GEFRAN

TR

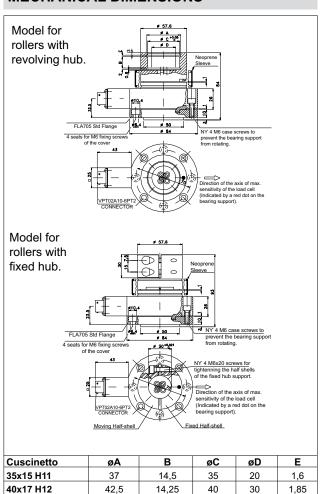
FORCE TRANSDUCER FOR MEASURING THE TENSION ON FIXED OR ROTATING SPINDLES

TECHNICAL DATA

Accuracy		0,50%
Nominal full scale load (Ln)		100N2kN
Nominal output at FSO		2mV/V
Output tolerance at Ln		<± 1% FSO
Combined errors: Non linearity Histeresis, Repeatibility		< ± 0,5% FSO
Creep (after 30 min. at Ln)		< ± 0,06% FSO
Zero load out of balance	ce signal	< ± 1% FSO
	Sensitivity	< ± 0,005% FSO°C
	Zero	< ± 0,01% FSO°C
range	Calibration	-
Nominal bridge resistance		350 Ohm
Isolation resistance		> 10 GOhm
Nominal supply voltage	е	10V
Maximum supply volta	ge	15 V
Compensated temperature range		-10+50°C
Maximum temperature range		-20+60°C
Storage temperature range		-30+80°C
Permitted static load		100% Ln
Maximum applicable load		300% Ln
Rupture load		> 500% Ln [6 kN max.]
Maximum static lateral	load	150% Ln
Maximum elastic deformation at Ln		< 0,5 mm
Grade of protection (DIN40050)		IP65
Electr. connections: Connector		VPT02A10-6PT2
Elastic element material		Aluminium (1001kN) Stainless steel (1.5kN - 2 kN)
Case material		Anodised aluminium (Flange and bearing in AISI 303)

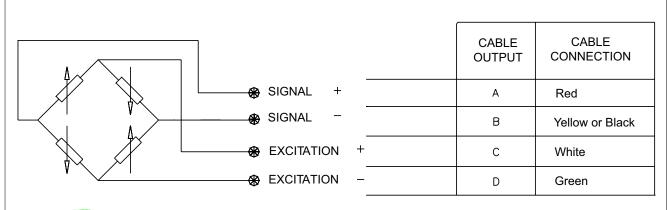
Main features

- · Range of measurement: from 100 N to 2kN
- · Accuracy class: 0,5%
- · Corrosion resistant
- · Internally generated calibration signal
- Orientation of the axis of maximum sensitivity for 35° independently from the position of the fixing holes
- Grade of protection: IP65 (DIN 40050)
- · Integrated protection against overloads


TR series force transducers are used to measure the tension that plastic films or tapes exert on the guide rollers of the machinery used to coil them.

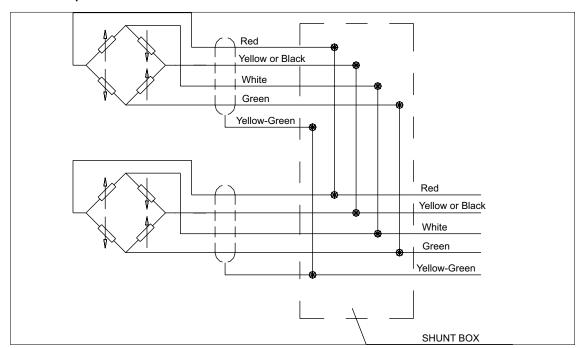
Mounted at the ends of a fixed or transmission shaft on the machine chassis, they perform the function of force sensors and bearing for the ends of the shaft.

They are used on both fixed and rotating shafts.


TR transducers are supplied with the adaptor flange for fixing, with 4 M6 screws or with one central M10 or M12 screw.

