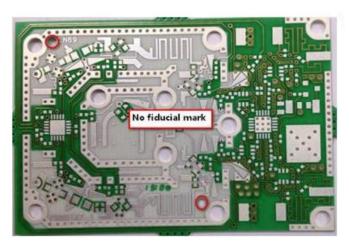
- e. BGA, CSP marking
  - -. outline size must the same as actual component

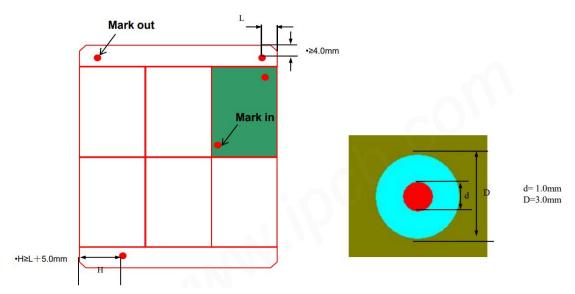





## > PCB number and version

- (i) PCB Model
- (ii) PCB Part number and version
- (iii) text height: 80mil


The PCB number is described as follows: the last two codes (06, 07) in AD year




The new PCB must be attached with the board number and - SA (sample a) version. The later modified versions are - SB, - SC, or - 1A, - 1B, - 1C... In order. In mass productio www n, the versions must be - 1, - 2, - 3 etc

# > PCB Fiducial Mark design

The current situation: Many projects did not design fiducial mark-in, the machine can not recognize to position, cause no high precision print/mounted





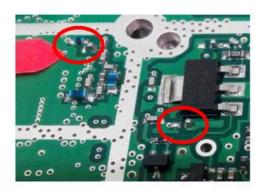

- Three fiducial mark-out located diagonally on board, and do follow related dimension requirement. fiducial mark dimension is 1mm(d) and solder mask is 3mm(D). The diagonal fiducial mark should not be symmetrical, it should be keep away at 5 mm.
- Fiducial PAD edge keep 4mm distance from the edge of PCB.
- Single board must have two fiducial mark –in located diagonally on the board.

#### PCB fixed position hole

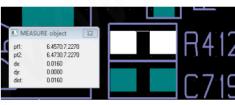
- Tooling holes on all boards are called out with correct dimensions, tolerances, and are non-plated. (3.55mm +0.075/-0 or 2.18mm +0.05/-0.05).
- There should be 3.81 mm arc located at 4 corners of PCB to avoid stuck at conveyor and damage of packing material.






www.zstechwise.com blii@zstechwise.com

## > SMT component PAD design


♣ NG symptom: 0402 chip tombstone

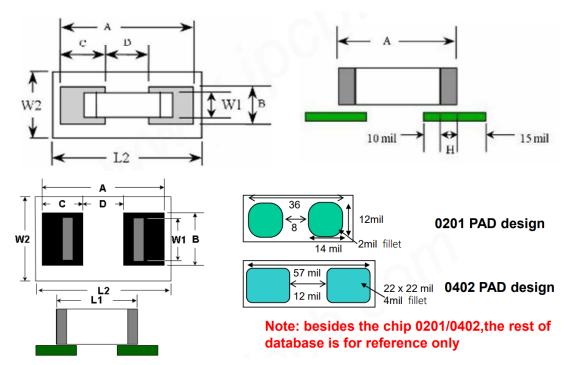
For example: D500+ FN700054 chip 0402 chip tombstone defect rate:1.0%

♣ NG picture:



Analysis: PAD to PAD space is too big caused the tombstone after IR.




