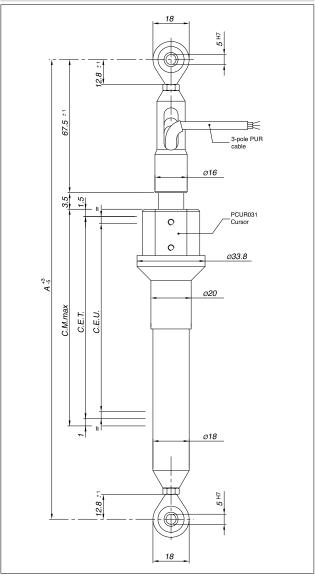
. . . .

PMA12

GEFRAN

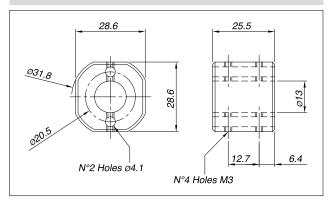
SELF-SUPPORTING LINEAR POSITION TRANSDUCER WITH MAGNETIC PULLING

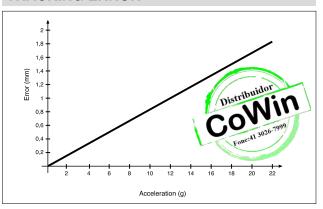

Principal characteristics

- The PMA-12 transducer, a development of the PME series, is designed for installation with self-aligning joints.
- The IP67 protection level makes the PMA-12 highly suitable for humid and wet environments and in temporary immersion (CEI EN 60529).
- · Available only with cable output.
- Ideal for applications on metalworking and ceramics machines, as well as on earth-moving machines and utility vehicles. Recommended in all cases where the angle of the drive axle changes constantly.

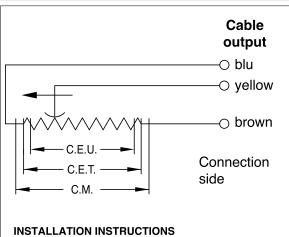
TECHNICAL DATA

Useful electical stroke	from 50 to 1000 mm
(C.E.U.)	(for intermediate strokes see table
	"Electrical / Mechanical Data")
Independent linearity	see table
(within C.E.U.)	
Resolution	Infinite
Repeatability	≤ 0,08 mm
Hysteresis	≤ 0,25mm
Electrical connection	PMA12 F 3-pole shielded cable 1m
Protection level	IP67 (CEI EN 60529)
Life	> 25x106 m strokes, or
	> 100x10 ⁶ operations, whichever
	is less
Displacement speed	≤ 5 m/s
Max. acceleration	≤ 10m/s² displacement
Shock test DIN IEC68T2-27	50g, 11ms single stroke
Vibraziotions DIN IEC68T2-6	12g, 102000Hz
Cursor dragging force	≤ 0.5 N
Displacement sensitivity	da 0.05 a 0.1 mm
(no hysteresis)	
Tracking error	See table
Tolerance on resistance	±20%
Recommended cursor	< 0,1 μA
current	
Maximum cursor current in	10mA
case of bad performances	
Maximum applicable voltage	See table
Electrical isolation	>100MΩ at 500V=, 1bar, 2s
Dielectric strength	< 100µA at 500V~, 50Hz, 2s, 1bar
Dissipation at 40°C	See table
(0W at 120°C)	
Actual Temperature	≤ 5 ppm/°C typical
Coefficient of the output	
voltage	
Working temperature	-30+100°C
Storage temperature	-50+120°C
Material for transducer case	Anodised aluminium, PSU
Material for cursor magnets	POM
Mounting	Self-aligning joints with adjustable
	distance between centres

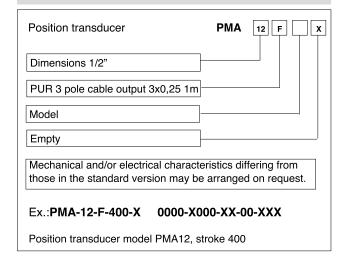

MECHANICAL DIMENSIONS


Important: all data shown in the catalog for linearity values and temperature coefficients are valid when the sensor is used as voltage divider with maximum current of $lc \cdot 0.1 \mu A$ in the circuit.

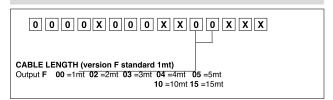
ELECTRICAL / MECHANICAL DATA MODEL 50 | 100 | 150 | 200 | 250 | 300 | 350 | 400 | 450 | 500 | 550 | 600 | 650 | 700 | 750 800 850 900 950 1000 Useful electrical stroke Model Theoretical electrical U.E.S. + 1 stroke (T.E.S.) ± 1 Resistance kΩ (on T.E.S.) 5 10 20 Independent linearity ±% 0,1 0,05 Dissipation at 40°C W (0W at 120°C) 1 2 3 Max. applicable ٧ 60 voltage 40 Mechanical stroke MC mm U.E.S. + 5 Joints distance mm minimum (A) +3 / -5U.E.S. + 158


CURSOR PCUR031

TRACKING ERROR



ELECTRICAL CONNECTIONS



- · Respect the indicated electrical connections (DO NOT use the transducer as a variable resistance)
- · When calibrating the transducer, be careful to set the stroke so that the output does not drop below 1% or rise beyond 99% of the supply voltage.

ORDER CODE

CODE EXTENSION

GEFRAN spa reserved the right to make aesthetic or functional changes at any time and without notice.