MECHANICAL DIMENSIONS

Valori delle misure in millimetri (± 0,1) Coppia di serraggio consigliata per le viti di fissaggio M6 di **7Nm**


ELECTRICAL CONNECTIONS

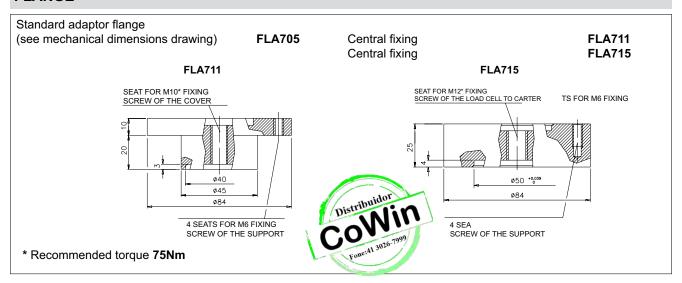
If the transducer is supplied complete with prewired connection cable, the colour code is that indicated in the table.

Cells connected in parallel

In systems that use several cells, the parallel connection automatically sums the loads on each individual cell.

Using this method of measurement, the maximum load will be the sum of the loads on the individual cells and the sensitivity will be the average value of these cells.

It is important that the user ensures that no cell is stessed beyond its maximum rating under any load condition.


CONVERSION TABLE

Kg	N	Lb
1	9.807	2.205
0.102	1	0.225
0.454	4.448	1

FLANGE

zero signal of approxima-

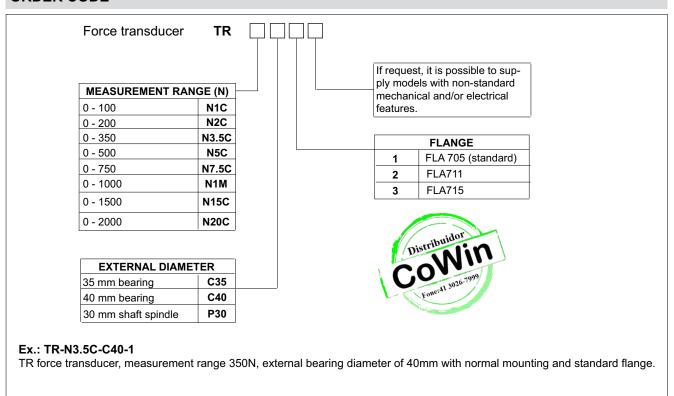
tely 0 mV/V.

CALCULATION OF RESULTANT APPLIED TO CELL

F = Resultant **T** = Tension in laminate **P** = Roll weight

The red point on the bearing support identifies the axis of maximum cell sensitivity and therefore the direction that F has to take with respect to the transducer.

The formulas are valid for the configuration with two load cells where the forces (T and P) will be divided on both cells


HORIZONTAL RESULTANT	VERTICAL RESULTANT	DOWNWARD RESULTANT	UPWARD RESULTANT	
F a	P a T		T A A A A A A A A A A A A A A A A A A A	
T F = • 2 • cos a 2	T P F = • 2 • cos a + 2 2	$F = \frac{T}{2} \cdot 2 \cdot \cos \theta + \frac{P}{2} \cdot COSb$	$F = \frac{T}{2} \cdot 2 \cdot \cos - \frac{P}{2} \cdot COSb$	
This configuration gives the best performance because it does not consider roll weight. It is advised for low tension, to prevent roll weight from representing an excessive fraction of the resultant, with consequent reduction of the usable field. This is the only configuration in which, in the absence of tension T, there is a	In this configuration, roll weight is completely in the direction of maximum sensitivity of the cell that generates a signal in mV/V positive. This signal should be considered as tare: it will be considered during calibration of the instrument connected to the cell.	In this configuration, roll weight is completely in the direction of maximum sensitivity of the cell that generates a signal in mV/V positive. This signal should be considered as tare: it will be considered during calibration of the instrument connected to the cell.	In this configuration, roll weight is completely in the direction of maximum sensitivity of the cell that generates a signal in mV/V negative. This signal should be considered as tare: it will be considered during calibration of the instrument connected to the cell.	

OPTIONAL ACCESSORIES

Radial bearing with stop ring (UNI7437-75) and spacer	35 mm 40 mm	PKIT 602 PKIT 600
Female cable connector Grade of protection IP65		CON 300
6-pin connector with 8m (25ft) cable		C08W
6-pin connector with 15m (50ft) cable		C15W
6-pin connector with 25m (75ft) cable		C25W
6-pin connector with 30m (100ft) cable		C30W
Other lengths	consult factory	
TR application manual		DOC467

Cable colour code			
Conn.	wires		
Α	Red		
В	Black		
С	White		
D	Green		
E	Blue		
F	Orange		

ORDER CODE

GEFRAN spa reserves the right to make any kind of design or functional modification at any moment without prior notice.