PAD to PAD: 16mil

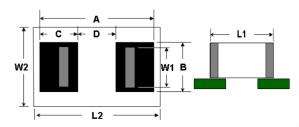


PAD to PAD: 22mil

- Non specifications within RLC Pad design according to the following principles
  - (i) B= max of W1, to prevent the shift
  - (ii) C=10 + H(electrode width) + 15 mil Restricted area L2: A+10mil, W2=max: (" W1 + 8 + max of tolerance", " B + 10 ")






(1) Resistance and inductance components size list unit: mil

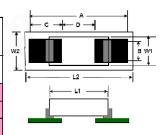
| TYPE       | Body Size(mil) |            | Component body tolerance(mm) | Pad Size(mil) |             |               |     |  |
|------------|----------------|------------|------------------------------|---------------|-------------|---------------|-----|--|
|            | L1 🗥           | W1         | (1111)                       | A             | В           | C             | D   |  |
| 0201(0603) | 24             | 12         | ±0.03                        | 36            | 12          | 14            | 8   |  |
| 0402(1005) | 40             | 20         | ±0.05                        | 56            | 22          | 22            | 12  |  |
| 0603(1608) | 63             | 32         | ±0.1                         | 83            | 40          | 31            | 21  |  |
| 0805(2125) | 79             | 50         | ±0.2                         | 103           | 61          | 37            | 29  |  |
| 1206(3216) | 123            | 63         | ±0.25                        | 160           | 73          | 50            | 60  |  |
| 1210(3225) | 123            | 101        | ±0.2                         | 171           | 110         | 55            | 61  |  |
| 2010(5025) | 197            | 99         | ±0.25                        | 230           | 110         | 45            | 140 |  |
| 2512(6432) | 252            | 126        | ±0.25                        | 290           | 138         | 70            | 150 |  |
| ref.       |                | L2=A + 10; | W2=max: (" W1 +              | 8 + max of    | tolerance " | , " B + 10 ") |     |  |

(2) capacitance component size list



www.zstechwise.com blii@zstechwise.com




Note: besides the chip 0201/0402,the rest is for reference only

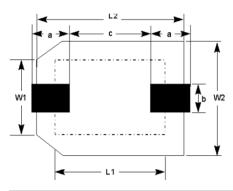
unit: mil

| TYPE       | Body Size(mil)                                                  |     | Component body tolerance |     | Pad Siz | ze(min) |     | Place | area |       |  |  |
|------------|-----------------------------------------------------------------|-----|--------------------------|-----|---------|---------|-----|-------|------|-------|--|--|
|            | L1                                                              | W1  | (mm)                     | Α   | В       | С       | D   | L2    | W2   |       |  |  |
| 0201(0603) | 24                                                              | 12  | ±0.03                    | 36  | 12      | 14      | 8   | 51    | 22   | 1122  |  |  |
| 0402(1005) | 40                                                              | 20  | ±0.05                    | 56  | 22      | 22      | 12  | 75    | 34   | 2550  |  |  |
| 0402(1005) | 40                                                              | 20  | ±0.1~0.2                 | 60  | 28      | 24      | 12  |       |      |       |  |  |
| 0603(1608) | 63                                                              | 32  | ±0.2                     | 83  | 40      | 31      | 21  | 105   | 46   | 4830  |  |  |
| 0805(2125) | 79                                                              | 50  | ±0.25                    | 103 | 61      | 37      | 29  | 140   | 76   | 10640 |  |  |
| 1206(3216) | 126                                                             | 63  | ±0.3                     | 160 | 73      | 50      | 60  | 182   | 86   | 15652 |  |  |
| 1210(3225) | 126                                                             | 99  | ±0.3                     | 171 | 110     | 55      | 61  | 190   | 130  | 24700 |  |  |
| 1808(4520) | 189                                                             | 80  | ±0.3                     | 210 | 90      | 50      | 110 | 230   | 120  | 27600 |  |  |
| 1812(4532) | 182                                                             | 126 | ±0.3                     | 207 | 136     | 60      | 87  | 237   | 166  | 39342 |  |  |
| ref.       | L2=A + 10; W2=max: (" W1 + 8 + max of tolerance " , " B + 10 ") |     |                          |     |         |         |     |       |      |       |  |  |

#### (3) STC3216~7343

|      |           |         |             |         |                |         |         | uni  | t: mil |
|------|-----------|---------|-------------|---------|----------------|---------|---------|------|--------|
| TYPE | Body Size |         | F           | 9       | Placement Size |         | area    |      |        |
|      | L1        | W1      | A           | В       | C              | D       | L2      | W2   |        |
| 3216 | 124       | 66      | 176         | 66      | 50             | 76      | 227     | 112  | 25424  |
| 3528 | 142       | 113     | 240         | 90      | 90             | 60      | 283     | 164  | 46412  |
| 6032 | 232       | 130     | 334         | 105     | 90             | 154     | 380     | 180  | 68400  |
| 7343 | 282       | 173     | 338         | 95      | 90             | 158     | 390     | 200  | 78000  |
| ref. | L2=A +    | - 30; V | V2=componer | nt body | width          | - 20; [ | )=A - 2 | x C; |        |



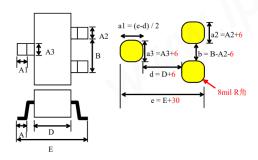

Note: No chips component that size below 0603 located beside 7347 and 6032 tantalum capacitor within 2.6mm pad to pad distance. If un-avoidable, the chip components shouldwww be vertical with the tantalum capacitor.

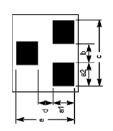


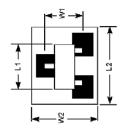


(4) Electrolysis capacitor parts size list





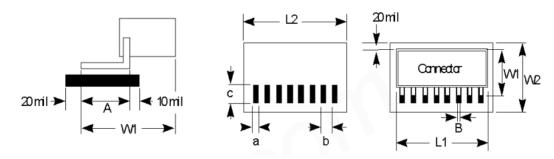


unit:mm


| TYPE   | Body | Size | .1  | Pad Size | Placement Size |                  |                  |
|--------|------|------|-----|----------|----------------|------------------|------------------|
| ITPE   | L1   | W1   | а   | р        | С              | L2               | W2               |
| SE3116 | 8.0  | 6.3  | 3.1 | 1.6      | 2.2            | <mark>9.4</mark> | 7.0              |
| SE2811 | 6.3  | 5.0  | 2.8 | 1.6      | 1.4            | 8.0              | 5.7              |
| SE2716 | 6.0  | 5.0  | 2.7 | 1.6      | 1.4            | <mark>7.8</mark> | <mark>5.7</mark> |
| SE2516 | 5.5  | 4.0  | 2.5 | 1.6      | 1.0            | 7.0              | <mark>4.7</mark> |

## (5) Diode-3PIN

| TYPE       | Body | Size                                                       |    |    |    | Pad Siz | Placement Size |     |                  |     |
|------------|------|------------------------------------------------------------|----|----|----|---------|----------------|-----|------------------|-----|
| 1175       | L1   | W1                                                         | a1 | a2 | b  | С       | d              | е   | L2               | W2  |
| SOT-23     |      |                                                            | 48 | 40 | 40 | 120     | 40             | 136 | 136              | 156 |
| Diode-3PIN | ]    |                                                            | 48 | 40 | 40 | 120     | 40             | 136 | <mark>136</mark> | 156 |
| ref.       |      | W2=e+20 , L2= <mark>max(</mark> c+ <mark>16; L1+16)</mark> |    |    |    |         |                |     |                  |     |

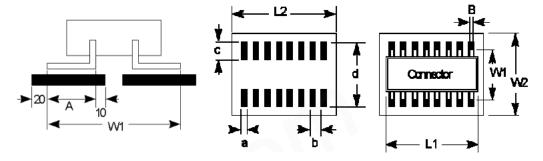







(6) Connector pin for Single side

unit: mil

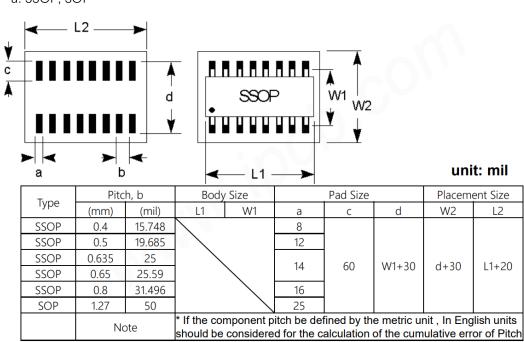





| Pito           | Pitch, b Body Size |                                                                                      | Pad                                                                                        | d Size                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Placement Size                                                                                                                    |                                                                                  |                                             |
|----------------|--------------------|--------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------|
| (mm)           | (mil)              | L1 W1                                                                                |                                                                                            | а                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | С                                                                                                                                 | L2                                                                               | W2                                          |
| 0.5            | 19.685             |                                                                                      |                                                                                            | 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A+30                                                                                                                              | L1+30                                                                            | W1+50                                       |
| 0.635<br>0.650 | 25.00<br>25.59     |                                                                                      |                                                                                            | 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | A+30                                                                                                                              | L1+30                                                                            | W1+50                                       |
| >0.65          | >25.59             |                                                                                      |                                                                                            | B+4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | A+30                                                                                                                              | L1+30                                                                            | W1+50                                       |
| N              | ote                | considered *The distan edge of the *For compo<br>surface free *The distan space from | for the calculate between of Pad or Body onent higher the from compose between the outline | lation of the occonnectors show the connectors show the connectors are not shown as the connectors are the connectors are not shown to the connectors are not shown to the connectors are not shown that the connectors are not shown to the connectors are no | the metric unit, umulative error could at least have ed to keep same shadow effect a nector and chip ad or Body. ctor boss size + | of Pitch ye 2mm space from the distance/cleara and causing AOI should at least h | om the outline<br>ince on pcb<br>limiation. |

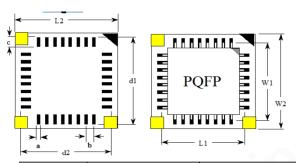
## (6) Connector pin for two side

unit: mil






| Pite           | ch, b          | Body                                                                                             | / Size                                                                   |                                                                    | Pad Size                                                  |                                                                        | Placen                                           | nent Size                                                    |
|----------------|----------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------|------------------------------------------------------------------------|--------------------------------------------------|--------------------------------------------------------------|
| (mm)           | (mil)          | L1                                                                                               | W1                                                                       | а                                                                  | С                                                         | d                                                                      | L2                                               | W2                                                           |
| 0.5            | 19.685         |                                                                                                  |                                                                          | 12                                                                 | A+30                                                      | W1+40                                                                  | L1+30                                            | d+30                                                         |
| 0.635<br>0.650 | 25.00<br>25.59 |                                                                                                  |                                                                          | 14                                                                 | A+30                                                      | W1+40                                                                  | L1+30                                            | d+30                                                         |
| >0.65          | >25.59         |                                                                                                  |                                                                          | B+4                                                                | A+30                                                      | W1+40                                                                  | L1+30                                            | d+30                                                         |
| N              | ote            | be conside<br>*The dista<br>outline ede<br>*For comp<br>pcb surfact<br>limitation.<br>*The dista | ered for the<br>nce betwee<br>ge of the Pa<br>onent highe<br>e free from | calculation<br>on connect<br>ad or Body<br>or than 5m<br>component | n of the cur<br>fors should<br>in, need to<br>nt to avoid | nulative err<br>at least hav<br>keep same<br>shadow eff<br>or and chip | or of Pitch ve 2mm spa e distance/c ect and caus | units should nce from the learance on sing AOI east have 2mm |

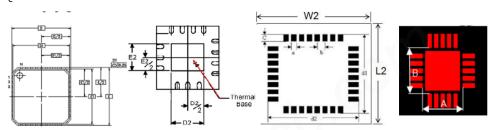

#### (8) IC types

#### a. SSOP, SOP



b.QFP



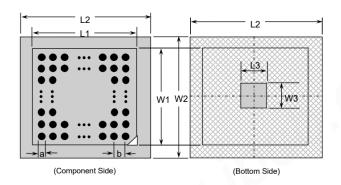



unit: mil

|   | Pitch             | Body   | Size |    | Pad     | Size  |                      | Placement Size  |               |
|---|-------------------|--------|------|----|---------|-------|----------------------|-----------------|---------------|
|   | b                 | W1     | L1   | а  | С       | d1    | d2                   | W2              | L2            |
|   | 19.485<br>(0.5mm) |        |      | 12 | 60      | W1+40 | L1+40                | d1+20           | d2+20         |
|   | 25.59<br>(0.65mm) |        |      | 16 | 90      | W1+50 | L1+50                | d1+20           | d2+20         |
|   | 31.496<br>(0.8mm) |        |      | 18 | 90      | W1+50 | L1+50                | d1+20           | d2+20         |
| Γ |                   | 16.41- |      |    | 41 4-1- |       | dia la constanta del | and discount of | data and form |

Note •If the component pitch be defined by the metric unit , In English units should be considered for the calculation of the cumulative error of Pitch

## (9) QFN




unit: mil

| Pitch             | Body                                                                    | Size |    | Pad Size |                                         |                                         | Placement Size |       |  |
|-------------------|-------------------------------------------------------------------------|------|----|----------|-----------------------------------------|-----------------------------------------|----------------|-------|--|
| b                 | D                                                                       | Е    | а  | С        | d1                                      | d2                                      | L2             | W2    |  |
| 19.485<br>(0.5mm) |                                                                         |      | 12 | 60       | E+40<br>(On both<br>sides of the<br>20) | D+40<br>(On both<br>sides of the<br>20) | d1+30          | d2+30 |  |
| 25.59<br>(0.65mm) |                                                                         |      | 14 | 60       | E+40<br>(On both<br>sides of the<br>20) | D+40<br>(On both<br>sides of the<br>20) | d1+30          | d2+30 |  |
| Note              | Ground pad at the bottom of the QFN: A - D2 >= 0.4 mm; B - E2 >= 0.4 mm |      |    |          |                                         |                                         |                |       |  |

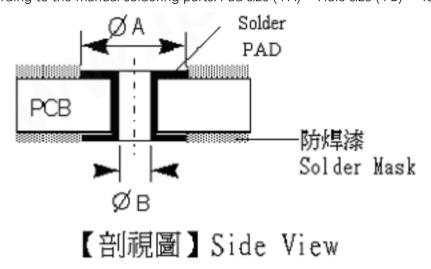
(10) BGA, CSP





unit: mil

| Pitcl | h ,b             | Body    | Size          | Pad Size | Placement Size                               |        |  |
|-------|------------------|---------|---------------|----------|----------------------------------------------|--------|--|
| (mm)  | (mil)            | L1      | W1            | а        | L2                                           | W2     |  |
| CS    | S <mark>P</mark> | <= 5 mm | <= 5mm        |          | L1+80                                        | W1+80  |  |
| BG    | SA.              | > 5mm   | > 5mm         |          | L1+120                                       | W1+120 |  |
| No    | te               |         | ange of Conne |          | er large easy to heat  <br>older mask layers | parts. |  |

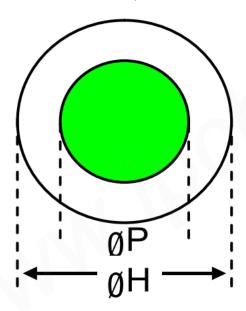

### PTH component PAD design

In order to simplify and improve the printing circuit welding (soldering) process, The special development of through-hole reflow technology (Pin-in-Paste) The throughhole type connector from Dipping process, change to SMT printing solder paste and reflow replaced. Place all thru-hole parts on topside of the board. (Avoid manual soldering process).

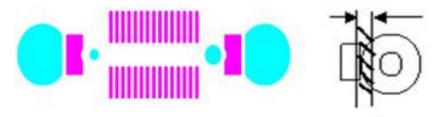
A: aperture size ≥ pin diameter size +0.25 mm (10 mil)

B: The outer layer of the minimum pad size ≥ aperture size+ 0.36 mm (14 mil)

C: According to the manual soldering parts: Pad size  $(\Phi A)$  = Hole size  $(\Phi B)$  + 40 mil

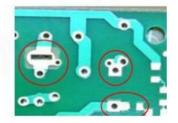



# > PTH design guideline






Parts of pin diameter and through the aperture ratio (PH) principle: Pin to hole rate ( $\varnothing$ P /  $\varnothing$ H) should fall within 0.6~0.8, shown as diagram: PH= 0.6~0.8 the best; PH= 0.4~0.5 Acceptable; PH < 0.3 not acceptable



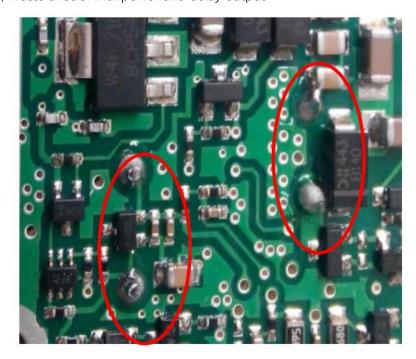

If any annular ring of PTH connect with connector or PTH pad, please add solder mask to isolate each other (width 20mil at least).



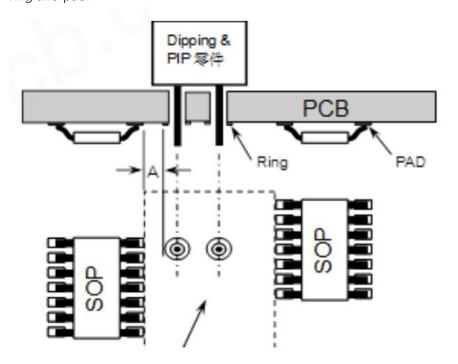
As PSU A000116 Design issue, between PAD with Ground no solder mask covered cause the solder bridge /empty solder.








4


The distance between the PTH and chips too is very close when manual solder has

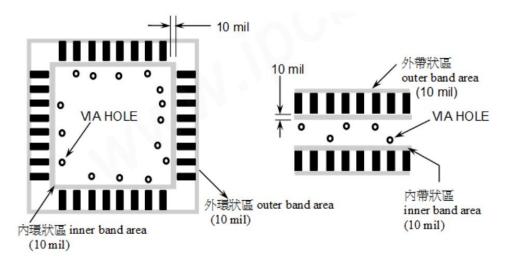


the risk for broken and solder short. besides arrange Ops to manual solder, no choice, Waste a lot of manpower and delay output

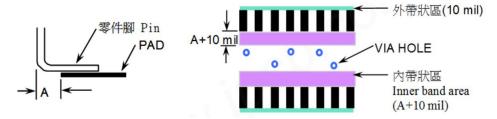


- ♣ PTH restricted zone:
  - For pin in paste process, keep at least 3mm distance between edge of hole ring and pad.






### Through-hole (Via)design

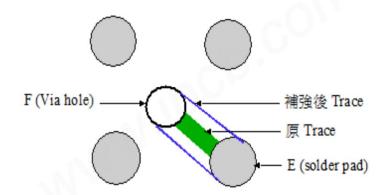

Via hole under the component body

Via hole under the smt component body, need to confirm this PCB whether through wave soldering process, if so, need to blind and buried via hole. Otherwise, there will be the risk of overflow from the hole of Via solder.

(1) The normal PAD layout (Within the PAD pins ) · Inner band area (10mil) Via Hole can not be placed. · outline band area(10mil) ,Via Hole can not be placed.

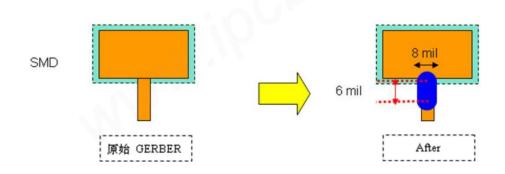


(2) Un-normal PAD layout ( the pin of the component over the PAD ) ·inner band area (A + 10mil ) Via Hole can not be placed ·outline band area (10mil ) Via Hole can not be placed

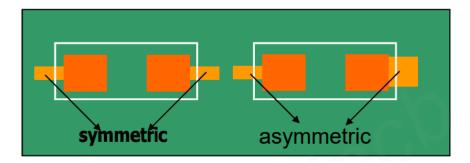



## > Trace design

Power Trace to strengthen


PAD/Via hole with Trace to junction need to strengthen, the general way (Power Trace, the rest of type refer to Tear drop design)

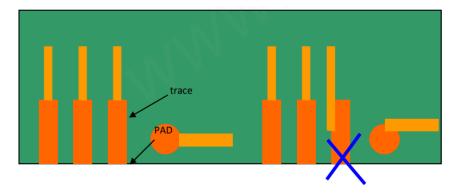




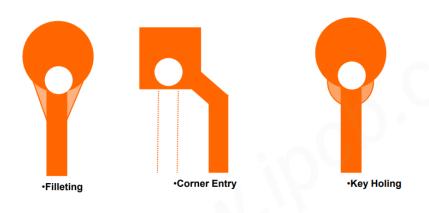

#### Add tear drop

- ♦ In the outer trace add tear drop as below icon:
  - (1) When the line width is less than 8 mil, In pad and trace junction with width of 8 mil and length of 6 mil trace.
  - (2) When the line width is more than 8min, do not add Tear Drop
  - (3) If the distance is not enough to add a Tear Drop, can be ignored.




- Trace lead the way





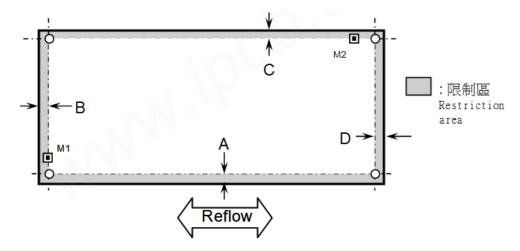



Trace from the center of the pad

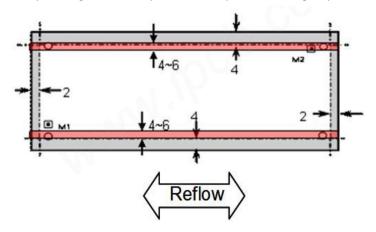


Trace line and the hole, be recommended in the following.



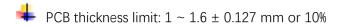

#### other limitation

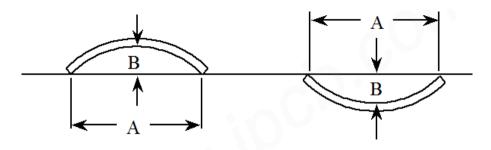
Component placement limitation


Board edge parts restriction (including the process edge size)

(i) In SMT stage, there should be no any component body or pad within 4 mm along pcb edge that used for conveyor transfer. (as below the upper and the lower sides), Within 2 mm from pcb edge that vertical to the conveyor. PIP or PTH component body should not out of pcb edge.







(ii) In SMT stage, the component height should lower than 2 mm when it away from pcb edge 4~6mm (indicated in pink color region).



#### **Deformation limit**

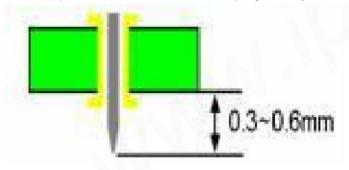
 $\blacksquare$  B/A  $\le$  7.5/1000, and the maximum deformation of B must be less than 1.2 mm





#### PCB substance selection

The pcb prepreg should meet criteria of Tg ≥145°C.

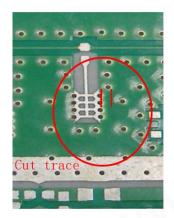


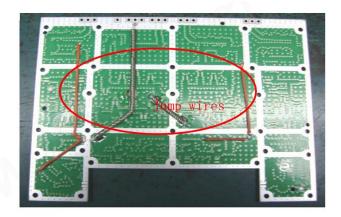



➡ The pcb prepreg should meet criteria of Td>320 °C.

#### PIP parts limit

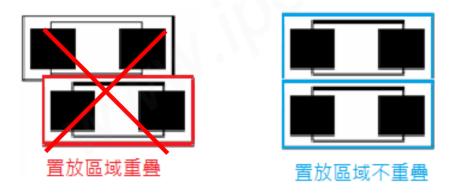
- 🖶 All of the through hole part must be designed in second to avoid the use of hand soldering process The first surface is necessary to use the SMD TYPE part or through hole parts pin and parts body can not outstand PCB second surface
- The spec of pin out of pcb surface in PIP process: pin length = PCB thickness + 0.3~0.6 mm. The insert parts in PCB can not tilt, dumping or easy to loose state.



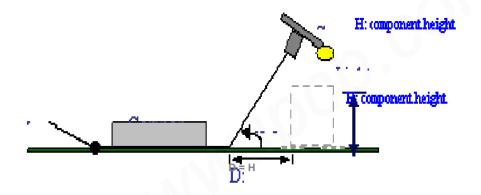


Choose the component: The use of chip components in the SMT stage as far as possible, reduce the waste of human action.



No trace cutting or jump wires process on mass production models.

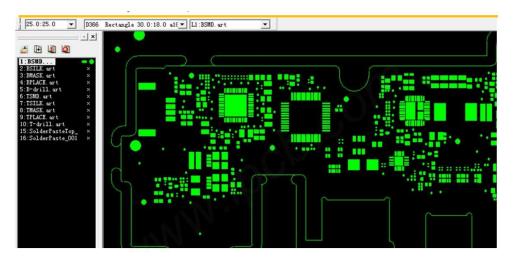




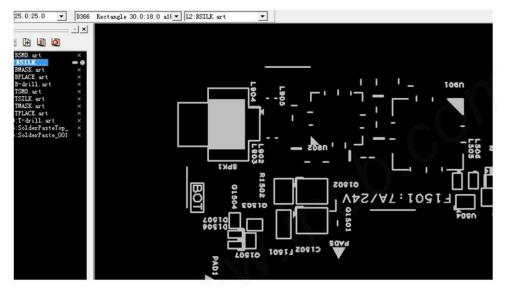




PCB pad size should be match with the size of components, If the same parts have different appearance size, the Layout or according to process proposals to special Layout, must conform the rule. All of pad design need to non-solder mask design.

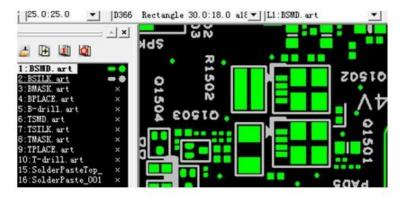
- ♣ Passive component pad size
- The general RLC component: place outline area do not overlap




For component higher than 5mm, need to keep same distance/clearance on pcb surface free from component to avoid shadow effect and causing AOI limitation.

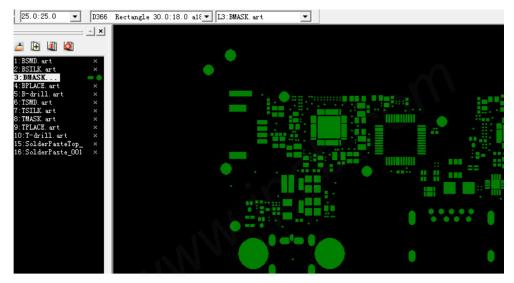



Gerber file layers requirement

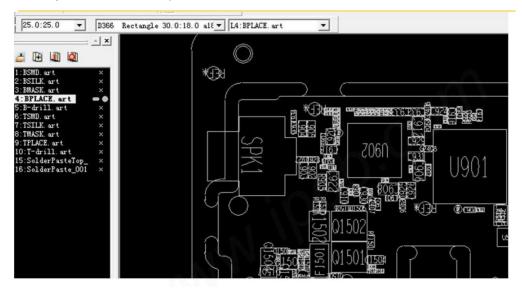





SMD layer: component PAD, reference this layer to design stencil aperture

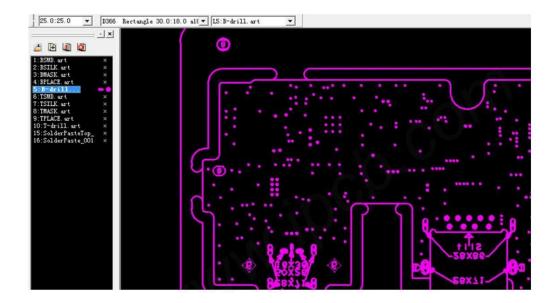



Silk layer: SMD component text marking include body outline, assignment, component name, polarity marking




Solder mask layer






Place layer: check the component location



Drill layer: confirm the through-hole size whether it match with the component





